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Abstract

The prevalence of Type 2 diabetes mellitus is predicted to increase dramatically over the coming years and the
clinical implications and healthcare costs from this disease are overwhelming. In many cases, this pathological
condition is linked to a cluster of metabolic disorders, such as obesity, systemic hypertension and dyslipidaemia,
defined as the metabolic syndrome. Insulin resistance has been proposed as the key mediator of all of these
features and contributes to the associated high cardiovascular morbidity and mortality. Although the molecular
mechanisms behind insulin resistance are not completely understood, a negative cross-talk between Angll
(angiotensin Il) and the insulin signalling pathway has been the focus of great interest in the last decade. Indeed,
substantial evidence has shown that anti-hypertensive drugs that block the RAS (renin—angiotensin system) may
also act to prevent diabetes. Despite its long history, new components within the RAS continue to be discovered.
Among them, Ang-(1-7) [angiotensin-(1-7)] has gained special attention as a counter-regulatory hormone opposing
many of the Angll-related deleterious effects. Specifically, we and others have demonstrated that Ang-(1-7)
improves the action of insulin and opposes the negative effect that Angll exerts at this level. In the present review,
we provide evidence showing that insulin and Ang-(1-7) share a common intracellular signalling pathway. We also
address the molecular mechanisms behind the beneficial effects of Ang-(1-7) on Angll-mediated insulin resistance.
Finally, we discuss potential therapeutic approaches leading to modulation of the ACE2 (angiotensin-converting
enzyme 2)/Ang-(1-7)/Mas receptor axis as a very attractive strategy in the therapy of the metabolic syndrome and

diabetes-associated diseases.
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INTRODUCTION

Diabetes mellitus is emerging as a worldwide epidemic, and the
clinical implications and healthcare costs from the disease are
overwhelming [1]. In many cases, this pathological condition
is linked to obesity, systemic hypertension and hyperlipidaemia
forming the so-called metabolic syndrome [2—4]. Insulin res-
istance is believed to be the pathogenic mediator of all these
features and contributes to the associated high cardiovascular
morbidity and mortality [3,5,6]. Resistance of the action of in-
sulin is a state in which insulin-sensitive tissues (i.e. adipose
tissue, liver and skeletal muscle) exhibit a failure to respond to
normal circulating levels of insulin. To compensate for this inad-

equate response, pancreatic B-cells augment insulin production
leading to hyperinsulinaemia [7]. Insulin resistance is associated
with impaired insulin-mediated inhibition of gluconeogenesis,
reduced skeletal muscle uptake of glucose, hyperglycaemia, in-
hibition of lypolisis and increased plasma levels of non-esterified
(‘free”) fatty acids. Long-term resistance to the action of insulin
and its consequent hypersecretion of insulin, eventually lead to a
pancreatic B-cell failure, causes a pre-diabetic state and glucose
intolerance, which can later progress to Type 2 diabetes [3,5-7].

The molecular mechanisms behind insulin resistance are not
completely understood. However, it is clear that the cross-talk
between insulin and other hormones, such as Angll (angiotensin
1I) [8-13], cortisol [14], adrenaline (epinephrine) [15], growth
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hormone [16], leptin [17] and adiponectin [18], can modulate the
final outcome of the action of insulin. In particular, the participa-
tion of the RAS (renin—angiotensin system) in the modulation of
the action of insulin has been the focus of great interest. Indeed,
several studies demonstrating a close connection between insulin
resistance and cardiovascular disease support the notion that al-
terations within the RAS could be related to dysregulation of the
action of insulin [19-21]. Specifically, it has been demonstrated
that Angll plays a critical role in the aetiology of insulin resistance
[22,23]. The mechanism behind this deleterious effect appears to
be related to a negative modulation exerted by Angll on several
steps of the insulin-signalling cascade, including insulin-induced
phosphorylation of the IR (insulin receptor), IRS-1 (IR substrate-
1) and activation of Akt [also known as PKB (protein kinase B)]
by PI3K (phosphoinositide 3-kinase) [8—13,24,25]. Accordingly,
recent long-term large-scale clinical trials have shown that inhibi-
tion of ACE (angiotensin-converting enzyme) or selective block-
ade of the AT|R (Angll type 1 receptor) improves glycaemic
control in patients with diabetes and prevents new-onset of dia-
betes mellitus in patients without diabetes [26—28]. In line with
these reports, several studies have shown that animal models of

insulin resistance and/or Type 2 diabetes display enhanced insulin
sensitivity [29-33] and an enhancement in the response to insulin
at various steps in the insulin-signalling cascade [34,35] as a con-
sequence of lower Angll formation or inhibition of its actions.
These data clearly indicate that the signalling cross-talk between
insulin and AnglI has significant physiological relevance.
Despite its long history, new components and interactions
between novel and established components of the RAS continue
to be discovered. The RAS is classically conceived as a major reg-
ulator of body fluid and cardiovascular homoeostasis. It consists
primarily of an enzymatic cascade through which angiotensin
is sequentially converted into Angl (angiotensin I) and later the
generation of Angll through the action of renin and the ACE
respectively (Figure 1). Angll mediates its specific functions via
type 1 and type 2 receptors, i.e. AT|R and AT,R (AnglI type 2
receptor) (Figure 1). Most of the effects of Angll are mediated
by the AT,R, including vasoconstriction, and pro-inflammatory,
pro-oxidative, proliferative and hypertrophic effects (Figure 1);
the actions mediated by the AT, R, in general, oppose those medi-
ated by the AT, R (Figure 1). By the action of ACE2, a homologue
of ACE, Ang-(1-7) [angiotensin-(1-7)] is generated directly from
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Angll and also indirectly from Angl (Figure 1). Ang-(1-7) binds
to and activates the GPCR (G-protein-coupled receptor) Mas,
through which Ang-(1-7) induces responses in opposition to
those of Angll, including vasodilation, anti-hypertrophic effects
and anti-proliferative properties [36—39] (Figure 1). Importantly,
Ang-(1-7) seems to contribute to the anti-hypertensive effects
of the blockade of the RAS [40—42]. Thus it is clear that the
balance between the ACE/AnglI/AT,R axis and the ACE2/Ang-
(1-7)/Mas receptor axis has great importance in the control of
several body functions apart from the regulation of cardio-renal
actions [39] (Figure 1). Given the major physiological relevance
of this area, research on the ACE2/Ang-(1-7)/Mas receptor axis
has expanded greatly over the last few years providing evidence
for a metabolic role of the axis and supporting the concept that
Ang-(1-7) participates in the maintenance of normoglycaemia.
The circulating concentrations of Ang-(1-7) are within the pico-
molar range [43] and, interestingly, patients with Type 2 diabetes
exhibit decreased circulating concentrations of Ang-(1-7) [44].
This is in good correlation with the observation that pregnancy
tends to elevate the plasma level of Ang-(1-7), but women with
gestational diabetes have lower levels of Ang-(1-7) compared
with healthy pregnant women [45]. In general it appears that
local levels of Ang-(1-7) correlate with ACE2 levels [46,47].
Administration of a high-fat diet to mice is associated with in-
sulin resistance and results in reduced kidney ACE2 activity,
increased levels of plasma Angll and decreased levels of plasma
Ang-(1-7) [48].

In the present review, we will discuss recent evidence suggest-
ing that the improvement in insulin resistance associated with dif-
ferent therapies might be mediated, at least in part, by Ang-(1-7)
as a positive modulator of the action of insulin (Figure 1). We will
focus on the negative cross-talk between the insulin-signalling
pathway and Angll and the beneficial effects exerted by Ang-
(1-7) at this level. Finally, we will discuss potential therapeutic

applications of the ACE2/Ang-(1-7)'Mas receptor axis for the
treatment of various alterations associated with Type 2 diabetes.

THE INSULIN SIGNALLING SYSTEM: BASIC
CONCEPTS AND REGULATION

The IR is a tetrameric protein that consists of two «-subunits
and two B-subunits. Insulin binding to the a-subunit leads to
activation of the kinase activity residing in the B-subunit, fol-
lowed by autophosphorylation of tyrosine residues in several
regions of the cytoplasmic portion of the B-subunit and a fur-
ther increase in its kinase activity [49]. The IR kinase phos-
phorylates the tyrosine residues of several cytosolic proteins
[49,50]. Many insulin responses require the phosphorylation of
IRS-1 and IRS-2 (Figure 2). Additional IR substrates include
isoforms of the transforming protein Shc2 (Src homology and
collagen homology 2), APS (adaptor protein with pleckstrin ho-
mology and src), c-Cbl (the proto-oncogene Casitas b-lineage
lymphoma) and STATSb (signal transducer and activator of tran-
scription 5b) [50,51]. When tyrosine-phosphorylated, IRS pro-
teins bind several SH2 (Src homology 2)-domain-containing pro-
teins, which further propagate downstream signals. Some of these
SH2-domain-containing proteins are adaptor proteins, such as
the p85 regulatory subunit of PI3K and Grb2 (growth factor
receptor-bound protein 2) [S0]. Others have intrinsic enzymatic
activity, such as the phosphotyrosine phosphatase SHP-2 (Src ho-
mology 2 domain-containing protein tyrosine phosphatase 2) and
the cytoplasmic tyrosine kinases Fyn and JAK2 (Janus kinase 2)
[50-52]. Substrate binding to these SH2 proteins can regulate
their activities and/or subcellular location. Collectively, those mo-
lecules orchestrate the numerous insulin-mediated physiological
responses.

A total of eight mammalian PI3Ks have been identified and
grouped into three classes (I, II and III) according to their
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sequence homology and in vitro substrate specificity [53]; the
PI3Ks that are involved in the action of insulin belong to class I.
PI3K is necessary for many, if not all, of the actions of insulin,
including stimulation of glucose transport, activation of glycogen
synthase and inhibition of hepatic gluconeogenesis [50]. Engage-
ment of PI3K by the IRS proteins activates this lipid kinase at the
plasma membrane, where its substrate, PIP, (phosphatidylinos-
itol 4,5-bisphosphate), is abundant, stimulating the production of
the key lipid second messenger PIP; (phosphatidylinositol 3,4,5-
trisphosphate). PIP; then binds the PH (pleckstrin homology)
domain of the serine/threonine kinase Akt, allowing two other
kinases, PDK1 (phosphoinositide-dependent kinase 1) and mT-
ORC2 [mTOR (mammalian target of rapamycin) complex 2], to
phosphorylate and activate Akt/PKB [50] (Figure 2). Akt/PKB
is a major effector of the insulin response, and its downstream
substrates directly mediate many of the metabolic effects of in-
sulin [54,55]. Well-established Akt substrates include GSK-3
(glycogen synthase kinase-3), which participates in the regula-
tion of glycogen synthesis, the Rab GTPase-activating protein
AS160 (Akt substrate of 160 kDa), involved in regulation of gluc-
ose transport, the small GTPase Rheb, involved in activation of
TSCI1-2 (tuberous sclerosis complex 1-2), regulation of mTOR
and protein synthesis, FOXO1 (forkhead box O1) transcription
factors, involved in regulation of expression of gluconeogenic
and other genes, NOS (nitric oxide synthase), with a crucial role
in the vasodilating effects of insulin, and BAD (Bcl-2/Bcl-xL-
antagonist) causing cell death [54,55].

With regards to JAK2, insulin induces the tyrosine phos-
phorylation of this cytosolic tyrosine kinase and promotes its
association with the IR, IRS proteins, members of the STAT
family and Shc [52,56-62]. In response to insulin administra-
tion in vivo, JAK2 associates with the IR and becomes tyrosine-
phosphorylated in insulin-sensitive tissues [61,62]. In vitro, tyr-
osine phosphorylation elicited by the IR or by JAK2 occurs at dif-
ferent sites in IRS-1 [52] (Figure 2). The physiological meaning
of this phenomenon is not completely understood. Moreover, it
has been reported that JAK2 participates in the insulin-stimulated
mitogenic pathway, but not in its metabolic pathway [63]. How-
ever, in a state of insulin resistance, heightened JAK2 activation
may attenuate insulin-induced Akt activation [63]. In this man-
ner, JAK2 acts as an inhibitor of insulin signal transduction at the
level of Akt, negatively effecting glucose metabolism.

Activation of the Ras/Raf/MEK [MAPK (mitogen-activated
protein kinase)/ERK (extracellular-signal-regulated kinase)
kinase]//ERK pathway is another major mechanism of insulin
action and results in the activation of several MAPKs [64,65].
Various lines of observation indicate that both the IRS and the
SHC family of proteins participate in this pathway. Moreover, in
contrast with the final cellular events triggered by the PI3K/Akt
signalling module, activation of MAPKs by insulin has a direct
role in the growth-promoting effects of this hormone, and ap-
pears to be relatively dispensable in insulin-mediated metabolic
regulation [50].

As stated above, tyrosine phosphorylation serves to propag-
ate the signal emanating from the IR. However, in the last two
decades, several mechanisms that control insulin signalling have
been described. Among them, serine and threonine phosphoryla-

tion of the IR and its substrates (IRS proteins) has emerged as a
key negative regulator of insulin signalling propagation [51,66]
(Figure 2). There is evidence that serine phosphorylation of the
IR impairs its autophosphorylation of tyrosine residues after in-
sulin binding, and probably contributes to the impaired insulin
signalling related to the metabolic syndrome [51,66]. Many pro-
tein kinases have been suggested as potential mediators of the
serine/threonine phosphorylation of the IR. Cell-based and isol-
ated protein studies have demonstrated that PKC (protein kinase
C) mediates the phosphorylation of the IR at Ser’®’ and Ser’®®
of the juxtamembrane region [67], Ser”, Ser!®® and Ser'®’ in
the catalytic domain [68,69], and Ser'?®, Ser'3%, Ser!3%, Ser!32!,
Ser'3?7 and Thr'**® in the C-terminus [67,70,71]. It is not clear
whether these phosphorylation sites are actually involved in the
regulation of activation of the IR. However, increased PKC activ-
ity is thought to play a significant role in several models of human
insulin resistance [72]. For instance, PKCp activity is increased in
the muscle of obese insulin-resistant subjects [73], whereas inhib-
ition of PKC activity can reverse the impaired insulin-mediated
glucose uptake in muscle strips obtained from obese subjects
[74]. Indeed, lipid infusion in rats increases serine phosphoryla-
tion of the IR and reduces insulin-stimulated tyrosine phosphos-
phorylation of the IR in a PKC-dependent manner [72,75]. INK
(c-Jun N-terminal kinase) and MAPKs have also been suggested
as putative kinases involved in the serine phosphorylation of the
IR. These enzymes are also activated by lipid accumulation and
are associated with impaired insulin signalling [72]. In support
of this, the decrease in autophosphorylation of the IR induced
by lipid incubation in 3T3-L1 adipocytes is prevented by block-
ing JNK expression [76]. In addition, we have demonstrated that
obese Zucker rats displayed an increased level of phosphorylation
of the IR at Ser®* that was reduced after chronic treatment with
the AT R blocker irbesartan [77]. These data propose that AnglI-
induced serine phosphorylation of the IR could be a mechanism
behind the negative cross-talk between the insulin and Angll
signalling pathways (Figure 2).

Unlike the scant information regarding serine/threonine phos-
phorylation of the IR, the influence of this kind of phosphoryla-
tion in the co-ordination of IRS function has been widely studied.
A number of different mechanisms appear to be involved in the
tyrosine dephosphorylation of the IRS proteins, their dissociation
from the IR, and their intracellular localization and eventual de-
gradation. Specifically, most of the information regarding the
serine phosphorylation events taking place on the IRS proteins
is available for IRS-1, whereas much less is known about the
regulation of IRS-2 [51]. Potential inhibitory serine/threonine
residues have been suggested near tyrosine residues in PI3K-
binding motifs or proximal to the IRS-1 PTB (phosphotyrosine-
binding domain) [78]. One of the major sites of regulatory phos-
phorylation within IRS-1 is Ser’”” (human Ser3!?) that was iden-
tified in CHO (Chinese-hamster ovary) cells treated with a JNK
agonist [79]. Together with JNK, the serine/threonine kinase
IKKB (inhibitor of nuclear factor B kinase B) has also been
suggested as a potential kinase for Ser*’ [80]. As proof of this,
many factors implicated in the development of insulin resistance,
such as TNFa (tumour necrosis factor ), non-esterified fatty
acids and serine phosphatase inhibitors, are able to activate the
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IKK complex and JNK [80,81]. Besides JNK and IKK}, to date
several serine/threonine kinases have been reported to be involved
in the phosphorylation of this particular site; many of them are
activated by insulin itself. In cultured cells, insulin stimulates
phosphorylation of IRS-1 at Ser’”’ via PI3K [82,83]. In addition,
mTOR can mediate this insulin-stimulated Ser’"” phosphoryla-
tion [84]. In line with these observations, we have shown that
insulin-resistant rats exhibit enhanced phosphorylation of IRS-
1 at Ser®” in adipose tissue and skeletal muscle in association
with enhanced activation of mTOR and JNK [85]. In addition to
Ser’®?, Ser®!? has emerged as a potential site of phosphorylation
and regulation of IRS-1 function, with ERK1/2 being the main
kinases involved in the process [86]. Consistent with a patho-
logical effect of ERK-dependent IRS-1 phosphorylation, Ser®*?
(human Ser®3%) phosphorylation is elevated in muscle cells from
individuals with Type 2 diabetes, and this is reduced by chemical
inhibition of ERK1/2 activity [87].

SIGNALLING MOLECULES ENGAGED BY
ANG-(1-7)

Our current knowledge of the signalling pathways that are reg-
ulated by Ang-(1-7) is limited and originates from both in vivo
and in vitro studies that have primarily used Western blot ana-
lysis as a tool [88-92]. In addition, time-resolved quantitative
phosphoproteomics using human endothelial cells has shed light
on Ang-(1-7) signalling [93]. Both approaches have generated
consistent results showing that insulin and Ang-(1-7) share sig-
nalling events, implying a cross-talk between these two signalling
systems. Given that Ang-(1-7) can improve insulin sensitivity,
this signalling overlap could be implicated in this metabolic role
of Ang-(1-7). The main findings of these studies are discussed
below.

Node JAK/STAT

The cytosolic tyrosine kinase JAK2 becomes activated and as-
sociates with the AT R in response to Angll [94,95]. JAK2 ac-
tivation by Angll leads to the phosphorylation of STAT1 and
STAT3 [96]. We have demonstrated that Ang-(1-7) stimulates
the activity of JAK2 in the rat heart in vivo, and that this activa-
tion proceeds through a mechanism that involves the AT R since
it is abolished by losartan and it is not prevented by either Mas
or AT,R antagonists [89]. In line with these findings, we have
shown that Ang-(1-7) stimulates the phosphorylation of STAT3
and STATS in the rat heart by an AT R-mediated mechanism [90].
The pattern of activation of these signalling molecules was both
time- and concentration-dependent, and similar to that initiated
by Angll [89,90]. The participation of the JAK/STAT signalling
pathway in the signalling pathways of Ang-(1-7) is intriguing.
Activation of the JAK/STAT pathway is critical for the devel-
opment of Angll-induced hypertension by mediating its effects
on renal sodium excretory capability, but the physiological con-
trol of blood pressure by Angll appears not to require JAK2
activation [97,98]. Moreover, activation of the JAK/STAT cas-
cade can stimulate excessive proliferation and growth of VSMCs

Review Article

(vascular smooth muscle cells) and glomerular mesangial cells,
contributing to the accelerated atherosclerosis and nephropathy
observed in the diabetic state [99]. A potential explanation for
this observation could be that, at the doses used, Ang-(1-7) could
have activated JAK2 through the AT R or AT,R, although it is
not clear whether this could happen under physiological condi-
tions. In any event, the participation of Ang-(1-7) as a stimulator
of the JAK/STAT pathway contradicts its anti-atherogenic and
anti-diabetic effects and deserves further exploration.

Node IRS proteins

Ang-(1-7) is capable of stimulating the phosphorylation of IRS-
1 in the rat heart [89]. We have demonstrated that this stimulating
effect of Ang-(1-7) is not mediated by the IR kinase, but instead
involves the AT ;R through a mechanism that requires participa-
tion of JAK2 [89]. Both the time and concentration necessary to
attain the maximum stimulatory response were similar to those
described previously for Angll [100,101]. The demonstration
that IRS-1 is used by Ang-(1-7) reinforces the previously pos-
tulated concept that the IRS proteins serve as convergence sites
for the signal transduction of several hormones and cytokines
[50,102,103]. Using systematic binding analysis in HEK (human
embryonic kidney)-293 cells stably transfected with the AT|R,
it was shown that Ang-(1-7) exhibits minimal binding of the
ATR (at 1 uM) [104]. Although this study employed an artifi-
cial system, this confirms previous studies that have shown that
Ang-(1-7) binds to the AT R with a very low affinity [105-107];
however, it should be noted that, in the literature, binding data are
not always matched with functional data. There are several re-
ports showing that some of the effects of Ang-(1-7) appear to be
mediated by the AT,R [108—112]. This apparent mismatch could
be attributed to tissue heterogeneity in the AT,R, AT,R and Mas
receptor and/or differential receptor subtype expression. In addi-
tion, interaction of the AT;R with the Mas receptor could be rel-
evant for Ang-(1-7) signal transduction and action. A functional
interaction has been described between the AT|R and the Mas
receptor [113]. The Mas receptor can hetero-oligomerize with
the AT;R and, by so doing, inhibit the actions of Angll. [114].
Moreover, at high doses, Ang-(1-7) has been shown to down-
regulate the AT|R [115,116]. Thus our observation that Ang-
(1-7) recruits JAK2, STAT3, STATS and IRS-1 in the rat heart
through an AT;R-mediated mechanism can be included among
these atypical observations and suggests that Ang-(1-7) can use
the AT R to transmit some of its signal to the inside of the cell.

Node PI3K/Akt

The serine/threonine kinase Akt appears to have a central role
in Ang-(1-7) signalling. Phosphorylation of Akt at the regulat-
ory sites Ser*’”® and Thr3® is stimulated by Ang-(1-7) in human
endothelial cells in vitro [88], as well as in the rat heart [89],
liver, skeletal muscle and adipose tissue [91] in vivo (Figure 3A).
Indirect evidence for the participation of PI3K in Ang-(1-7)-
induced Akt activation was provided through the use of the in-
hibitor of class I PI3Ks wortmannin [88,89]. Since then, the parti-
cipation of the PI3K/Akt pathway in the action of Ang-(1-7) has
been consistently reproduced in different experimental settings,
particularly in cardiomyocytes [117]. Time-resolved quantitative
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Figure 3 Results from our laboratory demonstrating a positive modulation of insulin signalling by Ang-(1-7)
(A) Acute in vivo administration of Ang-(1-7) induced the phosphorylation of Akt at Ser*’® (p-Akt-Ser473) in the skeletal
muscle, adipose tissue, liver and heart. Insulin-induced Akt was impaired when co-injected with Angll. This impairment
was reversed by the presence of Ang-(1-7) and the Mas receptor-specific antagonist A-779 abolished this beneficial effect.
*P < 0.05 compared with the control group (saline-injected animals); #P < 0.05. WB, Western blot. (B) Ang-(1-7) reverses
insulin resistance in fructose-fed rats. Control and fructose-fed rats (Fructose) were treated with Ang-(1-7) or saline.
Although glucose tolerance was unaltered by the high-fructose diet, circulating insulin concentrations at the baseline
and 15 min and 120 min after glucose administration were significantly higher in fructose-fed rats compared with the
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phosphoproteomics analysis corroborated these findings, situat-
ing Akt in a central place in the action of Ang-(1-7) [93]. The
participation of Ang-(1-7) as a modulator of lipid metabolism
in adipose tissue has recently been evaluated and Ang-(1-7) was
found to increase glycerol release from primary adipocytes in a
dose-dependent manner [118]. This lipolytic effect of Ang-(1—
7) appeared to be mediated by a Mas receptor/PI3K-dependent
mechanism [118]. Interestingly, additional effects of Ang-(1-7)
on adipose tissue have recently been reported, indicating that it
promotes formation of small insulin-sensitive newly differenti-
ated adipocytes [119]. This induction of adipogenesis by Ang-
(1-7) proceeds via activation of PI3K/Akt [119]. Recently, it
was shown that in patients with diabetes both the survival and
proliferation of CD34™" cells is enhanced by Ang-(1-7) in a
Mas/PI3K/Akt-dependent manner [120]. Additional reports have
shown that engagement of Akt by Ang-(1-7) appears to be es-
sential for other actions exerted by this hormone, such as the
maintenance of cardiomyocyte function [117] and stimulation of
atrial natriuretic peptide secretion [121].

Aside from class I PI3K, phosphoproteomics analysis iden-
tified PI3KC2A, a class II PI3K, as a target of Ang-(1-7) [93].
These enzymes are insensitive to PI3K inhibitors and have been
shown to have a major role in the action of insulin by stimulat-
ing insulin secretion [122]. Interestingly, it was found previously
that PI3KC2A contributes to maximal insulin-induced transloca-
tion of GLUT4 (glucose transporter 4) to the plasma membrane
and subsequent glucose uptake [123]. Moreover, another report
identified signal transduction via PI3KC2A as a novel pathway
whereby insulin activates Akt and thus identifies PI3KC2A as a
potential pharmacological target in Type 2 diabetes [124]. Thus
the engagement of PI3KC2A by Ang-(1-7) is in good agreement
with the insulin-sensitizing effect of this heptapeptide.

Akt has several cytosolic substrates, including NOS, GSK-3,
AS160 and FOXOL1 [54], and the information available so far
suggests that all of these substrates are phosphorylated by Ang-
(1-7). Ang-(1-7) activates eNOS (endothelial NOS) leading to
vasodilation. This process is triggered by the Mas receptor [125]
and requires activation of Akt [88,117]. We have demonstrated
that Ang-(1-7) is able to induce the phosphorylation of GSK-38
in the liver, adipose tissue and skeletal muscle as well as that of
AS160 in skeletal muscle and adipose tissue of the rat in vivo
[91,92]. The proline-directed serine/threonine kinase GSK-38,
being one of the principal downstream targets of Akt, regulates a
wide range of cellular processes, including glycogen metabolism,
gene transcription, protein translation and cell apoptosis [126].
Under basal conditions, GSK-3 8 is highly active and inhibits gly-
cogen synthesis by phosphorylation of glycogen synthase [127].
Insulin-activated Akt phosphorylates GSK-38 at the inhibitory
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site Ser’, leading to stimulation of glycogen synthesis and pro-
tein synthesis [50]. AS160 is a Rab GTPase-activating protein and
an important target of Akt [128]. It regulates insulin-stimulated
GLUT#4 trafficking [129] and glucose uptake [130]. The import-
ance of AS160 in insulin-mediated glucose transport has been
highlighted recently by the phenotype of AS160-KO (knockout)
mice that display whole-body insulin resistance [131]. As a co-
rollary of the discovery that Ang-(1-7) is able to induce the
phosphorylation of Akt and AS160, a recent study has shown
that Ang-(1-7) stimulates glucose transport in adipocytes [132].
Interestingly, this was associated with a decrease in NADPH oxi-
dase expression and oxidative stress [132]. Some studies suggest
that oxidative stress is able to impair PI3K and Akt insulin-
signalling steps in cultured insulin-sensitive cell lines, such as
3T3-L1 adipocytes and L6 myocytes [133,134]. These results
suggest a causal relationship between the Ang-(1-7)-mediated
negative regulation of NADPH oxidase [with a resulting decrease
in ROS (reactive oxygen species)] and an increase in glucose up-
take. Thus the observed Ang-(1-7)-induced phosphorylation of
GSK-38 and AS160 is correlated well with the modulation of the
action of insulin in terms of glucose metabolism.

FOXOL1 is a transcription factor that regulates genes con-
trolling many hepatic functions, including glucose production
and lipid metabolism [135—137]. Under physiological conditions
insulin inactivates FOXO1 by Akt-stimulated phosphorylation.
This inactivation is required for adaptive nutrient homoeostasis
during periods of fasting and feeding [138]. During fasting,
insulin levels fall and FOXO1 becomes dephosphorylated and
translocates to the nucleus which stimulates catabolic processes
to maintain glucose homoeostasis. In the fed state, insulin levels
increase leading to phosphorylation and inactivation of FOXO1
[138]. It has been shown recently that Ang-(1-7) stimulates the
dephosphorylation of FOXO1 and consequently enhances its
activity in human endothelial cells [93]. These findings suggest
that Ang-(1-7) could be a fine-tuning regulator of insulin action
through modulating the equilibrium between Akt and FOXOL1
activation.

ANG-(1-7) COUNTERACTS THE NEGATIVE
EFFECTS OF ANGII ON THE ACTION OF
INSULIN: POTENTIAL MOLECULAR
MECHANISMS INVOLVED

There is ample evidence which indicates that Ang-(1-7) is able to
counteract many of the haemodynamic and non-haemodynamic
actions of Angll. The evidence accumulated over the last few
years suggests that Ang-(1-7) acts as regulator of both glucose

control group, suggesting a state of insulin resistance. Administration of Ang-(1-7) normalized the response to glucose, thus enhancing insulin
sensitivity. *P < 0.05 compared with the corresponding values in all other groups. (C) Table showing the metabolic parameters of fructose-fed rats
chronically treated with saline, Ang-(1-7), A-779 or a mixture of Ang-(1-7)and A-779. Chronic administration of Ang-(1-7) reduced systolic blood
pressure (SBP) and baseline plasma insulin and triacylglycerols in fructose-fed animals. In addition, concomitant administration of a Mas receptor
blocker (A-779) blunted the beneficial effects exerted by Ang-(1-7). *P < 0.05 compared with the saline-treated mice. HOMA, homoeostatic model
assessment. The upper left-hand, upper right-hand and lower left-hand panels in (A), and (C) were reprinted from Regulatory Peptides, 177 (1-3),
Munoz M. C, Giani J. F, Burghi V., Mayer M. A, Carranza A., Taira C.A and Dominici F. R The Mas receptor mediates modulation of insulin signaling
by angiotensin-(1-7)., 1-11, Copyright (2012), with permission from Elsevier. Copyright (© 2012 Elsevier. The lower right-hand panel in (A) was
reproduced from [89] with permission from The American Physiological Society. (B) was reproduced from [85] with permission from The American

Physiological Society.
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and lipid metabolism [36,37,39,139]. In this section we will dis-
cuss recent findings that show that the counteraction of the actions
of Angll exerted by Ang-(1-7) also extends to the arena of meta-
bolism. The first evidence originated from an in vivo analysis that
revealed that in the rat heart Ang-(1-7) counteracts the negative
effects of Angll [89]. Strikingly, the Angll-induced inhibition
of insulin-stimulated Akt phosphorylation was no longer evident
when Ang-(1-7) was co-injected with AnglI [83]. Later, we found
that this counteracting effect was detected in the main insulin-
target tissues, namely the liver, skeletal muscle and adipose tissue
[86] (Figure 3A). It was found that Ang-(1-7) not only counter-
acted the Angll-mediated inhibition of insulin-stimulated Akt
phosphorylation, but also improved the phosphorylation of other
insulin-related intracellular proteins, such as AS160 and GSK-38
[86]. In a recent report, this counteraction of the inhibitory effects
of AngllI on insulin-induced Akt activation was confirmed using
both human umbilical vein endothelial cells [140] and isolated rat
soleus muscle [141]. Importantly, in skeletal muscle, Ang-(1-7)
was shown to ameliorate the inhibitory effect of AnglI on glucose
transport activity [141]. Although the negative effects of Angll
on insulin signalling are mediated by the AT;R, the beneficial
and counteracting effect of Ang-(1-7) on the actions of AnglI
at this level appear to be mediated by its specific receptor Mas
[92,140,141] (Figure 3A).

Angll has been proposed as one of the most important in-
hibitors of the insulin signalling pathway. Evidence of this is
the tight association that exists between the development of
Type 2 diabetes and hypertension [142]. Indeed, the observa-
tion that antagonists of the AT;R and ACE inhibitors not only
reduce blood pressure, but also ameliorate insulin resistance is
proof of the negative influence that AngllI exerts over insulin sig-
nalling [19]. Angll inhibits insulin signalling at multiple levels
[8-13,24,25]. For instance, Angll augments the phosphoryla-
tion of serine residues of the IR in aortic smooth muscle cells,
leading to a significant reduction in insulin-mediated PI3K activ-
ation. [8,9]. However, serine phosphorylation of IRS-1 appears
as one of the most important mechanisms of the Angll-mediated
attenuation of insulin signalling. This negative effect of Angll
is mediated by the AT;R with important participation of ROS
generation [143] (Figure 2). In fact, Angll has been shown to de-
crease insulin sensitivity in skeletal muscle and reduce glucose
transport through ROS generation. A pivotal role has been as-
signed for NADPH oxidase in these events [144—146]. Angll im-
pairs eNOS activation through ERK1/2-mediated phosphoryla-
tion of IRS-1 at Ser®? (human Ser®'®) and JNK1/2-mediated
Ser’®” phosphorylation [24]. Alternatively, studies suggest that
Angll induces the activation of p38 MAPK [147,148]. This en-
zyme has been suggested as a potential candidate for mediating
indirect IRS-1 serine phosphorylation [149]. In VSMCs, Angll
has been shown to decrease IRS-1 protein levels via Src, PDK1
and ROS-mediated phosphorylation of IRS-1 at Ser’”” and the its
subsequent proteasome-dependent degradation [150]. This evid-
ence indicates that Angll-induced generation of ROS through an
AT, R/NADPH oxidase-dependent mechanism is linked to serine
phosphorylation of the IRS proteins and acts a major contributing
factor to Angll-induced insulin resistance. Finally, it has recently
been shown that rapamycin, an inhibitor of mTOR, attenuates the

AnglI-stimulated phosphorylation of p70S6K (p70 S6 kinase)
and phosphorylation of IRS-1 (at Ser®® or Ser®®) and blocks
the ability of Angll to impair insulin-stimulated phosphoryla-
tion of eNOS and NO production [25]. In addition to mTOR and
INK, Angll-induced ERK1/2 activation has been shown to inhibit
insulin-dependent glucose uptake through serine phophorylation
of IRS-11in RASMCs (rat aortic smooth muscle cells) [151].
In the vasculature, Angll has been shown to inhibit Akt phos-
phorylation specifically through PKC-« activation [152].

One of the mechanisms by which Ang-(1-7) counteracts
Angll-mediated insulin resistance appears to be the reduction
in serine phosphorylation of IRS-1 (Figure 4). In the animal
model of insulin resistance generated by a high-fructose diet in
rats, we have demonstrated that Ang-(1-7) improves insulin sig-
nalling in the liver, skeletal muscle and adipose tissue [85]. This
improvement was associated with a significant reduction in the
phosphorylation of IRS-1 at Ser’”’ together with less activation
of the kinases mTOR and JNK in skeletal muscle and adipose
tissue [85]. In addition, Ang-(1-7) has been shown to counteract
AnglI signalling, leading to ERK1/2 and PKC activation both in
proximal tubular cells and VSMCs [153—155], as well as in the
rat heart [90] (Figure 2). Additional evidence for this mechanism
was recently provided using human umbilical vein endothelial
cells [140]. Accordingly, it was demonstrated that Angll induces
the phosphorylation of IRS-1 at Ser®!® that was associated with an
impairment of insulin signalling [140]. Importantly, this impair-
ment was restored by Ang-(1-7) concomitant with a reduction in
phosphorylation of IRS at Ser®'® [140]. Thus a reduction in ser-
ine phosphorylation of IRS-1 through a mechanism that involves
inhibition of JNK, mTOR, and, potentially, ERK1/2 and PKC
appears to play a key role in the counteraction of Angll-mediated
inhibition of insulin signalling induced by Ang-(1-7). This im-
provement in insulin signalling may also involve suppression of
oxidative stress as was shown previously [126] (Figure 4).

Although indirectly, the vasodilation induced by Ang-(1-7)
could be considered as a possible contributing factor to its fa-
cilitating effect on the action of insulin (Figure 4). The delivery
of insulin to the peripherical tissues is an important factor in the
execution of its actions [156-158]. Thus Ang-(1-7) could po-
tentiate the action of insulin both by enhancing vasodilation and
counteracting the vasoconstrictive effects of Angll. This would
result in enhanced insulin delivery to target tissues (Figure 4). In
fact, a recent study has shown that blockade of the AT;R with
losartan increases muscle insulin delivery and counteracts the
negative effects on insulin sensitivity associated with infusion of
lipids [159].

THERAPEUTIC IMPLICATIONS

Previous reports have indicated that the modulation of
ACE2/Ang-(1-7)/Mas receptor axis is a very attractive target in
the therapy of the metabolic syndrome and diabetes-associated
diseases affecting the heart and the kidney. These findings are
summarized in Table 1. We found that chronic infusion of Ang-
(1-7) ameliorates insulin resistance by reducing the levels of
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Potential mechanisms involved in the modulation of the action of insulin by Ang-(1-7) through its specific

1: Vasodilator effects increase the blood flow facilitating insulin delivery to peripherical tissues. 2: Direct stimulation
of IRS-1 tyrosine phosphorylation. 3: Inhibition of the negative cross-talk between Angll and insulin signalling (ser-
ine/threonine kinases involved in serine phosphorylation of IRS-1 and production of ROS).

triacylglycerols and improving insulin sensitivity in fructose-fed
rats [85] (Figures 3B and 3C). In a recent study these find-
ings were confirmed and it was also demonstrated that Ang-
(1-7) treatment prevents the metabolic-syndrome alteration, re-
duces ectopic lipid accumulation in the liver and diminishes the
volume of epididymal adipocytes as well as the total body mass
induced by fructose overload [160]. In agreement with these re-
ports, transgenic rats overexpressing Ang-(1-7) display enhanced
glucose tolerance and improved insulin sensitivity concomitant
with enhanced insulin-stimulated glucose uptake in adipocytes
and reduced triglyceridaemia, cholesterolaemia and abdominal
fat mass [161]. Further efforts in characterizing the phenotype
of these animals demonstrated the presence of reduced hep-
atic gluconeogenesis [162], as well as decreased susceptibility
to the development of inflammation in adipose tissue [163].
This improvement in glucose and lipid metabolism induced by
Ang-(1-7) correlates well with its capability for stimulating in-
sulin signalling [88,89,91,92] and glucose transport [132]. These
promising pre-clinical studies suggest that modulation of the
ACE2/Ang-(1-7)/Mas receptor axis could improve haemody-
namic and metabolic diseases in humans. Several meta-analyses
have underscored the positive effects of ARBs (angiotensin re-
ceptor blockers) and ACE inhibitors on insulin sensitivity and the
progression to Type 2 diabetes [164,165]. Since the ACE2/Ang-
(1-7)/Mas receptor axis naturally counterbalances the effects of
classical RAS components, it is reasonable to believe that part
of the positive effects of ARBs and ACE inhibitors on metabolic

diseases could be mediated by overactivation of the Ang-(1-7)
pathway. Indeed, a recent study has suggested that the beneficial
effects of olmesartan, an ARB, on vascular remodelling are me-
diated via activation of the ACE2/Ang-(1-7)/Mas receptor axis
[166].

A role for Ang-(1-7) in metabolism is also provided by manip-
ulation of ACE2. Accordingly, ACE2-KO mice display normal
insulin sensitivity when fed on a standard diet. However, Angll in-
fusion or administration of an HFHS (high-fat high-sucrose) diet
resulted in accentuated glucose intolerance and greater impair-
ment of insulin sensitivity in these animals [167]. Importantly,
this negative effect was blunted by administration of Ang-(1-7)
[167]. In db/db mice, overexpression of ACE2 in the pancreas
significantly improved fasting glycaemia, enhanced intraperiton-
eal glucose tolerance, increased islet insulin content and S-cell
proliferation, and reduced B-cell apoptosis [168]. These findings
identified ACE2 as a novel target for the prevention of S-cell
dysfunction and apoptosis, both hallmarks of the onset of Type 2
diabetes. Moreover, a recent study has determined that mainten-
ance of a normal endogenous ACE2 compensatory activity in
the pancreas appears critical to avoid the 8-cell dysfunction in-
duced by an overactive RAS [169]. In Angll-infused mice exhib-
iting hyperglycaemia, hyperinsulinaemia and impaired glucose-
stimulated insulin secretion from pancreatic islets, treatment with
adenovirus expressing human ACE2 restored pancreatic ACE2
expression and prevented Angll-mediated elevated glycaemia,
thus improving B-cell function [169].
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Table 1 Interventions in the ACE2/Ang-(1-7)/Mas receptor axis leading to improvement of metabolic syndrome, diabetes-
associated pathologies and obesity
HDL, high-density lipoprotein; NF-«B, nuclear factor «B.
Pathology Experimental approach Effect
Metabolic Chronic infusion of Ang-(1-7) Reduced serum triacylglycerols, improved glucose tolerance and insulin sensitivity
syndrome into fructose-fed rats [85], and reduced hepatosteatosis, epididymal adipocyte volume and total fat

Diabetes-induced
cardiovascular
dysfunction

Diabetic
nephropathy

Ang-(1-7) overexpression in
transgenic rats

Acute Ang-(1-7) stimulation in
rats

Ang-(1-7) treatment of
adipocytes

Deletion of ACE2 in mice

Overexpression of ACE2 in the
pancreas of db/db mice

Overexpression of ACE2 in
Angll-infused mice

Mas-KO mice

Adipocytes from Mas
receptor-knockout male mice

Chronic administration of
Ang-(1-7) or AVE-0991 on
diabetic rats

Chronic infusion of XNT (ACE2
activator) on STZ-induced
diabetic rats

Deletion of ACE2 in diabetic
Akita mice

Chronic infusion of Ang-(1-7)
into fructose-fed rats

Chronic infusion of Ang-(1-7) on
STZtreated spontaneously
hypertensive rats

Chronic infusion of Ang-(1-7)
into STZ-induced diabetic rats

Chronic infusion of Ang-(1-7)
into KK-AY/Ta diabetic mice

Chronic infusion of Ang-(1-7)
into Zucker diabetic fatty rats

mass [160]

Enhanced glucose tolerance, insulin sensitivity and insulin-stimulated glucose
uptake in adipocytes, reduced triglyceridaemia, cholesterolaemia and abdominal
fat mass [161], down-regulation of hepatic gluconeogenesis [162], and
resistance to high-fat diet with transgenic rats showing increased HDL-cholesterol
levels, decreased abdominal fat mass and lower body mass compared with the
wild-type animals [163]

Activation of the insulin signalling-related proteins IRS-1, Akt, GSK3 and AS160 via
the receptor Mas [88,89,91-93]

Improved glucose uptake both in basal and insulin-stimulated states via the Mas
receptor and reduced ROS production [132]

Normal insulin sensitivity when fed on a standard diet, but, increased susceptibility
to Angll infusion or when fed on a high-fat and high-sucrose diet in terms of the
development of glucose intolerance and impairment of insulin sensitivity; this
negative effect was eradicated by Ang-(1-7) [167]

Improved fasting glycaemia, enhanced intraperitoneal glucose tolerance, increased
islet insulin content and g-cell proliferation, and reduced S-cell apoptosis; effect
eliminated by A-779 [168]

Angll-infused mice exhibited hyperglycaemia, hyperinsulinaemia and impaired
glucose-stimulated insulin secretion from pancreatic islets, decreased ACE2
expression and activity, increased AT, R expression, and increased oxidative
stress in the pancreas; adenovirus treatment encoding human ACE2 restored
pancreatic ACE2 expression, improved g-cell function and restored glucose
homoeostasis [169]

Dyslipidaemia, increased levels of insulin, leptin and abdominal fat mass with
normal body mass, glucose intolerance, reduced insulin sensitivity and
insulin-stimulated glucose uptake by adipocytes and decreased GLUT4 in adipose
tissue [171]

Altered response of adipocytes to insulin action; effect related to decreased
expression of PPARy [172]

Prevention of diabetes-induced abnormal vascular responsiveness to noradrenaline,
endothelin-1, Angll, carbachol and histamine in the mesenteric bed, isolated
carotid and renal arteries [173]; increased LV-developed pressure and serum
nitrite/nitrate and decreased LV mass/body mass and LV collagen content [174];
AVE-0991 rescued cardiac function under diabetic conditions as indicated by a
normalization of blood pressure and contractility parameters [175]; and Ang-(1-7)
inhibited EGF receptor transactivation via a Mas receptor/Src-dependent pathway,
indicating that activation of the EGF receptor is a key player in mediating
diabetes-induced vascular dysfunction [177]

Improved endothelium-dependent vasorelaxation of aortic rings; effect blocked by
A-779 [176]

Increased plasma and tissue Angll, impaired systolic and diastolic function,
increased activation of NADPH oxidase, and greater oxidative stress [178]

Reduced blood pressure, heart-to-body mass ratio, myocyte diameter and LV fibrosis
[179]

Reduction of renal NADPH oxidase activity and proteinuria, and attenuation of
diabetes-induced increase in the renal vascular responsiveness to endothelin-1
[180]

Attenuated proteinuria and renal collagen content and improved endothelial
functions without preventing tubular damage; effects blocked by A-779 [181]

Improved mesangial expansion, attenuated Angll-mediated NADPH oxidase
activation and ROS production in glomeruli and mesangial cells, and attenuated
Angll-induced NF-«B and MAPK signalling in mesangial cells [182]

Reduced proteinuria and systolic blood pressure, restored creatinine clearance, and
decreased renal fibrosis, oxidative stress and inflammatory cytokines [184]
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Table1 Continued
Pathology Experimental approach Effect
Deletion of ACE2 in mice Exaggerated diabetic nephropathy induced by STZ administration [185]
Overexpression of ACE2 in Prevented albuminuria, attenuated the increase in the mesangial area and the
podocytes of diabetic mice decrease in glomerular area, and restored nephrin expression [186]
Inhibition of ACE2 in diabetic Exacerbation of diabetes-induced increase in cardiac and renal NADPH activity [187]
rats
Diabetic Ang-(1-7) treatment of Restored migration and NO bioavailability/cGMP production via Mas receptor and

retinopathy endothelial progenitor cells
(CD34*) from patients with

diabetes

NorLeu(3)-Ang-(1-7) [analogue
of Ang-(1-7)] treatment of
diabetic wounds

Diabetic wounds

Administration of an oral
formulation of Ang-(1-7)

Obesity

decreased NADPH oxidase activity, and enhanced survival and proliferation of
CD34 ™ cells [188]

Induced progenitor cell proliferation and accelerated vascularization, collagen
deposition and re-epithelialization [189]

Prevention of obesity, hepatic inflammation and hepatic steatosis induced by a
high-fat diet, and improvement in lipid metabolism [191,192]

It is worth mentioning that ACE inhibitors fail to completely
block Angll formation since many other alternative proteases can
still produce Angll and generate hyperglycaemia in the presence
of ACE inhibitors [170]. ACE2, on the other hand, acts directly on
Angll, irrespective of the pathways involved in the production of
this octapeptide. Thus, by ensuring depletion of Angll in the body,
ACE2 therapy also increases the possibility of Ang-(1-7) emer-
ging as a more efficient treatment than ACE inhibition in com-
bating Angll-mediated hyperglycaemia [47,168,169]. The safety
and tolerability, as well as the pharmacokinetics and pharmaco-
dynamics of intravenous administration of recombinant soluble
human ACE2 (known as APNO1), is under evaluation currently
[Safety and Tolerability Study of APNO1 (Recombinant Human
Angiotensin Converting Enzyme 2); ClinicalTrials.gov Identifier:
NCT00886353].

Confirmatory evidence of a role for the ACE2/Ang-(1-7)/Mas
receptor axis in glucose and lipid homoeostasis was provided by
the characterization of the phenotype of Mas-KO mice [171].
Mas-KO mice displayed dyslipidaemia and increased levels of
insulin, leptin and abdominal fat mass. In addition, these mice
show glucose intolerance, reduced insulin sensitivity, insulin-
stimulated glucose uptake in adipocytes and decreased GLUT4
expression in adipose tissue [171]. An additional study determ-
ined that adipocytes from Mas-KO mice exhibit a blunted re-
sponse to insulin in terms of a decrease in glycerol release,
suggesting that the lack of Ang-(1-7) action through the Mas
receptor alters the response of adipocytes to insulin action. These
effects could be related to the decreased expression of PPARy
(peroxisome-proliferator-activated receptor y) in the adipocytes
of Mas-KO mice [172].

Owing to the demonstrated role of Ang-(1-7) as a facilitator of
the action of insulin and as a negative regulator of the action
of Angll, several studies have analysed its beneficial effects on
pathologies associated with Type 2 diabetes. An important area of
research is the treatment of diabetes-induced cardiovascular dys-
function. In this regard, it has been demonstrated that chronic ad-
ministration of Ang-(1-7), or its synthetic analogue AVE-0991,
prevented the diabetes-induced abnormal vascular responsive-
ness to noradrenaline, endothelin-1, Angll, carbachol and histam-
ine in the mesenteric bed, isolated carotid and renal arteries of rats

made diabetic by treatment with STZ (streptozotocin) [173]. Fur-
ther studies in STZ-treated rats demonstrated that treatment with
Ang-(1-7) increases LV (left ventricular)-developed pressure and
serum nitrite/nitrate, and decreases the LV mass/body mass ratio
and LV collagen content in diabetic animals [174]. In agreement
with these studies, treatment with AVE-0991 has been shown to
rescue cardiac function under diabetic conditions as indicated
by a normalization of blood pressure and contractility paramet-
ers [175]. More recently, it was shown that chronic infusion of
XNT {1-[(2-dimethylamino) ethylamino]-4-(hydroxymethyl)-7-
[(4-methylphenyl) sulfonyl oxy]-9H-xanthene-9-one; an ACE2
activator} into STZ-induced diabetic rats improves the
endothelium-dependent vasorelaxation of aortic rings. This ef-
fect was blocked by the Mas receptor antagonist A-779 [176].
In general these studies imply a cardioprotective role for Ang-
(1-7) under hyperglycaemic conditions and point to new thera-
peutic strategies using Ang-(1-7) agonists to treat the cardiovas-
cular complications associated with diabetes mellitus. A poten-
tial mechanism involved in these beneficial effects of Ang-(1-7)
could be related to its ability to inhibit EGF (epidermal growth
factor) receptor transactivation via a Mas receptor-dependent
pathway [177]. In addition, an indirect role for this cardiopro-
tective role of Ang-(1-7) has been demonstrated by deletion of
the Ace2 gene in diabetic Akita mice.These animals displayed in-
creased plasma and tissue Angll, impaired systolic and diastolic
function, and increased NADPH oxidase activity and greater ox-
idative stress in the heart [178]. A protective effect for Ang-(1-7)
on cardiac function has also been demonstrated in fructose-fed
rats, where chronic infusion of Ang-(1-7) reduced blood pres-
sure, heart-to-body mass ratio, myocyte diameter and LV fibrosis.
These beneficial effects were associated with a reduced activity of
growth-promoting signalling molecules pathways (i.e. ERK1/2,
JNK1/2 and p38 MAPK) in the heart. [179].

Diabetic nephropathy is another major complication of Type 2
diabetes and is a main cause of end-stage renal disease. In line
with its beneficial effect on the action of insulin, Ang-(1-7)
has been shown to have a renoprotective effect in both diabetic
and insulin-resistant rats. In diabetic spontaneously hypertens-
ive rats, chronic infusion of Ang-(1-7) decreased the elevated
levels of renal NADPH oxidase activity, reduced proteinuria
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different hormones

and attenuated the diabetes-induced increase in renal vascular
responsiveness to endothelin-1 [180]. In STZ-treated diabetic
rats, chronic infusion of Ang-(1-7) attenuated proteinuria and
renal collagen content. This correlated with an improvement in
endothelial function. Such beneficial effects were blocked by
A-779 [181]. A study using KK-AY/Ta mice demonstrated that
chronic infusion of Ang-(1-7) improves mesangial expansion and
attenuates Angll-mediated NADPH oxidase activation and ROS
production in glomeruli and mesangial cells [182]. Ang-(1-7)-
induced attenuation of renal NADPH oxidase has also been shown
to correlate with the preservation of PPARy and catalase activity
[183]. We have demonstrated that treatment of Zucker diabetic
rats with Ang-(1-7) reduces proteinuria and systolic blood pres-
sure, restores creatinine clearance, and decreases renal fibrosis,
oxidative stress and inflammatory cytokines [184]. Highlight-
ing the role of Ang-(1-7), ACE2-KO mice displayed accelerated
time-dependent glomerular and tubulointerstitial damage when
treated with STZ [185]. In good agreement with this finding,
overexpression of ACE2 in the podocytes of diabetic mice was re-
cently shown to prevent microalbuminuria, attenuate the increase
in mesangial area, decrease the glomerular area and restore neph-
rin expression [186]. Confirmation of the beneficial role of endo-
genous Ang-(1-7) in the cardiovascular system was provided by
a study where chronic treatment with the ACE2 inhibitor DX600
exacerbated the diabetes-induced increase in cardiac and renal
NADPH activity [187]. Finally, modulation of the ACE2/Ang-
(1-7)/Mas receptor axis appears to be an attractive therapeutic
target in the treatment of diabetic retinopathy [188] and also has
a potential application as an accelerator of vascularization and
re-epithelization [189].

In view of the great therapeutic effect of the modulation of the
ACE2/Ang-(1-7)/Mas receptor axis, a formulation of Ang-(1-7)
bound in a cavity in the oligosaccharide HPBCD23 (hydroxypro-
pyl B-cyclodextrin 23) that protects the peptide, when orally ad-
ministrated, during passage through the gastrointestinal tract has
been developed [190]. Recently, this oral formulation of Ang-
(1-7) has been shown to counteract the deleterious effects of a
high-fat diet [191,192], supporting its potential application in the
treatment of the metabolic syndrome and diabetic complications.

CONCLUSIONS AND PERSPECTIVES

The overall knowledge of the physiological and pathophysiolo-
gical role of Ang-(1-7) has advanced greatly in the last decade.
In particular, it has become clear that Ang-(1-7) counteracts both
the cardiovascular and non-cardiovascular actions of AnglI. Re-
cent findings have shown that this counteraction applies to the
modulation of the action of insulin in glucose and lipid meta-
bolism. Potential mechanisms by which this beneficial effect is
exerted include direct activation of insulin signalling, inhibition
of the negative actions of Angll and increased delivery of insulin
to the target tissues. Thus Ang-(1-7) should be considered as a
member of the group of hormones that can modulate the action
of insulin, in this case positively (Figure 5). The implications of
these findings are beginning to be revealed, and make modula-
tion of the ACE2/Ang-(1-7)/Mas receptor axis a very attractive
therapeutic option in the treatment of the metabolic syndrome
and pathologies associated with Type 2 diabetes.
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