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The development of quantitative temperature reconstructions in regions of paleoclimate interest is an important
step for providing reliable temperature estimates in that region. Fossil chironomid assemblages have been
studied in Patagonia showing great promise for reconstructing paleotemperatures; however there is still a lack
of robust temperature inference models in that area.
To contribute to the understanding of climate change, a transfer function using chironomids preserved in 46 lakes
in Chile and Argentina was developed. The best performing model to infer the mean air temperature of the
warmest month was a 3-component WA-PLS model with a coefficient of correlation (r2jack) of 0.56, a root
mean square error of prediction (RMSEP) of 1.69 °C and a maximum bias of 2.07 °C. This model was applied to
the chironomids preserved in the sediment of the Huelmomire (41°31′ S, 73°00′W), in the lake district of north-
western Patagonia. The reconstruction showed several cold spells (one at 13,200 to 13,000 cal yr BP and a cooling
trend between 12,600 and 11,500 cal yr BP) associated with the Younger Dryas and/or Huelmo–Mascardi Cold
Reversal (HMCR). Our findings support climate models proposing fast acting inter-hemispheric coupling mech-
anisms including the recently proposed bipolar atmospheric and/or bipolar ocean teleconnections rather than a
bipolar see-saw model.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Patagonia is an important area for paleoclimate studies in southern
South America because it is significant in understanding climate syn-
chronization between the North and South Hemispheres. However,
views are still polarized concerning climate dynamics during key pe-
riods of large-scale climate fluctuations (e.g. the Lateglacial/Holocene
transition) (Whitlock et al., 2006; Rojas et al., 2009; Killian and Lamy,
2012). Despite efforts to identify climate fluctuations after the Last
Glacial Maximum (LGM), the timing and extent of a cold reversal
contemporaneous to the Younger Dryas (YD) is still in unresolved.
Divergent evidence comes from paleoclimate studies based mainly on
terrestrial records from the Andean Patagonian forest of Chile and
Argentina. These studies show either i) a cooling pattern synchronous
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with the YD (12,500 to 11,200 cal yr BP) (Heusser et al., 1996;
Ariztegui et al., 1997; Moreno, 1997, 2004; Moreno et al., 2001;
Massaferro and Brooks, 2002); ii) a cooling pattern synchronous with
the Antarctic Cold Reversal (ACR, 14,500 to 13,000 cal yr BP) (Lamy
et al., 2004;Moreno et al., 2009); or iii) an intermediate YD/ACR climate
signal called Huelmo–Mascardi Cold Reversal (HMCR, 13,500 to
11,600 cal yr BP) (Hajdas et al., 2003; Bertrand et al., 2008b;
Massaferro et al., 2009). Differences between these records may be at-
tributed to the individual response of proxies, chronological control,
sampling resolution, individual site characteristics, the differential influ-
ence of the SouthernWesterlyWinds (SWW)on the east orwest side of
the Andes or merely because the signature of the cold event in the
southern hemisphere is weak. In New Zealand, similar discrepancies
were apparent during the Late Glacial/Holocene transition (Denton
and Hendy, 1994; Newnham et al., 2003; Turney et al., 2003; McGlone
et al., 2004). Resolving this problem is important for understanding
the intra- and inter-hemispheric modes of millennial-scale climate
changes during the Last Glacial Termination, and for determining the
Huelmomire (Chile, Northwestern Patagonia) during the Last Glacial
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climatic mechanisms involved in their initiation and propagation. Pro-
duction of quantitative, high resolution reconstructions of summer tem-
perature will be particularly important in this respect. To contribute to
the resolution of this problem we have used chironomids to obtain a
summer temperature reconstruction, the first of its kind in northern
Patagonia, from a Late Glacial lake sediment sequence.

Summer temperature is one of the major controls over the chirono-
mid life cycle (Rossaro, 1991; Brodersen and Lindegaard, 1999) and
manymodels (transfer functions) have been developed in the Northern
Hemisphere to quantify summer temperature (e.g. Walker et al., 1991;
Olander et al., 1999; Brooks and Birks, 2001; Larocque et al., 2001,
2006; Self et al., 2011; Eggermont and Heiri, 2012). In the southern
Hemisphere, transfer functions have been developed for southern
Patagonia (Massaferro and Larocque, 2013), northern Chile (Araneda
et al., in prep), Tasmania (Rees et al., 2008) and New Zealand
(Dieffenbacher-Krall et al., 2007; Woodward and Shulmeister, 2007)
showing the potential of using chironomids in this region for
temperature reconstruction. Even though northern Patagonian
paleoenvironmental investigations using chironomids are not numer-
ous, there are several qualitative and semiquantitative records indicat-
ing that changes have occurred in this faunal community during the
Late Glacial period (Massaferro and Brooks, 2002; Massaferro et al.,
2009). A recent quantitative reconstruction at Potrok Aike, in southern
Patagonia, confirms the potential of chironomids to help in understand-
ing the complex climate fluctuations in southern South America
(Massaferro and Larocque, 2013).

In this paper, we present the first quantitative chironomid-inferred
temperature model for Northern Patagonia (Argentina and Chile) and
use it to reconstruct temperatures during the Late Glacial from a fossil
chironomid record from Huelmo mire, located in Chilean Patagonia at
41° S. An earlier qualitative analysis of chironomids and pollen from
Huelmo indicated temperature and precipitation changes between ca.
20 and 10 cal kyr BP (Massaferro et al., 2009). The chironomid and
pollen records from Huelmo indicated step-wise deglacial warming
beginning at ca. 18,000 cal yr BP, in agreement with other paleoclimate
records from northwestern Patagonia, and ice core records from
Antarctica (Pedro et al., 2011). Isotopic signals from Antarctic ice cores
indicate relatively warm conditions between ~15,000 and
14,000 cal yr BP, followed by a reversal in trend with cooling pulses at
~14,000 and 13,500 cal yr BP, and warming at the beginning of the
Holocene (Jouzel et al., 2003) Peak warmth during the Last Glacial
Termination was achieved during ~14,500 cal yr BP, followed by a
cooling trend that commenced during the ACR (~14,000 cal yr BP),
which later intensified and persisted during the so-called Huelmo–
Mascardi Cold Reversal (HMCR) (Hajdas et al., 2003; Massaferro et al.,
2009). A reconstruction of temperature using chironomidswill quantify
the warmer and colder periods suggested by the previous pollen and
chironomid records.

2. Site location

The Huelmo mire (41°31′ S, 73°00′W) is located in the lowlands of
the southern Chilean Lake District, on the western side of Seno
Reloncaví (Fig. 1). The area is characterized by a mix of Valdivian,
North Patagonian and temperate rainforest vegetation. The area
that surrounds Huelmo has been altered by human activities. Current
vegetation close to the mire is heavily influenced by clearance, leaving
grassland for grazing. Quaternary glacial, volcanic, eolian and alluvial–
colluvial deposits cover most of the bedrock geology in the area
(Heusser, 1999).

At Puerto Mont, on the northern shore of Seno Reloncaví, mean
annual temperature is 11.2 °C (ranging from 7.7 °C in winter to
15.1 °C in summer) and mean annual precipitation is 2341 mm
(Moreno and Leon, 2003). This cool-temperate, wet climate results
from the cold, offshore Humboldt Current combined with the Southern
Westerly Winds (SWW) (Garreaud et al., 2009).
Please cite this article as:Massaferro, J., et al., Quantifying climate change in
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3. Material and methods

3.1. Sampling, stratigraphy and chronology

Several overlapping sediment cores from the center of the
Huelmo mire were extracted using a square-rod Livingstone corer.
For this study, cores 601A, 990-1A and 990-1B were combined in a
421 cm long composite sequence spanning the time interval
between 19,600 and 10,000 cal yr BP (1071–650 cm). Stratigraphic
correlation between these cores was achieved using loss-on-
ignition records and two prominent tephra layers (Moreno and
Leon, 2003). The stratigraphy of the composite core consisted of a
floor of sand and gravel grading to silt with increasing amounts of
organic material. On top of this, there was a sequence of organic
gyttja, a thick sand volcanic ash layer, coarse organic detritus with
gyttja and woody peat on top. The chronology of the core was
based on 37 AMS radiocarbon dates, which were converted to calen-
dar yr BP using CALIB 4.1.2 (Stuiver et al., 2005). The age–depth
curve reveals continuous sedimentation along the time span of the
composite core (Fig. 2). More details about lithology and age
model are discussed in Moreno and Leon (2003).

The core stratigraphy together with the age–depth curves, X-
radiographs and loss-on-ignition data indicate a major change in depo-
sitional patterns above and below a prominent volcanic ash at 696 cm
depth (interpolated age of 11,000 cal yr BP). Before this ash layer, pelag-
ic sedimentation prevailed indicating the presence of a permanent lake.
After the tephra deposition, the Huelmo site underwent a rapid drop in
lake-level and the expansion of a swamp (indicated by a shift to coarse
detritus gyttja/woody peat) (Moreno and Leon, 2003).
3.2. Training set lakes

Thirty lakes were sampled during the austral summer of 2000
and 2002, six of them are located in Chile and twenty-four in
Argentina, along an altitudinal gradient of 72.4 to 1925 m a.s.l., be-
tween 39° to 43° S and 70° to 73° W (Table 1). An additional 16
lakes from Argentina were incorporated into the training set in
2007 in order to increase the temperature gradient. Each lake was
sampled using a mini-Renberg gravity corer (the first 30 lakes) or a
Hongve-style gravity corer (the remaining 16 lakes) to preserve
the sediment–water interface and the top 2–3 cm of the sediment
was taken. Ninety percent of the sampled sites were located in
areas with minimal human disturbance, such as national parks and
nature reserves. Most of the high altitudinal lakes were located
above the treeline in remote and pristine areas of Argentina. The
environment encircling the lakes was similar on both sides of the
Andes. Northern Patagonia is a lake district in both Argentina and
Chile and the vegetation is composed of a mix of Valdivian, ever-
green and temperate forest elements.

A range of environmental variables (secchi depth, conductivity, sur-
face temperature, total dissolved solids and pH)weremeasured for each
lake. Mean annual air temperature (MAT), mean annual precipitation
(MAP), mean temperature of the three warmest months (WMM) and
mean temperature of the three coldest months (CMM) were obtained
from the BRIDGE gridded data (New et al., 2002). Altitude and depth
were also included in the training set. The surface water temperature
gradient was 6.0–20.5 °C and mean summer air temperature ranged
from 8.9 to 17.5 °C. The pH varied from 4.0 to 8.4 and conductivity
from 0.14 to 126 μS.

All of the studied lakes are oligotrophic or hyperoligotrophic
(Balseiro et al., 2004; Callieri et al., 2007; Diaz et al., 2007); thus nutrient
content, phosphorus and chlorophyll a are below detection levels. As
these systems are nutrient-poor, most are expected to be oxygen-rich,
thus oxygen is not likely to be significant in explaining the distribution
and abundance of chironomids in these lakes.
Huelmomire (Chile, Northwestern Patagonia) during the Last Glacial
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Fig. 1. Location map of training set lakes (gray shadow area) and Huelmo mire (black star).
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3.3. Chironomid analysis

FollowingWalker et al. (1991), 5 to 10 g of sediment was examined
for chironomid head capsules. Sediment was deflocculated using 10%
KOH and sieved through 100 and 200 μm mesh size. The material
Fig. 2. Age versus depth curve of composite Huelmo core 901B-601A showing the age mode

Please cite this article as:Massaferro, J., et al., Quantifying climate change in
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retained by the meshes was hand-sorted in a modified Bogorov
counting tray under a dissectingmicroscope at 20×magnification. Indi-
vidual head capsules were placed on microscope slides in a drop of
Hydro-Matrix®. Identification was made using a Nikon Phase micro-
scope at 400× magnification. Head capsules were identified with
ls applied to the uncalibrated and calibrated radiocarbon dates obtained by CALIB 4.1.2.
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Table 1
Lakes and environmental variables included in this study. Last column shows the total number of chironomid head capsules (HC).

ID Lake Long (W)
(dec)

Lat (S)
(dec)

Altitude
(m a.s.l.)

Depth
(m)

Secchi
(m)

pH Cond
(μg/l)

Temp top
(°C)

Air temp
(°C)

MAT
(°C)

WMM
(°C)

CMM
(°C)

MAP
(mm)

Total nr HC

1 Pire 71.80722 40.78889 738 20 6.2 5.93 36.4 16.1 16.17 9.27 15.08 4.02 125.13 41
2 Bailey Willis 71.705 40.7 799 8.9 2.8 4.05 0.14 20.5 16.17 9.19 15.12 3.82 122.23 108
3 Trebol 71.44111 41.16389 760 10.5 3.8 7.75 92.4 18.3 16.17 9.03 14.97 3.48 91.86 182
4 Escondido 71.44111 41.16389 754 7.2 5.18 7.53 63.8 19.3 16.17 9.06 15.01 3.51 91.86 125
5 Morenito 71.52139 41.13611 754 8.5 4.8 7.67 78 18.6 16.17 9 14.88 3.55 96.02 218
6 Verde 71.71722 40.69444 1466 1.5 0.92 7.48 34.1 15.5 11.84 5.39 11.21 0.091 123.24 102
7 Fon 71.29861 41.35556 750 17.5 6.1 7.66 7.66 17.6 16.17 9.19 15.24 3.45 81.49 75
8 Hess 70.73639 41.37222 730 8.3 8.3 7.39 45.9 17.7 16.17 9.6 16.11 3.32 54.34 173
9 Moscos 71.61806 41.49444 803 20 7.6 7.56 53.7 18.4 15.26 8.44 14.26 2.97 97.85 142
10 Gallinas 71.61806 41.49722 998 8.5 6 7.02 32 13.3 14.69 7.33 13.13 1.86 97.83 152
11 Patos 71.00361 40.76111 973 7.2 5.1 6.97 33.1 16.1 14.69 8.42 14.88 2.4 81.16 132
12 Angostura 71.65917 40.86389 768 5.5 2 7.55 17.5 19.4 16.17 9.19 15.11 3.8 113.96 153
13 Huala Hue 71.50917 41.64444 828 6.7 6.7 8.85 126.6 14.3 15.26 9.15 15.28 3.6 110.47 157
14 Lezama 71.46306 42.49722 679 7 7 8.48 103.6 19.1 16.4 8.8 14.69 2.88 83.26 93
15 Redonda 71.5625 40.98889 840 7.6 1.9 7.04 63.3 16.4 15.26 8.7 14.64 3.23 104.37 213
16 Mercedes 71.57306 41.00278 818 20 5.2 7.29 48.9 18.3 15.26 8.66 14.48 3.3 99.7 93
17 Larga 1 71.57 40.04082 830 17 5.5 7.42 48.8 17.4 15.26 9.8 16.02 4.31 118.27 77
18 Futaleufu 71.86 43.18611 324 10 4.7 7.52 50.3 16.2 17.55 11.9 17.26 6.37 128.16 93
19 Leta 73.16472 41.57778 72.4 2.5 2.05 6.01 19.7 19 14.38 10.14 14.38 6.53 165.11 288
20 Blanco 2 72.60667 42.75278 98 29 4.82 6.73 18.1 14.2 14.38 10.37 15.11 5.75 174.79 91
21 Tamango 71.90194 43.34444 415 5 4.4 6.91 53.5 12.6 12.1 11 16.3 5.51 130.11 266
22 Maniguales 72.14639 43.3 130 19.5 3.6 6.84 12.88 15 16.03 11.69 16.76 6.5 148.58 149
23 clubandino 71.628 41.153 1600 10 8 7 8.8 10.2 10.7 4.07 9.78 −1.23 100.95 15
24 Mallin ricardo 71.715 41.18 1571 5 3 6.4 56 11 11.27 4.14 9.79 −1.08 104.99 23
25 Alerzales 71.671 41.713 1374 5 1 6.5 28 11 12.41 4.97 10.76 −0.53 99.55 30
26 Mellizas 71.342 40.621 1067 16 4 8.02 112 13 14.69 7.84 14.1 2.17 99.38 24
27 Cuyen 71.761 41.522 1715 11 11 7 13 11.4 10.13 2.97 8.7 −2.39 106.15 5
28 Campana 71.828 40.6 1250 9 7 7.3 7 8.8 13.55 6.55 12.32 1.36 132.26 5
29 Aguirre 71.82 41.477 1418 8 8 7 9 9 11.84 6.5 11.66 1.49 165.12 20
30 Ilon 71.73 41.19 1359 26 15 7.4 17.5 11 12.98 5.33 10.99 0.11 105.69 8
31 Jujuy 71.695 41.191 1838 6 6 7.5 9 9.6 9.56 2.63 8.27 −2.6 103.96 6
32 Azul 71.68 41.208 1509 18 15 7.1 5 10 11.27 4.51 10.2 −0.76 103.13 30
33 Creton 71.671 41.194 1648 9 7 7.04 6 12 10.7 3.74 9.41 −1.54 102.77 24
34 Matedulce 71.673 41.165 1635 7 6 6 5 8.6 10.7 3.83 9.5 −1.43 103.04 23
35 Lafea 71.641 40.826 1149 21 3 7.7 77 11.2 14.12 7.07 12.96 1.69 114 3
36 Negra 71.34 41.13 1617 21 18 7.94 8 11 10.7 4.24 10.17 −1.37 87.57 55
37 Plato 71.552 39.567 1341 12 6 8.2 43 9 12.98 6.64 12.82 1.05 115.23 84
38 Schmol 71.497 41.193 1925 8 8 7.16 10 6 8.99 2.32 8.11 −3.12 94.22 86
39 Jacob 71.559 41.186 1572 25 16 7.45 16 9 11.27 4.28 10.05 −1.11 97.33 67
40 Toncek 71.486 41.198 1747 12 6 8.16 12 8 10.13 3.34 9.16 −2.12 93.62 60
41 Quillehue 71.517 39.562 1118 55 4 8.3 33 8 13.55 8.03 14.31 2.35 113.4 15
42 Vadeo 71.823 41.056 1303 7 2 7.66 45 6 12.98 5.48 11.05 0.39 111.77 83
43 Los Clavos 71.825 41.046 1194 27 7 7.23 54 7 13.55 6.1 11.68 1.01 111.94 26
44 Rosada 71.814 41.248 1372 24 5 8.4 11 8 12.98 5.01 10.62 −0.15 110.52 74
45 Tempanos 71.063 41.185 1660 11 11 6.87 6 6 10.7 4.04 10.21 −1.84 72.83 32
46 Juventus 71.528 41.358 1004 37 8 7.66 85 11 15.26 7.47 13.34 1.97 93.98 80
47 Guillelmo 71.5 41.35 980 130 8 7.47 57 10 15.26 7.65 13.53 2.11 92.54 44
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reference to available taxonomic literature (Wiederholm, 1983;
Cranston, 2000) and a Patagonian subfossil chironomid taxonomic iden-
tification guide (Massaferro et al., 2013).

3.4. Statistical analysis

For all statistical analyses, only the taxa with percentages higher
than 3% in at least one lake were retained. Environmental data were
log transformed and chironomid percentage values were squared root
transformed to stabilize variances. Detrended Correspondence Analysis
(DCA, Hill and Gauch, 1980), with detrending by segments and non-
linear rescaling of axes, was used to explore the main patterns of taxo-
nomic variation among sites and to estimate the compositional gradient
lengths along thefirst four DCA axes. Because the gradient length of axis
1 was larger than 2 standard deviation units, unimodal techniques were
used to explore the importance of the environmental factors on the
distribution of the taxa with a Canonical Correspondence Analysis
(CCA) (Birks, 1998). The forward selection option of CCA was used to
identify a subset of the environmental variables that each explained
significant variation in the chironomid data. Statistical significance of
Please cite this article as:Massaferro, J., et al., Quantifying climate change in
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each forward-selected variable was tested by a Monte Carlo permuta-
tion test (999 unrestricted permutations) (ter Braak, 1990; ter Braak
and Verdonschot, 1995), using a Bonferroni-type adjustment for signif-
icance levels as described by Lotter et al. (1997). We further assessed
the strength of relationships between chironomids and each of the
forward-selected variables using constrained and partial CCAs (Rosén
et al., 2000). Variance partitioning (Borcard et al., 1992) was used to ex-
plain the independent explanatory power of each forward selected var-
iable. Finally, a DCCA was used to determine how much each of the
selected variables individually explained the variation in the distribu-
tion and abundance of chironomids in the 46 training set lakes. The
ratio of λ1/λ2 (i.e., ratio of eigenvalues of the first constrained DCCA
axis 1 and the second unconstrained DCA axis 2) was used to provide
a measure of the predictive power of the inference model. All ordina-
tions were performed using the computer program CANOCO version
4.0 (ter Braak and Smilauer, 1998) with chironomid percentages square
root transformed and rare taxa down-weighted.

Because the data showed unimodality, quantitative transfer
functions would be developed using weighted-averaging regression
and calibration partial least squares (WA-PLS; ter Braak and Juggins,
Huelmomire (Chile, Northwestern Patagonia) during the Last Glacial
col. (2014), http://dx.doi.org/10.1016/j.palaeo.2014.01.013
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1993). The optimal number of components to include in the transfer
functions was assessed by jack-knifing (ter Braak and Juggins, 1993).
The models were developed using the program C2 (Juggins, 2007).

4. Results

4.1. Exploratory analysis

After removing the taxa present in only one lake at percentages
lower than 3%, 49 taxa were retained in the dataset of 46 sampled
lakes. The length of the first DCA gradient was 3.872, suggesting a
unimodal distribution of taxa. WMM, secchi depth and conductivity
were the three variables with the highest and significant scores of vari-
ability explained. The first significant axis of the CCA explained 36.3% of
the variance while CCA axis 2 explained only 12.8% of the variance
(Fig. 3). Alone, WMM explained 22.44% of the variance, secchi depth
explained 10.3% of the variance and conductivity explained 9.31% of
the variance. Variance partitioning indicated that WMM accounts for a
significant (p ≤ 0.05) independent fraction of 18% of the variance in
the chironomid data and only a very small fraction (4%) is the shared ef-
fect with the two other variables, conductivity and secchi depth. WMM
had the highest DCCA λ1/DCA λ2 ratio (1.735) andwas used to develop
a transfer function.

4.2. Distribution of taxa in the training set lakes

Ablabesmyia was the most common taxon (32 lakes) followed by
Tanytarsini 1A (27 lakes), Apsectrotanypus (26 lakes), Cricotopus (25
lakes), Chironomus (25 lakes), Parapsectrocladius (24 lakes), Tanytarsini
1B (24 lakes) and Tanytarsini D (23 lakes). Smittiawas found at highest
percentages in cold (8–10 °C) lakes and, sporadically, at lower percent-
ages in lakes up to 12 °C (Fig. 4). Riethia appeared at high percentages (up
to 80%) in lakes between10 and12 °C anddecreased to about 20% in lakes
between 12 and 16 °C. Phaenopsectra was present in low percentages in
lakes between 10 and 12 °C and had its highest percentage (50%) in one
lake at ca. 15 °C. Lauterborniella, Paracladius, Procladius, Tanytarsini B2,
Gymnometriocnemus, Labrundinia, Orthocladiinae type3, Parachironomus,
Corynoneura, Tanytarsini B, Nanocladius, Parachironomus, Rheotanytarsus
and Pentaneurini appeared only in lakes warmer than 12 °C. All of these
taxa have their maximum percentages between 14 and 15 °C.
Fig. 3.Canonical Correspondence Analysis (CCA) of the training set lakes. The arrows repre
WMM = warmest months mean, Cond = Conductivity and Secchi = Secchi Depth.
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4.3. Development of the transfer function

The development of the transfer function was restricted by the low
number of chironomids found inmany of the lakes. For adequate devel-
opment of models, it has been shown that the highest number of lakes
and taxa usually increases the performance (i.e. highest correlation co-
efficient, r2) (Larocque et al., 2009). However, this consideration ismade
when at least 50 head capsules (hc) per sample are used for reconstruc-
tion (Heiri and Lotter, 2001; Larocque et al., 2001; Quinlan and Smol,
2001a). In hyper-oligotrophic lakes and in lakes with low organic con-
tent finding 50 head capsules per sample are not practical (Massaferro
and Vandergoes, 2013). In this study, more than 10 g of sediment was
processed in most lakes, but this high amount often did not yield 50
or more head capsules, especially in hyper-oligotrophic lakes located
above the treeline (see Table 1). Thus, we compared the results of
three different models: 1) using all lakes, 2) removing lakes with less
than 30 hc and 3) removing lakes with less than 15 hc. The statistical
performances of these models are given in Table 2. The best model
was the WAPLS with 2 components including lakes with at least 15 hc
(r2jack = 0.56, RMSEPjack = 1.69; Max Biasjack = 2.07). Both this
model (N15 hc) and the model using only lakes with more than 30 hc
do not have the lakes evenly distributed along the temperature gradi-
ent: there is no lake at 11.5 °C in the model with N15 hc, while no
lake around 12 °C is present in the model with N30 hc. The model
with N30 hc underestimated the coldest lake (5 °C instead of 9 °C) but
the other lakes are closer to the 1:1 line (Fig. 5). One lake was
overestimated by 5 °C in the N15 hc model, but all other residuals
were between +2 and −4, while in the model with all lakes, many
residuals were around +4 and−3.
4.4. Chironomids at Huelmo

Fifty-eight taxa were found in the 105 sediment samples of Huelmo
(Massaferro et al., 2009). Tanytarsini 1Awas found in 99 of the samples,
and taxa found in more than half of the samples were Tanytarsini 1B,
Riethia, Chironomus, Tanytarsini 1D, Apsectrocladius, Tanytarsini 1C,
Polypedilum, Ablabesmyia, Parachironomus and Labrundinia. The zones
in the stratigraphy were created by the expected timing of the ACR
(14,500 to 13,000 cal yr BP) and the YD (12,500 to 11,200 cal yr BP) in
this region (Fig. 6). Before the ACR (19,000 to14,500 cal yr BP), the
sent the three variables explaining the best the chironomid distribution in these lakes.
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assemblages were dominated by Tanytarsini 1A, Riethia, Tanytarsini 1B
and Chironomus. During the ACR/YD (14500–11,000 cal yr BP), Riethia
gradually decreased and disappeared after the YD. Tanytarsini 1A also de-
creased but increased again after 10,700 cal yr BP. Many taxa appeared
during the ACR and disappeared afterwards such as Gymnometriocnemus,
Djalmabattista, Paracladopelma, Parakiefferiella fennica, Cladotanytarsus
and Apedilum. Other taxa, such asMacropelopia,Harrisius and Labrundinia
have a peak during the ACR. Most of the dominant taxa during the ACR
decreased during the YD, except Chironomus, Smittia/Parasmittia and
other semi-terrestrial taxa that include, Pseudosmittia, Stictocladius and
Bryophaenocladius. When the chironomid assemblages of the Huelmo
samples were added passively into a CCA of the training set lakes, all
samples were located within the training set assemblages (Fig. 7). This
result suggests that the developed transfer function could be applied to
the Huelmo samples.

4.5. Paleotemperature reconstruction at Huelmo

The three models were used to reconstruct WMM at Huelmo.
The model with N15 hc showed the highest variability, followed
by the model with all lakes and the model with N30 hc (Fig. 8). Since
the model statistics were slightly better for the model with N15 hc,
a three-point running mean was made using this model. The
chironomid-inferred WMM between 19,000 and 16,000 cal yr BP were
colder than the mean chironomid-inferred WMM of the whole period
(19,000–10,000 cal yr BP). A cold interval (−1 °C) was inferred at ca.
15,700 cal yr BP but only in one sample. The temperatures oscillated
around the average until ca. 14,500 cal yr BP. They were warmer
than the average between 14,500 and 13,000 cal yr BP. Another cold
interval (−1.4 °C) was inferred in three samples between 13,200 and
13,000 cal yr BP. The chironomid-inferred temperatures were above
average until cal yr BPwhen they started to decrease. Two cold intervals
were inferred at ca. 12,600 cal yr BP (two samples) and ca.
11,700 cal yr BP (two samples). The chironomid-inferred WMM
were constantly warmer than the average between 11,600 and
10,000 cal yr BP.

5. Discussion

5.1. Chironomids, temperature and other environmental variables

Since the early work of Walker et al. (1995), temperature has
been shown to be one of the most important variables affecting the dis-
tribution of chironomids in lakes distributed along a large temperature
gradient (e.g. Lotter et al., 1997; Olander et al., 1999; Brooks and
Birks, 2001; Larocque et al., 2001, 2006; Massaferro and Larocque,
2013). Other environmental variables influencing chironomids are nu-
trients (Lotter et al., 1998), depth (Korhola et al., 2000), conductivity
(Larocque et al., 2006), oxygen (Quinlan and Smol, 2001b), pH (Rees
and Cwynar, 2010) and macrophytes (Langdon et al., 2010). Except
for oxygen and macrophytes, all the other variables were measured in
the north Patagonian training set and temperature has been identified,
again, as the most significant variable explaining the distribution
Table 2
Model statistics.

WA-PLS Lakes Nb
species

Components r2jack Max. bias RMSEP r2 RMSE

All 46 49 1 0.51 2.68 1.82 0.93 0.67
3 0.63

N30 hc 34 49 1 0.47 2.26 1.76 0.95 0.55
3 0.63

N15 hc 41 49 2 0.56 2.07 1.69 0.93 0.63
3 0.65
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and abundance of chironomids in northern Patagonia, followed by
conductivity and secchi depth. Summer temperature directly affects
the rate of chironomid egg and larval development and in these ultra/
oligotrophic lakes is the most important variable having direct ecological
effect on chironomid assemblages. Conductivity and secchi depth (trans-
parency) are both linked to the amount of suspended material coming
from melting water or from the landscape. Conductivity is commonly
higher in lakes located closer to centers of human population than in
more remote lakes. In high elevation lakes connected to a glacier such as
some of the lakes in this study, secchi depth was low and conductivity
was high due to the entry of high amounts of suspended material.
5.2. Taxonomic notes of northern Patagonian chironomids

Smittia was identified as a cold indicator due to its abundance in
lakes below 10 °C, even though it was present in very low percentages
(less than 10%) in lakes up toWMM of 12 °C. In the southern Patagonia
training set (Massaferro and Larocque, 2013) and in the eastern-North
America training set (Larocque, 2008) Smittiawas also a cold indicator.

In this study, most of the Tanytarsini dominated low elevation sites
with WMM N 14 °C, except Tanytarsini sp C which was restricted
to lakes in the middle temperature range (12–14 °C). Tanytarsini sp C
is also a cold indicator, having a temperature optimum similar
to Micropsectra in the northern Hemisphere and Tanytarsus funebris
type C in New Zealand (Brooks and Birks, 2001; Larocque, 2008,
Vandergoes et al., 2007). Despite the resemblances, Patagonian
Tanytarsini (Massaferro et al., 2013) in general revealedwarmer optima
than those from the northern Hemisphere. For instance, Tanytarsini 1B
has similar morphological features than Tanytarsus lugens but it was
found in warm low altitudinal lakes. In addition, other taxa such as
Micropsectra or Corynocera commonly found in cold northern lakes,
are absent in South America.

Chironomus is a warm indicator present in high concentrations in
eutrophic, lowland lakes from the northern Hemisphere. Recent
studies from the southern Hemisphere revealed that Chironomus can
Please cite this article as:Massaferro, J., et al., Quantifying climate change in
Termination using a newly develo..., Palaeogeogr. Palaeoclimatol. Palaeoec
be abundant at both cold high-altitude oligotrophic lakes and warm
low-altitude eutrophic lakes (Woodward and Shulmeister, 2006a). In
southern Patagonia, Massaferro et al. (2009, 2010) showed the highest
abundance of Chironomus in high-elevation sites (above 1000 m) with
low water temperatures. Similar results were found in New Zealand
by Dieffenbacher-Krall et al. (2007), whereas Woodward and
Shulmeister (2006b) found both warm- and cold-adapted Chironomus
species in New Zealand. In this study, this taxon dominates the middle
to upper temperature range (12–16 °C) below the treeline (ca. 1000
m a.s.l.).We conclude thatmany species of Chironomusmust be present
in our Patagonian dataset.

Riethia is a genus endemic of the southern Hemisphere. In this study,
it appeared in lakes located in a range of middle to low temperatures
(12 to 10 °C). Dimitriadis and Cranston (2001) developed a quantitative
paleoenvironmental inference model for tropical Australia in which
they showed Riethia as a cold-stenothermic taxon. Either, in Tasmania,
Riethia was found in higher abundances at elevations above 600
m a.s.l. and its distribution showed a significant relationship with cold
temperatures (Rees et al., 2008).

Further studies to resolve both taxonomic and ecological aspects of
these taxa at mid-latitudes of the Southern Hemisphere are required.
5.3. Cooling at the Late Glacial/Holocene transition at mid latitudes of the
southern Hemisphere

There is no consensus as to whether the Northern and Southern
Hemispheres respond synchronously or out-of-phase to climate forcing
mechanisms (Schaefer et al., 2006; Kaplan et al., 2008; Barker et al.,
2010). Denton et al. (2010) discussed the complex North–South con-
nections during the Last Glacial Termination considering that different
mechanisms explained climate divergences between both hemispheres
involving the oceanic bipolar see-saw, the position and intensity of the
SWW, and the global reorganization of atmospheric circulation during
the Last Termination. Recent paleoclimate records from southern lati-
tudes indicate a cold reversal at the end of the last glacial period
Huelmomire (Chile, Northwestern Patagonia) during the Last Glacial
ol. (2014), http://dx.doi.org/10.1016/j.palaeo.2014.01.013
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Fig. 7.Distribution ofHuelmo's samples (gray circles)within a CCA of the training set lakes
(black circles).

Fig. 8. Huelmo reconstruction showing the three WAPLS models: including all the lakes
(plain black line), including lakes with N30 head capsules (plain gray line) and including
lakeswith N15 head capsules (dotted line). A three-point runningmean of the best statis-
tical model (WAPLS N 15 hc) is shown in thick black line. Sample specific errors were
included in the diagram. Younger Dryas (YD), the Huelmo–Mascardi Cold Reversal
(HMCR) and the Antarctic Cold Reversal (ACR) are also shown.
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coincident with the Antarctic Cold Reversal (ACR) rather than with the
Younger Dryas (YD) cooling (Newnhamand Lowe, 2000; Vandergoes et
al, 2008) In southern South America, a study by Hajdas et al. (2003)
characterized a distinct cold reversal on both sides of the Andean
cordillera: the Huelmo–Mascardi Cold Reversal (HMCR), which occurred
between 13,200 and 12,600 cal yr BP, encompassing the timing of
the Gerzensee/Killarney oscillation, and the YD in the Northern
Hemisphere. Following this study, Bertrand et al. (2008a) and Boes and
Fagel (2008), using a multiproxy paleoreconstruction from Lago
Puyehue (~41° S), suggested the existence and timing of the HMCR in
the region. At the same latitude but on the western side of the Andes
in Lago Mascardi, geochemical proxies and pollen records indicated a
re-advance of El Manso glaciar and a change in the vegetation in the
Rio Manso superior valley between 13,000 and 11,500 cal yr BP, which
is consistent with the HMCR event (Bianchi & Ariztegui, 2012).
Fig. 9. (a)WMMHuelmo reconstructionwith LOWESS smooth line (0.1) in gray to highlight the
temperature) reconstruction, (c) Greenland GISP2 oxygen isotope record (Alley, 2000) and (d)

Please cite this article as:Massaferro, J., et al., Quantifying climate change in
Termination using a newly develo..., Palaeogeogr. Palaeoclimatol. Palaeoec
In a previous pollen and chironomid study at Huelmo, Massaferro
et al. (2009) identified a climate signal similar to the YD but of broader
amplitude. This cooling showed initial cold-humid conditions
(13,200–12,600 cal yr BP) dominated by cold stenothermic chironomid
andpollen taxawhichwas associated to theHMCR and, a successive shift
to relatively drier conditions (between 12,600 and 11,000 cal yr BP)
evidenced by fire activity, pollen species associated with disturbance,
and littoral chironomids (indicators of water level changes).

OurHuelmoquantitative reconstruction suggests deglacialwarming
up to ca. 15,000 cal yr BP followed bymore stable conditions until about
13,200 cal yr BP when a cold phase initiated and persisted until
11,500 cal yr BP. The cool interval shown in our quantitative reconstruc-
tion of the Huelmo record broadly coincides with the ACR recorded in
Antarctic ice cores (Pedro et al., 2011). In our reconstruction, tempera-
tures oscillated around the average from 15,500 cal yr BP until ca.
major trends compared to (b) Boundary StreamTarn (New Zealand)MST (mean summer
Antarctic composite oxygen isotope record (Pedro et al., 2011).

Huelmomire (Chile, Northwestern Patagonia) during the Last Glacial
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14,500 cal yr BP. Cold spells were recorded in Huelmo reconstruction at
13,200 to 13,000 cal yr BP and 12,600 to 11,500 cal yr BP. These reversals
may be associated with the HMCR and the YD. The termination of the
cooling coincides with the onset of the Holocene (Fig. 9).

Our findings support evidence suggesting a fast-acting inter-
hemispheric coupling of climate mechanisms, including bipolar atmo-
spheric and/or bipolar ocean teleconnections rather than a bipolar
see-saw (Lamy et al., 2004; Denton et al., 2010; Pedro et al., 2011).

In New Zealand, a quantitative chironomid reconstruction at Bound-
ary Stream Tarn (Vandergoes et al., 2007) indicates cooling coincident
with the ACR signal and no clear evidence that this climate reversal
persisted into the YD chron (Fig. 9). A chironomid based temperature
reconstruction from Tasmania (Rees et al., 2008) does not provide
clear evidence of an ACR or YD cooling.

6. Conclusions

Quantitative temperature reconstructions from the Southern Hemi-
sphere are extremely valuable to clarify climate relationships between
both hemispheres. This investigation shows that chironomid distribu-
tion and abundance in the 46 Patagonian lakes surveyed were strongly
influenced byWMM. Furthermore, the good performance statistics of a
chironomid-based WMM inference model and the fact that summer
temperature has a direct impact through life history effects on chirono-
mid distribution and abundance indicate thatmidges are an appropriate
proxy for modeling the temperature of northern Patagonia. The chiron-
omid temperature reconstruction presented here is the first such in the
area of northern Patagonia and provides robust estimates of summer
temperature during the Late Glacial/Holocene transition at Huelmo
site located in the Chilean Lake District of Patagonia. The chironomid
reconstruction is consistent with other lines of evidence that suggest
Late Glacial climate reversal at the time of the ACR/YD.
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