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Abstract We study the spin-dependent transmission through a potential barrier in
a zigzag graphene nanoribbon. In particular, we consider the effect of the magnetic
order of the ribbon induced by the modulation of the local density introduced by the
barrier. We model the system using an Anderson–Hubbard model that we treat in
the mean field approximation. We solve this problem self-consistently and calculate
the transmission coefficient using the recursive Green function method. We find that
Fano-like interference dips appear on one of the spin channels as the result of the
presence of spin polarized edge states in the barrier.
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1 Introduction

Since the early stages of graphene research, it has been recognized that graphene
ribbons with zigzag termination may present spin-polarized states [1]. The magnetic
instability arises from the presence of a flat band near the Dirac point. Such a band
originates from edge states that are strongly localized [2,3]. The presence of such
magnetic order has been studied using different approaches, such as Density Functional
Theory (DFT) calculations [4–6], Quantum Monte Carlo, and exact diagonalization [7]
or simply using a mean field approximation of the Anderson–Hubbard model [8–10].

In all cases, the results are similar provided the e–e interaction is assumed to be
relatively weak (U � t , in the Anderson–Hubbard model language, see below). The
nature of the magnetic order, whether the spin polarization at the edges of the ribbons
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has the same or the opposite orientation, depends on doping, being the antiferromag-
netic order the ground state of the neutral nanoribbon [4,8]. While the effect of such
magnetic ordering on the transport properties has been extensively discussed in the
literature, the interplay between modulated doping, induced by the presence of a gate
potential, for instance, and the type of ordering has not been explored that much. Here,
we study the electron transport through a graphene nanoribbon with a potential barrier
that generates a magnetic interface between the leads and the region of the barrier.

2 Model

The graphene ribbon is described by the following mean field Hamiltonian,

H = −t1
∑

〈i, j〉,σ
c†

iσ c jσ − t2
∑

〈〈i, j〉〉,σ
c†

iσ c jσ +
∑

i

(
Vgi n̂i + U

2
〈n̂i 〉n̂i − U

2
〈ŝi 〉 · ŝi ,

)

(1)

where c†
jσ (c†

jσ ) is the creation (anhilation) operator for an electron on site j and

spin σ , n̂i = ∑
σ c†

iσ ciσ ,τ is a vector operator formed by the Pauli matrices, ŝi =∑
σ,σ ′ c†

i,σ ′τσ ′σ ci,σ is the local spin operator, t1 (t2) is the hopping between nearest
(next-nearest) neighbors C atoms, U is the Anderson–Hubbard parameter that accounts
for the e–e interaction, and Vgi is the potential created by the gate electrode at site i .
The symbols 〈. . . 〉 and 〈〈. . . 〉〉 indicate sum over all sites and their nearest and next
nearest neighbors, respectively. Notice that the Hamiltonian (1) admits a non-colinear
magnetization [8,9]. In what follows we use U = 0.77t1, t2 = 0.1t1 and consider a
16 C atoms wide ribbon (8-ZGNR), see Fig. 1a.

3 Results

Firstly, we analyze the case of a uniform ribbon (Vgi = 0) and calculate the ground
state polarization as a function of the graphene’s doping δn. Since the largest spin
polarization occurs at the edges, we use the angle between the polarizations of the two
edges, θ = arccos(〈ŝ1〉 · 〈ŝ16〉/|〈ŝ1〉||〈ŝ16〉|), to characterize the magnetic order.

Figure 1b shows θ as a function of the doping δn (excess electrons per unit cell of the
ribbon). Clearly, a canted phase is more stable as soon as δn > 0 (this is consistent with
DFT results [11]), while the ferromagnetic phase becomes stable for δn > δnc. In all
this range, the magnitude of the edge magnetization remains approximately constant,
|m1| ≈0.25μB. This is shown in Fig. 1c, where the profile of the magnetization along
the width of the ribbon is plotted as a function of the doping. The numerical results
for θ (dots in Fig. 1b) can be fitted (line) with θ = π

√
1 − δn/δnc with δnc ∼ 0.055.

The ferromagnetic phase remains stable for larger doping, with the edge magnetization
gradually vanishing, up to a point (not shown) where the systems become nonmagnetic.
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Fig. 1 a Scheme of the graphene nanoribbon and the gate potential considered in this work. The unit cell
of the ribbon with lattice parameter a is indicated. b Angle θ between the polarization of the edges of the
ribbon (see text) as a function of the electron doping of the unit cell δn. c Magnetization profile along the
width of the ribbon as a function of δn (Color figure online)

Fig. 2 Spatial dependence of the local electron doping δn (squares), the edge magnetization (dots) and
the gate potential (thin dashed line) near the interface between the lead and the gated region (Color figure
online)

A spatial modulation of the electron density or doping of the ribbon, and hence of
the spin polarization, can be introduced by a non-zero gate potential. Here we analyze
the case where the gate potential is such that the local doping deep inside the gated
region is δn = 0.3, and so the ferromagnetic order is favored, while in the lead, the
system is nonmagnetic with the doping set to be δn = 0.6. Figure 2 shows the self-
consistent spatial dependence of both the local density and the edge magnetization
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Fig. 3 a Spin-dependent transmission as a function of the energy of the incident electron. b Band structure
of an infinite ribbon with the same electron density as in the leads (left) and in the middle of the barrier
(right) for the two spin cases. Shadow areas highlight the energy range where non-trivial effect occurs
(Color figure online)

near the interface between the lead and the gated region. Apart from the expected
Friedel-like oscillations inside the barrier, the result shows that the barrier leads to
a finite spin-polarized region. Notice that the change of the magnetization and the
density is more abrupt than the change of the gate potential.

Once the self-consistency is obtained, we can calculate the conductance in the linear
response regime using the Landauer approach. For that, we use the standard procedure
to obtain the transmission coefficient T from the Green function of the system.

Figure 3a shows the transmission as a function of the energy and the spin of the
incident electron, T↑ and T↓. There is a clear difference between the two spin orien-
tations. To understand this behavior we plot in Fig. 3b the spin-dependent bands of
an infinite ribbon with an electron density per unit cell corresponding to the one of
the leads (left panels) or to the one at the center of the gated region (right panels). We
then assume that these bands are a good description of the states in the leads and deep
inside the barrier and so the main features of the transmission can be understood in
terms of matching conditions between these states. Since the leads are paramagnetic,
the allowed states are the same for both spins: in the energy range shown in the figure,
there is only one incident transverse channel slightly above E ∼ −0.02t1 and there
are three channels below it. The bands plotted with thick dashed (thin solid) lines have
an even (odd) parity with respect to the center of the ribbon. This is important as parity
conservation imposes a restriction on the transmission through the potential barrier.
The ‘bands’ associated to the barrier states, on the other hand, have the following
characteristics and the corresponding effects on transport: (i) spin up case there is
a single featureless band of even parity. Because there is a single available channel
inside the barrier and it matches well with the even lead states, the transmission is
very close to one in almost all the energy span—except near the minimum of the even
lead band where the states with k ∈ [0.8π/a, 1.2π/a] are edge states [10] (ii) spin
down case below E ∼ −0.02t1, there is an odd band that couples well with the lead
channels leading to essentially perfect transmission. Above that energy there is no
odd channel in the leads and so these states do not participate in the transport. Above
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Fig. 4 a, b Transmission of down electrons in two different energy ranges that show Fano dips of different
shapes. c Scheme used to interpret the data (see text). d Comparison of the position of the resonant energies
(εn(kn)) with the band associated to the states inside the barrier (Color figure online)

E ∼ 0.03t1 the same happens, but with an even band involved. However, the even
band contains two channels in the energy range between these two cases (shadowed
area in the figure): the ones with k ∈ [0.8π/a, 1.2π/a], which are edge states [2,10],
and the ones outside that range, which are extended states (in the transverse direction)
as the lead modes. Both channels couple to the leads but in very different way leading
to interference effects that produce dips in the transmission as we explain below.

Figures 4a, b show T↓ in two different energy ranges in more detail inside the region
where the transmission present dips. These dips, that reach zero transmission at their
centers, can be understood as the interference between a transmission channel with a
continuous spectrum and a resonant channel (the well known Fano effect [12,13]).

A scheme of a model that contains this physics is shown in Fig. 4c. In our case,
the continuous channel is represented by the extended states of the even mode inside
the barrier, which are strongly coupled to the leads (τ hopping in the model) and
thus providing a channel with T ∼ 1. The role of the resonant states (with energy
ε) is played by the edge states inside the barrier, which are weakly coupled to the
leads (γ � t, τ ) due to the small overlap between these states and the extended lead
states. This very simple model can explain a dip in the transmission as the result of the
interference between the two transmission paths. In addition, the different shapes of
the dips can be understood from the fluctuations on the values of the model effective
parameters, which in the actual system arise from details of the wave function matching
between states in the leads and inside the barrier.

The reason why there are many resonant states can be found in the fact that these
edge states can be thought as having a discrete spectrum due to the confinement
induced by the magnetization profile. Indeed, if we assume that the confinement is
given by the length L of the region with non-zero magnetization, we expect that the
confined state will have a wave-vector kn � nπ/L + k0, where n is an integer number
and k0 a correction to the hard wall confinement. The position of the resonances (εn)
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will depend on the exact form of the energy dispersion and it is difficult to evaluate.
Nevertheless, to show that this interpretation makes sense, we extracted the position of
the Fano resonances in the transmission and plot them as a function of kn assuming that
the resonance at the highest energy corresponded to n = 31 and taking k0 = 0.78π/a
and L = 150a, the former parameter was chosen to fit the band and the latter taken
from the data in Fig. 2. This is shown in Fig. 4d and compared with the band for down
spins of a system with the same density as in the middle of the barrier. There is a very
good agreement that supports our interpretation.

4 Conclusions

We have shown that local gating in graphene ribbons can lead to strong fluctuation of
the spin-dependent transmission coefficient. This originates from the fact that local
gating can induce changes in the local magnetic order of the ribbon. In particular, in the
case of a ferromagnetic barrier, we showed that the presence of edge states with a poor
matching with the lead states generates Fano-like dips in the transmission. If the Fermi
energy falls near one of these dips, the current will be strongly polarized. Even though
we have presented results only for a 8-ZGNR, our results extend to wider ribbons.
One can envision that more exotic interfaces with different magnetic domains might
be possible, but that is beyond the scope of the present work. The recently developed
technique to grown high quality ribbons with atomically defined edges [14] might
open the door to study this type of magnetic effects on transport.
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