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a b s t r a c t

A dissipative quantum walk (according to the semigroup approach) has been used as the
starting point from which to study quantum correlations in an open system. This system
is a fruitful model that allows the definition of several bipartite systems (sets of qubits).
Thus the quantum correlations and the decoherence properties induced by a phonon bath
can be investigated analytically using tools from quantum information. In particular we
have studied the negativity, concurrence and quantum discord for different bipartitions
in our dissipative system, and we have found analytical expression for these measures,
using a local initial condition for the density matrix of the walker. In general quantum
correlations are affected by dissipation in a complex non-monotonic way, showing at long
time an expected asymptotic decrease with the increase of the dissipation. In addition, our
results for the quantum correlations can be used as an indicator of the transition from the
quantum to the classical regimen, as has recently been shown experimentally.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A quantumwalk (QW) can be thought of as an excitationmoving in a lattice, and is the quantum analogous to the classical
diffusion randomwalk model [1,2]. The former, i.e., the QW, has advantages over the classical one due to the quantum issue
of the superposition of states, a fact clearly reflected, for example, in the dispersion of the probability profile σ , where it is
linear in time for the QW (σ ∼ t), and is a power low for classical random walk (CRW) (σ ∼ t1/2). Numerically this is an
advantage that can be used for implementing quantum algorithms, because the excitationwill spread faster than its classical
counterpart [3].

Interestingly, the concept of QW, borrowed from classical statistics [1,2,4,5], has the same properties as a tight-binding
free particle [5,6]. Two kinds of QW are considered in the literature: discrete-time quantum coined walk [7,8,1,4,9–16] and
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Fig. 1. Graphical representation of the first bipartition on the lattice, the sites s1 = −s and s2 = s is the subset AB (system of interest), and the remaining
sites are the complement subset R. The set AB represents a two-qubit system.

continuous-time QW [17,5,6,18–21]. In the former (proposed by Aharonov et al. [1]), a two-level state, the so-called ‘‘coin’’,
rules the unitary discrete-time evolution of a particle moving in a lattice. On the other hand, the evolution of the particle
in the continuous-time QW is determined by a tight-binding like Hamiltonian [6,19]. It is not difficult to see, by simple
comparison, that a mapping between the tight-binding Hamiltonian and the QWmodel can be established.

A related analysis is the study of two QWs, and this important scenario can be simulated experimentally using different
mechanisms such as trapped atoms [22], ions [16,7], excitations in nuclear magnetic resonance schemes [23], waveguide
structures [20], beam array [12], and loop configurations [8]. These results reflect the key role of the coherent superposition
of the quantum mechanics, enabling the QW framework to be a good numerical emulation of real systems.

In all these experimental systems the decoherence mechanisms turn out to be important issues for us to understand
because, for instance, the measurement of some properties in the system could introduce noise in several complex ways,
which must be taken into account for clear description of the excitation movement. This fact has actually been studied
theoretically and experimentally [1,4,7,8,17,12–14,20,16,21,24,22,23,10]. In this context, in the present work, we will focus
on a more realistic QW model, i.e., the continuous-time Dissipative Quantum Walk (DQW) [24–26]. A DQW is a particle
moving in a unidimensional lattice (using a tight binding approximation) and interacting simultaneously with a dissipative
ohmic thermal bath [2,4]. In addition, let us comment here that there are many other mechanism of decoherence, see for
example Refs. [27,28].

In the present paper we assume that the whole closed system, i.e., the particle in the lattice plus the thermal ohmic
bath are together in a pure state. Then we trace out the degree of freedom of the thermal bath in order to arrive at a well-
defined DQW. This analysis has been done by solving the reduced densitymatrix in theMarkov approximation, i.e., the time-
evolution for the reduced densitymatrix is described using a completely positive infinitesimal generator [29,30], assuring in
this way that the reduced density matrix of the system of interest will be positive definite at any time. This approximation,
in a lattice, allows us to tackle the quantum master equation analytically and solve the time-evolution of our excitation.

The goal of the present paper is to study quantum correlations in an open system, starting from a single-particle
Hamiltonian and then introducing suitable bipartitions in the lattice in order to define two-qubit systems. We would like to
note that related studies, for closed systems, have been carried out by calculating the quantum entanglement (concurrence)
from a single-particle state [31], as well as for multi-particle states [32]. The non-locality effect has also been analyzed for a
one-particle model [33,26]. We emphasize that the present analytical results, of quantum correlations, from a DQW allow
us to tackle straightforwardly a problem which would demand a lot of work for a multi-particle model. This latter problem
and the non-local case we will be reported elsewhere.

The competition between dissipation (mechanism of decoherence) and quantum correlations turn out to be a very im-
portant fact in understanding and improving quantum computation algorithm, since this issue could help improve the ef-
ficiency of quantum simulations by correcting the decoherence appropriately [34,35]. To study the quantum correlations
in our system we make several calculations to quantify the quantum entanglement analytically (i.e., the concurrence [36]
and the negativity [37]). In addition, a related measure which has no direct connection with the entanglement, called the
QuantumDiscord (QD) [38–40] will be studied within our framework. In order to do this task we first have to consider some
bipartitions for our system, then starting with our DQW we trace out some of the information from the degree of freedom
of the lattice in order to define different dissipative bipartite systems (qubit).

As we mention above, having at hand a dissipative bipartite system we will be able to study the entanglement between
the parties inducedby the environment. As far asweknow, this is the first time that analytical expressions for thesemeasures
are reported as a function of the dissipative parameter. The two bipartitions, in the lattice, that we are going to use were
inspired in non-dissipative magnetic systems [41,42], allowing us to carry on all the calculations analytically.

Using a local initial condition for the DQWwe define two different bipartitions in our systems (see Figs. 1 and 2). There-
fore, tracing out some of the degrees of freedomon the lattice, we keep two parties {A, B}, allowing us to define two quantum
bits as our open systems, which allow us to study several quantum correlations in the system. In thiswaywe have succeeded
in defining a set of ‘‘qubits’’ interacting with a phonon bath (one qubit is defined by one site, where it can be occupied or
empty).

Using the first bipartition (Fig. 1) we trace out sites on the rest of the lattice, keeping only two sites {s1s2} (one site is the
reflection of the other) in order to define a two-level system. Thereforewe obtain analytical expressions for the concurrence,
and the quantum discord (QD) for this bipartition. The second bipartition (Fig. 2) is defined as left and right subsystemswith
respect to the origin in the lattice. Then to study the correlations between both subsystems (the left and right A, B parties)we
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Fig. 2. Graphical representation of our second bipartition on the lattice, where the sites s ≤ 0(>0) belong to the subsystem A (the subsystem B). This
mathematical bipartition also represent a set of two qubits.

measure the negativity. All thesemeasureswill afford information on the influence of the initial state on the quantum corre-
lations (the preparation of the densitymatrix) by tackling a soluble analytical model. In general, the present approachwould
also allowus to tackle themany-body problem in an open quantum framework, showing the interplay between the quantum
correlations and the quantum thermal bath. A possible experimental implementation for our dissipative continuous-time
QW approach can be the use of photonic devices on lattices, as in Refs. [21,20].

This article is organized as follows: In Section 2 we review the DQW and show the main features of this system. In Sec-
tion 3we introduce the bipartitions on the lattice in order to calculate quantum correlations such as concurrence, negativity
and quantum discord, and also derive analytical expressions for thesemeasures. In Section 4.1 we show themain results an-
alyzed fromour quantumopen systemusing different bipartitions. Finally, we close ourworkwith some general conclusions
in Section 5.

2. A review of the dissipative quantum walk

In this section we review the one-particle dissipative quantum walk model [24–26]. This system is based on the study
of a free particle in a one-dimensional infinity lattice interacting with a thermal bath of phonon B. In this case, the total
Hamiltonian of the system S plus the bath B can be written as:

HT = E0
∞

s=−∞

cĎs cs −
Ω

2

∞
s=−∞


cĎs−1cs + cĎs+1cs


+ h̄Γ


∞

s=−∞

cĎs−1cs ⊗ B1 +

∞
s=−∞

cĎs+1cs ⊗ B2


+


k

h̄ωkB
Ď

k Bk, (1)

where cĎs and cs are creation and destruction operators of one particle in the site s on the lattice respectively (| . . . , 0,
1s, 0, . . .⟩ = cĎs |φ⟩, where |φ⟩ is the empty state). The first and second terms correspond to the free tight-binding Hamiltonian
HS for spinless particles (fermion): the system S . Here E0 is the energy of site andΩ the associated next-neighbor hopping
energy. The third term in Eq. (1) considers the Hamiltonian interaction between S and the bath B, and describes a linear
coupling between phonon operators B1 =


k vkBk = BĎ2 and shift operators cĎs−1cs of the system S , here Γ is the coupling

parameter, Bk,B
Ď

k are bosonic operators destroying and creating energy h̄ωk, and vk characterizes the spectral function of the
thermal bath g(ω) =


k |vk|

2 δ (ωk − ω). In the Ohmic approximation we take g(ω) = ω Θ (ωc − ω), with Θ (ω) being
the step function. Finally the fourth term is the phonon Hamiltonian written in terms of boson operators B

Ď

k and Bk [28].
Considering now that there is only one particle, it is straightforward to compare Eq. (1) with the total Hamiltonian

associated to a QW in interaction with the thermal phonon bath [18,24,2,26]. First we define translational operators a and
aĎ as a combination of cĎs′ and cs′ , in the following way:

∞
s=−∞

cĎs−1cs ≡ R ⇒ a and
∞

s=−∞

cĎs+1cs ≡ RĎ
⇒ aĎ, (2)

where cs and R are acting in the Fock-space, and a in the Wannier basis. We can also check that R and RĎ commute even
in the general case for many particles (note that RĎR = RRĎ

=


∞

s=−∞
cĎs cs −


∞

s,s′=−∞
cĎs+1c

Ď
s′−1cscs′ ), but only for one

particle in the lattice we get the result RRĎ
= 1. Eq. (2) shows the expected mapping from Fock’s space into the Wannier

basis. Then the connection between the tight-binding Hamiltonian and the QWmodel can be established.
In what follows it is much more simpler to work out the elimination of the bath variables using Wannier representation

and the shift operators [2]:

a =

∞
s=−∞

|s − 1⟩ ⟨s| and aĎ =

∞
s=−∞

|s + 1⟩ ⟨s|. (3)

The Quantum Master Equation (QME) for the DQW can be obtained in the Born–Markov approximation using regular
techniques, noting that aĎ(t) = aĎ(0), a(t) = a(0), i.e., in the Heisenberg representation they are constant in time, and
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aaĎ = 1, then the QME can finally be written as [25,24]:

ρ̇ ≡
dρ
dt

=
−i
h̄

[Heff, ρ] + D

aρaĎ + aĎρa − 2ρ


, (4)

whereHeff = HS−h̄ωcaĎa is a trivial effective Hamiltonian, the diffusion constantD is given in terms of the quantum thermal
bath temperature T and the coupling constant which can be written as D ≡ Γ 2kBT/h̄; the additive energy h̄ωc is related to
the Caldeira and Leggett frequency cut-off in the Ohmic approximation [43,44].Without loss of generality we add a constant
−E0 + h̄ωc +Ω , and so we can write the effective Hamiltonian in the form Ref. [25]:

Heff = Ω


1 −

a + aĎ

2


. (5)

The particular form of the QME (4) is the result of the type of linear interaction between S and B, compare for example
Eq. (4) with the QME introduced in van Kampen’s paper [2]. From Eq. (4) it can be seen that as T → 0 (or D → 0), the
unitary evolution is recovered (von Neumann evolution equation for the tight-binding model). The opposite case isΩ → 0
(or D → ∞). Interestingly, it is simple to see that if the initial condition of the density matrix is diagonal then the classical
random walk profile can be reobtained in this limit. This is analyzed in detail in the Appendix A.

2.1. Moments of the DQW

It is well known that the variance of the QW is quadratic in time t , in contrast with the CRW which is lineal in t . Within
our framework we can re-obtain these results in a simple way. For this purpose, we define a characteristic function as
[45,46]: G(ξ) = Tr[ρ(t)eiξq] =


∞

s=−∞
⟨s|ρ(t)|s⟩eiξ s, thus all quantummoments of the position operator q can be obtained

as, ⟨q(t)m⟩ =
1
im

dm
dξm G(ξ)


ξ=0

. Using as initial condition a localized state in the origin (ρ(0) = |s0⟩ ⟨s0|, where s0 = 0), we

can rewrite the characteristic function in the form

G(ξ) = e−2Dt(1−cos ξ)J0


2t
Ω

h̄
sin

ξ

2


, (6)

here Jn (x) is a Bessel function of integer order with n = 0,±1,±2,±3, . . . , and argument x [47]. This is a product of the
classical GCRW (ξ) = e−2Dt(1−cos ξ) and the quantum GQW (ξ) = J0


2t Ωh̄ sin ξ

2


characteristic functions, indicating that the

total quantum time-evolution will be a space-convolution between the classical and quantum characteristics. In particular
the variance of the DQW can be written as:

σ(t)2 = ⟨q(t)2⟩ − ⟨q(t)⟩2 =
1
2


Ω

h̄
t
2

+ 2Dt,

showing the competition between the ballistic behavior (controlled by the motion of Anderson’s boundaries at the velocity
Ω

√
2h̄
) and the diffusive behavior (controlled by the diffusion constant D).
From this result we are tempted to establish that asymptotically, the important energy scale will be dominated by the

rate∝ D/Ωh̄ . Nevertheless, there aremany transient correlation functions that are important at short-timewherewe cannot
expect such simple asymptotic scaling; these factswill be analyzed in the remainder of the paper. From the latter analysiswe
note that a transition from quantum to classic behavior can be expected from the two important limits: the non-dissipative
case (pure unitary evolution case) for D → 0 where we get σ(t)2 ∝ t2, and the classical limit (completely dissipative case
Ω → 0) where we get σ(t) ∝ t .

In a previous work [25], we found the exact solution for the QME Eq. (4) using as initial condition a localized state
ρ(0) = |s0⟩ ⟨s0| (where s0 = 0). In that case the solution ρ(t) can be written in the Wannier basis in the form:

⟨s1|ρ(t)|s2⟩ = is1−s2e−2Dt
∞

n=−∞

Js1+n


Ωt
h̄


Js2+n


Ωt
h̄


In (2Dt) , (7)

where s1, s2 areWannier indices. Here ⟨s1|ρ(t)|s2⟩ gives the time evolution of the reduced density matrix element between
sites s1 and s2 on the lattice, which is a mixed convolution of a pure QWwith a CRW contribution. A detailed analysis of how
to obtain that solution can be found in our previouswork [25]. In that work, we have calculated different quantummeasures
in order to study significant observables, such as the profile of probability, the quantum purity, theWigner function, and the
quantum entanglement between the system S and the quantum bath B. In Ref. [25] we have shown that these mentioned
measures are only functions of the two parameters: the bandwidth of the tight-binding model Ωh̄ and the diffusion constant
D, showing the competition between the quantum correlations and the dissipative decoherence. Interestingly, for instance,
we have shown that in the case where the dissipative term is smaller than the bandwidth, the quantum correlations are
important and dominate the behavior of the system even for a long time. In the opposite case, the decoherence becomes
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important and we observe the transition from the DQW to the CRW. In the present work, we will go one step forward and
show important results concerning the quantum entanglement for different bipartitions on the lattice.

The purpose of this article is to evaluate quantum correlations, analytically, for certain models of dissipative two-
level systems (using different bipartitions from the dynamics of a DQW in the lattice) and investigate the comparative
relations between quantum and classical correlations, as measured by negativity, concurrence and quantum discord (and
its respective classical correlations). We will explicitly show the dependence of all these measures as a function of time and
study its functionality in terms of the dissipation parameter.

3. Quantum correlations on the lattice

In this section we study different quantum correlations for our dissipative two-qubit systems. These quantummeasures
such as concurrence [36], negativity [37], and quantum discord [38], provide a different point of view from the standard
measures (probability profile, dispersion, etc.). Several studies of quantum correlations for dissipative and non-dissipative
systems have been reported in the literature [48,11,49], but to our knowledge a bipartition like the one we are going to
present fromaDQWhavenever been reportedbefore. These bipartitions (set of qubits) allowus to find analytical expressions
for all these measures.

3.1. Mirror concurrence

To study a mechanism of decoherence we analyze how quantum correlations are affected by dissipation; therefore, we
propose here to introduce a mathematical bipartition onto the lattice in order to define a set of qubits (a qubit is a two-level
quantum system [34]). In fact, in the remaining part of the paper we will be concerned with two different bipartitions (see
Figs. 1 and 2). For the first bipartition we have considered two sites {s1, s2} on the lattice in order to define a two-qubit
system {A, B}, then the reduced density matrix of AB is obtained by tracing out the remaining sites s ≠ {s1, s2} on the lattice,
wherewithwehave defined two qubits interactingwith the environment B. It iswell known that the quantumentanglement
between two qubits in a mixed state is calculated using the concurrence measure proposed by Wootters [36]. To quantify
this concurrence, we need to obtain the reduced densitymatrix for the two-qubit (in our case as a function of s1, s2, see inset
of Fig. 1).

In order to proceed we start with the density matrix associated with the DQW on the lattice ρ(t) (solution of the QME
Eq. (4)). Using the Wannier basis we can write:

ρ(t) =

∞
s,s′=−∞

ρs,s′(t)|s⟩ ⟨s′|

=

∞
s=−∞

ρs,s(t)|s⟩ ⟨s| +


{s≠s′}

ρs,s′(t)|s⟩ ⟨s′|

= ρs1,s1(t)|s1⟩ ⟨s1| + ρs2,s2(t)|s2⟩ ⟨s2| + ρs1,s2(t)|s1⟩ ⟨s2| + ρs2,s1(t)|s2⟩ ⟨s1| +


s≠{s1,s2}

ρs1,s(t)|s1⟩⟨s|

+


s≠{s1,s2}

ρs,s1(t)|s⟩ ⟨s1| +


s≠{s1,s2}

ρs2,s(t)|s2⟩⟨s| +


s≠{s1,s2}

ρs,s2(t)|s⟩ ⟨s2| +


{s,s′≠s1,s2}

ρs,s′(t)|s⟩⟨s′|. (8)

3.1.1. From the DQW to the occupation two-qubit definition
We can redefine the Wannier basis (state of one particle using the outer product notation) in the form

|s1⟩ = |1A⟩ ⊗ |0B⟩ ⊗ |0R⟩ ≡ |1A0B⟩ ⊗ |0R⟩, (9)

and so

|s2⟩ = |0A1B⟩ ⊗ |0R⟩, (10)

here |1J⟩ and |0R⟩ are occupied or empty states in the subsystem J , with J = A, B, R, where s1 < 0 and s2 > 0.
Finally, we trace out over the subsystem C and obtain the reduced density matrix for the two-qubit ρAB(t) in the form:


|1A1B⟩ |1A0B⟩ |0A1B⟩ |0A0B⟩

|1A1B⟩ 0 0 0 0
|1A0B⟩ 0 ρs1,s1(t) ρs1,s2(t) 0
|0A1B⟩ 0 ρs2,s1(t) ρs2,s2(t) 0
|0A0B⟩ 0 0 0


s≠{s1,s2}

ρs,s(t)

. (11)
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Note that this exact result for the reduced density matrix ρAB(t) represents a genuine non-Markov process. It can be seen
that the matrix element associated to the two particles states is zero (there is only one walker on the lattice). Thus in the
present case we get that the reduced density matrix for two-qubit has the form Ref. [50]:

ρAB
=

v 0 0 0
0 w z∗ 0
0 z x 0
0 0 0 y

 , (12)

with v = 0. In general, the concurrence is obtained as C = max{0, 2(|z| −
√
yv)}, where z∗ is the complex conjugate

of z, thus in our case the concurrence between systems A and B is C(s1, s2, t) = 2|ρs1,s2(t)|. It is worth noting that when
C = 0, ρAB is separable, and for C > 0 the state is entangled. Finally, C = 1 means it is maximally entangled. To measure
the total mirror quantum entanglement on the lattice (we sum the contribution over all pairs of mirror sites s and −s on
the lattice), we are going to consider the sum of the mirror concurrence [41,42] between the site s1 = −s and its mirror
site s2 = s, see Fig. 1. This will measure the total mirror concurrence on the lattice as a function of time. We will call this
measurement CM , which we can write in the form:

CM ≡

∞
s=1

Cs = 2
∞
s=1

|ρs,−s(t)|, (13)

the explicit value of ρs,−s(t) can be obtained from the solution of the QME, Eq. (4). In particular using as initial condition a
localized state, the solution is given by Eq. (7). In this case CM is given by the following exact expression:

CM(Ω,D, t) = 2
∞
s=1

|⟨s|ρ(t)| − s⟩|

= 2e−2Dt
∞
s=1

 ∞
n=−∞

Js+n


Ωt
h̄


J−s+n


Ωt
h̄


In (2Dt)

 . (14)

This expression is valid for all values of D. Thus we can study all regime, sweeping from the pure unitary evolution case
(non-dissipative D → 0 case) to the completely dissipative case (Ω → 0), i.e., whenΩ/h̄ ≫ D orΩ/h̄ ≪ D, respectively.
In the pure unitary evolution case (D = 0), we obtain a simple expression for CM (using that In(0) = δn,0):

CM(Ω, 0, t) = 2
∞
s=1

Js Ωt
h̄


J−s


Ωt
h̄


= 2

∞
s=1

J2s


Ωt
h̄



= 1 − J20


Ωt
h̄


≤ 1, (15)

wherewe have used that 2


∞

n=1 J
2
n (x)+J20 (x) = 1 and J−n(x) = (−1)nJn(x) [47]. It can be seen that for t = 0 the totalmirror

concurrence CM is zero, and grows for t > 0. This fact is ruled by the temporal oscillatory behavior of J20 (
Ωt
h̄ ). Therefore, the

roots of J20 (
Ωt
h̄ ) give the maximum value of CM , i.e., CM = 1. In the long-time regimen the CM converges to 1 only for D = 0.

The opposite case is when the dissipation ruled out the evolution of the system (D ≫ Ω/h̄); in this case ρs,−s(t) → 0
(off-diagonal elements of the DQW are zero, i.e., the system reached the classical behavior) and therefore the CM goes to
zero (the system is completely decoherent).

Note that we can obtain a lower bound for CM in the case when D ≠ 0. Using that J−n(x) = (−1)nJn(x), and I−n(x) = In(x)
we can rewrite Eq. (14) in the form:

CM(Ω,D, t) = e−2Dt
∞
s=1

 ∞
n=−∞

(−1)s−n Js+n


Ωt
h̄


Js−n


Ωt
h̄


In (2Dt)


= e−2Dt

∞
s=1

 ∞
n=−∞

(−1)n Js+n


Ωt
h̄


Js−n


Ωt
h̄


In (2Dt)


≥ e−2Dt

 ∞
s=1

∞
n=−∞

(−1)n Js+n


Ωt
h̄


Js−n


Ωt
h̄


In (2Dt)


≥ e−2Dt

 ∞
n=−∞

(−1)n In (2Dt)
∞
s=1

Js+n


Ωt
h̄


Js−n


Ωt
h̄

 . (16)
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Then using that


∞

s=1 Js+n(x)Js−n(x) =
1
2 [δn,0 − (−1)nJ2n (x)] [51,52] after some algebra from Eq. (16) we obtain:

CM(Ω,D, t) ≥ e−2Dt

I0 (2Dt)−

∞
n=−∞

In (2Dt) J2n


Ωt
h̄

 .
3.2. Negativity

In this subsection we will analyze a second bipartition on the lattice (see Fig. 2). In order to study the total quantum
correlation associated with a dissipative system, with many degrees of freedom, we introduce now our second bipartition
and we will compare the negativity measure with the total mirror concurrence from the first bipartition (see Fig. 1).

Here we consider the following bipartition on the lattice: all sites with Wannier index s ≤ 0 belong to the party A,
otherwise they belong to B. In Fig. 2 the graphical representation of such a bipartition is shown. Now to measure the
entanglement between A and B we use the negativity [37]. Indeed this measure can be used for a bipartite system with
many degrees of freedom. The negativity is one quantitative version of the criterion for separability that can be used in a
mixed bipartite system characterized by a densitymatrix ρ (see Ref. [53]). The explicit expression of the negativity is defined
as a function of a partial transpose of ρ in one of the two subspaces (now our system is composed of parties A and B), then
the partial transpose ρTA is calculated as

⟨iA; jB|ρTA |kA; lB⟩ = ⟨kA; jB|ρ|iA; lB⟩. (17)

Here the basis |iA; jB⟩ belongs to the Hilbert space HAB, which is a direct product of the Hilbert spaces of the subsystems A
and B, i.e.,

|iA, jB⟩ = |iA⟩ ⊗ |jB⟩. (18)

Then the negativity can be calculated as: N ′(ρ) =


i |µi|, whereµi is a negative eigenvalue ofρTA . To compare thismeasure
with the concurrence associated with the first bipartition (see Fig. 1), we use a normalized negativity between two qubits
(note that the parties A and B behave, in fact, as a two-qubit system) which ranges from 0 to 1 (normalized negativity [54]).
Then we define a normalized negativity as:

N (ρ) = 2


i

|µi|. (19)

3.2.1. From the lattice degrees of freedom to the effective two-qubit definition
First we note that for the mathematical bipartition on the lattice represented in Fig. 2 the reduced density matrix ρ(t)

can be written on the basis of the parties A and B. This is so because if s > 0 the Wannier basis can be written as:

|s⟩ = |φ⟩ ⊗ |1sB⟩ ≡ |φ 1sB⟩, (20)

otherwise if s ≤ 0 we write

|s⟩ = |sA⟩ ⊗ |φ⟩ ≡ |1sA φ⟩, (21)

where |φ⟩ is the empty state in A(B), and |1sA(B)⟩ is an occupied state in A(B). Therefore, the reduced density matrix can be
rewritten as follows:

ρ(t) =

∞
s,s′=−∞

ρs,s′(t)|s⟩ ⟨s′|

=


s,s′≤0

ρs,s′(t)|s⟩⟨s′| +


s,s′>0

ρs,s′(t)|s⟩ ⟨s′| +


s≤0,s′>0

ρs,s′(t)|s⟩⟨s′| +


s>0,s′≤0

ρs,s′(t)|s⟩ ⟨s′|

=


sA,s′A

ρsA,s′A
(t)|1sA φ⟩ ⟨1s′A

φ| +


sB,s′B

ρsB,s′B
(t)|φ 1sB⟩ ⟨φ 1s′B

|

+


sA,sB

ρsA,sB(t)|1sA φ⟩⟨φ 1sB | +


sA,sB

ρsB,sA(t)|φ 1sB⟩⟨1sAφ|. (22)

Now using Eqs. (17) and (22) we can calculate the partial transpose ρTA as follows:

ρTA(t) =


sA,s′A

ρsA,s′A
(t)|1s′A

φ⟩ ⟨1sA φ| +


sB,s′B

ρsB,s′B
(t)|φ 1sB⟩ ⟨φ 1s′B

|

+


sA,sB

ρsA,sB(t)|φ φ⟩⟨1sA1sB | +


sA,sB

ρsB,sA(t)|1sA1sB⟩ ⟨φ φ|,
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where sA = 0,−1,−2, . . . and sB = 1, 2, . . . . Then we can express ρTA in the matrix form:

|φ φ⟩ · · · |1sA1sB⟩ · · · · · · |1sAφ⟩ · · · |φ 1s′B
⟩ · · ·

|φ φ⟩

...

|1sA1sB⟩

...

...
|1s′A

φ⟩

...

|φ 1sB⟩

...



0 · · · ρsA,sB(t)
. . . 0 · · · 0

. . .

...
. . .

...
. . .

...
. . .

...
. . .

ρsB,sA(t) · · · 0
. . . 0 · · · 0

. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

0 · · · 0
. . . ρsA,s′A

(t) · · · 0
. . .

...
. . .

...
. . .

...
. . .

...
. . .

0 · · · 0
. . . 0 · · · ρsB,s′B

(t)
. . .

...
. . .

...
. . .

...
. . .

...
. . .



,
(23)

this infinite dimensional matrix can be written in block as follows:

ρTA =


M1 O1

O2 M2


,

where O1 and O2 are nullmatrices, and M1 is amatrix thatmixes states |φ φ⟩with states |1sA1sB⟩, and M2 mixes states |1sA φ⟩

with states |1s′A
φ⟩ and |φ 1sB⟩ with states |φ 1s′B

⟩. In this way ρTA can be diagonalized by blocks. It can be seen that the only
blockmatrixwith a negative eigenvalue is M1. Therefore, in accordancewith Eq. (19) the normalized negativity is two times
the sum of the eigenvalues of ρTA , noting that in our case we have only one negative eigenvalue |µ1| =


sA,sB

|ρsA,sB(t)|2

(this eigenvalue comes from the block matrix M1 and was obtained in a deductive way, see Appendix B), finally we obtain:

N (Ω,D, t) = 2


sA,sB

|ρsA,sB(t)|2

= 2e−2Dt


∞
s=1

0
s′=−∞

∞
n,n′=−∞

Js+n


Ωt
h̄


Js+n′


Ωt
h̄


Js′+n

×


Ωt
h̄


Js′+n′


Ωt
h̄


In (2Dt) In′ (2Dt)


1/2

, (24)

where ρsA,sB(t) is given in Eq. (7). This expression allows us to study the negativity as a function of the two characteristic
parameters of the system {D,Ω/h̄}.

In the non-dissipative case (D = 0) (i.e., pure unitary evolution case) Eq. (24) reduces to:

N (Ω, 0, t) = 2


∞
s=1

0
s′=−∞

J2s


Ωt
h̄


J2s′


Ωt
h̄

1/2

= 2


∞
s=1

J2s


Ωt
h̄

 0
s′=−∞

J2s′


Ωt
h̄

1/2

= 2


∞
s=1

J2s


Ωt
h̄

 ∞
s′=0

J2s′


Ωt
h̄

1/2

= 2

1
2


1 − J20


Ωt
h̄


1
2


1 + J20


Ωt
h̄

1/2

=


1 − J40


Ωt
h̄

1/2
, (QW) (25)

where In(0) = δn,0 was used. For the non-dissipative case and comparing (25) against (15), we note that in the long-time
regimen, the ‘‘negative measure’’ for the second bipartition (see Fig. 2) goes to 1 faster than the total ‘‘mirror concurrence’’



M. Nizama, M.O. Cáceres / Physica A 400 (2014) 31–46 39

for the first bipartition (see Fig. 1). Indeed, the negativity includes mirror correlations between sites {−s, s} and correlations
between other sites on the lattice, leading therefore to a faster entanglement in the system.

In the classical case (Ω = 0) the off-diagonal elements of ρ(t) are equal to zero [25], therefore the negativity is equal
to zero. Interestingly, our analytical expression of the negativity allows us to study the entanglement in this bipartition as a
function of the rate of energies rD = 2D/Ωh̄ . This analysis will be shown in Section 4.

3.3. Mirror quantum discord

We have also studied QD, which is another measurement of quantum correlations in a bipartite system. The different
nature of QD in comparison with entanglement, for instance, from the measure of the concurrence, was noticed by several
authors some years ago [38–40]. The QD is the difference between two natural quantum extensions of the classical mutual
information. This quantity reveals the quantum aspect of correlations in bipartite states, including separable ones. The
quantum mutual information for a bipartite system AB, ρAB being the density matrix of the bipartite system, is obtained
as:

I(ρAB) = S(ρA)+ S(ρB)− S(ρAB), (26)
where ρA(B) is the reduced density matrix of the subsystem A(B) (i.e. ρA

= TrB[ρAB
]), and S(ρ) = −Tr(ρ log2 ρ) is the von

Neumann entropy of the state ρ, whichmeasures the quantum entanglement between the system and the environment. The
quantum mutual information I(ρAB) measures the total correlations between subsystems A and B, i.e., I(ρAB) retains the
quantum and classical correlations. This means that I(ρAB) can be written as I(ρAB) = CC(ρAB)+ QD(ρAB)where CC(ρAB)
represents the classical correlations and QD(ρAB) the quantum correlations between parties A and B. This latter quantity is
called QD [38]. Indeed, to measure this quantity we first need to obtain CC(ρAB), thus the QD can be calculated. In Ref. [38],
Olliver and Zurek proposed the use of any type of von Neumann measurement, a one-dimensional set of projectors that
sum up to the identity. These projection operators Bk represent a von Neumann measurement for the system B, therefore
the conditional density operator ρk related to the measurement outcome k, can to be written in the form:

ρk =
1
pk
(I ⊗ Bk)ρ

AB(I ⊗ Bk), (27)

where pk = Tr[(I ⊗Bk)ρ
AB(I ⊗Bk)] is the probability of the outcome k. Then the quantum conditional entropy is defined as:

S(ρA
|{Bk}) ≡


k

pkS(ρk). (28)

Thus a variant of quantum mutual information related to this measurement is obtained as:

I(ρA
|{Bk}) ≡ S(ρA)− S(ρA

|{Bk}). (29)
Noting that the classical correlations involve an optimization process, defined as:

CC(ρAB) ≡ sup
{Bk}

I(ρA
|{Bk}). (30)

Finally the quantum correlations can be defined as:

QD(ρAB) = I(ρAB)− CC(ρAB). (31)
In recent years few works have been devoted to finding analytical expressions for a two-qubit system [38,39,55,56,40],

because founding analytical expression for the QD is a complex calculation for arbitrary dimensions of the composite system
(AB).

Here we focus on our set of dissipative qubits; in this system we can study the classical and quantum correlations
analytically for the bipartition shown in Fig. 1. In this case the reduced density matrix for the system AB is given by
Eq. (11), where s1 = −s and s2 = s. This density matrix has the form of the matrix given in Eq. (12), then the CC and
QD can be found straightforwardly. Following the steps in Ref. [56], we can express ρAB in the alternative way (noting that
in our case ρ−s,−s(t) = ρs,s(t) ∈ Re and ρAB

= ρBA, i.e., reflection symmetry from Eq. (11))

ρAB
=

1
4


I ⊗ I +

3
i=1

(ciσi ⊗ σi)+ c4I ⊗ σ3 + c4σ3 ⊗ I


, (32)

where σi is the Pauli matrix, with i = 1, 2, 3. The relation between ck (with k = 1, 2, 3, 4) and the elements of ρAB is simple
to obtain [56]:

c1 = c2 = 2z = 2ρs,−s(t),
c3 = v + y − w − x = 1 − 2ρs,s(t)− 2ρ−s,−s(t)

= 1 − 4ρs,s(t),

c4 = v − y = −
1
2
(1 + c3) = −(1 − 2ρs,s(t)). (33)
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We recall that z and ρs,−s(t) are real numbers in our case. Note that c3 and c4 are real observables proportional to the
probability ρs,s(t), while c1 and c2 are real quantities but proportional to the off-diagonal element ρs,−s(t). In order to obtain
the classical and quantum correlations, we first calculate the quantum mutual information (Eq. (26)). This is a function of
the eigenvalues of ρAB, ρA and ρB as follows Ref. [56]:

I(s, t) = −

2
k=1

rAk log2 r
A
k −


k=1,2

rBk log2 r
B
k +

4
j=1

λj log2 λj, (34)

where rA(B)1 = (1 + c4)/2, r
A(B)
2 = (1 − c4)/2 are the eigenvalues of ρA(B), and λj is an eigenvalue of ρAB, which are given as

follows:

λ1,2 =
1
4
(1 + c3 ± |2c4|)

λ3,4 =
1
4
(1 − c3 ± |2c1|) , (35)

where c1, c2, c3 and c4 are explicit functions of ρs,s(t) and ρs,−s(t), see Eq. (33).
In a similarway, the classical correlations can be found explicitly fromEq. (30), and then themirror QD can be analytically

obtained between sites s and−s, using the reduced densitymatrix given in Eq. (11). Following similar steps as in Ref. [56], by
using Eq. (7) in (11), we can obtain an explicit expression for QD and CC as functions of the dissipative parameter rD ≡

2D
Ω/h̄ .

We stress that the state given by Eq. (11) is not a Werner state [34], it is in fact a type of X state [40,56], where the classical
correlations CC(s) between the site s and its mirror −s read as follows:

CC(s, t) = Hbin(ps)− Hbin(p′

s), (36)

where Hbin(x) = −x log2(x)− (1 − x) log2(1 − x), with

ps =
1
2
(1 + c4) = ρs,s(t),

p′

s =
1
2


1 +


c21 + c24


=

1
2


1 +


4ρ2

s,s(t)+ (2ρs,−s(t)− 1)2

.

(37)

Finally, the mirror quantum discord QD(s, t) is calculated analytically using Eqs. (36) and (34) in Eq. (31) (we have used
the optimization process and numerical relations found in Ref. [56]. In addition, we have found and argue in favor of this
numerical conjecture which is determined analytically, concerning Eqs. (37) and (36)). Therefore the total mirror QD is
obtained as:


∞

s=1 QD(s, t).

4. Results from an initial localized QDW state

4.1. On the dissipative two-qubit models

In this section we show numerical results for the concurrence, the negativity and the QD as a function of the dissipative
parameter interpolating from the pure unitary evolution case (zero dissipationD = 0) to the pure classical limit (completely
dissipative caseΩ → 0). In our systemwe have two characteristic energy scales (Ω/h̄ and 2D), thereforewe can analyze the
competition between these scales. We can accomplish this task using as initial condition a localized state (ρ(t) = |s0⟩ ⟨s0|,
with s0 = 0). Then we define the dissipative parameter rD =

2D
Ω/h̄ (rates of energies of the system) and the dimensionless

time t ′ =
Ω

h̄ t . With these parameters in mind it is straightforward to plot all the interesting correlations for the bipartite
system.

In Fig. 3 we plot CM as a function of time t ′ and the dissipation parameter rD (see Eq. (14)). This plot shows the decay of
the concurrence as the dissipative parameter increases for fixed time t ′, and vice-versa, displaying oscillatory behavior for
small values of rD and t ′. Similar behavior is noted for the negativity N , as it is shown in Fig. 4 (see Eq. (24)) for the same
values of time and dissipation parameter as in the plot for CM .

The measure of time evolution of quantum entanglement E, such as we have shown previously through concurrence
and negativity, are compared in Fig. 5 for several values of rD = 0, 0.01, 0.05, 0.1, 05, 1, 2. It can be noted that at t ′ = 0
entanglement is zero (for rD ≥ 0), because the initial localized state: ρ(0) = |s0⟩ ⟨s0| (with s0 = 0) is a disentangled
state for both partitions shown in Figs. 1 and 2. In the case rD = 0 (closed quantum system, i.e., without dissipation), the
quantum entanglement displays an oscillatory behavior (see Eqs. (15) and (25)); these are the exact solutions for the mirror
concurrence and the negativity for the bipartitions used in Figs. 1 and 2 respectively. Both functions go asymptotically to
the value one, due to the entanglement produced by the QW in the degree of freedom of the lattice as time goes on in
the bipartition. Since the negativity provides all the correlations between all the sites, in contrast with the total mirror
concurrence (i.e., this measure gives the total correlations only between mirror sites), the negativity goes asymptotically in
time t ′ faster to the value one than the total mirror concurrence.
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Fig. 3. The total mirror concurrence CM (sum over all mirror sites) from a localized initial state ρ(0) as function of rD and t ′ (see Eq. (14)), where rD =
2D
Ω/h̄

and t ′ =
Ω

h̄ t . It can be noted that the total mirror concurrence decays for increasing t ′ (for a fixed value of rD). On the other hand, the concurrence also
decays for fixed t ′ and increasing rD .

Fig. 4. The negativity N for the second bipartition (see Fig. 2) as a function of rD and t ′ . The negativity for a localized state is given by Eq. (24). This measure
shows similar behavior to that of the total mirror concurrence.

In contrast, for rD > 0 the entanglement increases with time until it reaches amaximum value after which it decreases in
time due to the dissipation in the system. Thus there is an interesting typical time τ(rD) characterizing this maximum. This
behavior can be interpreted as clear competition between the quantum correlations and decoherencemechanisms working
on the bipartitions that we have used. From Eqs. (15) and (25) it is possible to find an upper bound for the characteristic
time τ(rD), in fact form the 1st zero of the 0th Bessel coefficient j01 we get:

τ(rD) < τ(rD = 0) = j01 ≡ 2.4048. (38)

So the scaling time given in Eq. (38)which is valid for behavior of CM(t) andN(t) can be used to characterize the quantum
to classical transition in time (for fixed value of rD).

In Fig. 6 we show the negativity decreasing with the dissipative parameter rD (for several values of fixed times t ′ =

5, 10, 20, 30, 40, 50). As expected at the limit Ω → 0 (rD → ∞) the entanglement is zero, because the off-diagonal
elements of ρ(t) are all null due to the initial localized state that we have used. Otherwise, for non-localized initial states
there is a remanent quantum correlation at the asymptotic limit [26].

In addition, we now show the mirror QD from our localized initial condition for ρ(0). In Fig. 7 (left panel), the total QD
is shown, calculated as the sum of the mirror QD between sites −s and s, using the bipartition shown in Fig. 2 for different
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Fig. 5. The quantum entanglement E i.e., mirror concurrence and negativity (for the two bipartitions on the lattice, see Figs. 1 and 2) as a function of t ′ , and
for values of rD = 0, 0.01, 0.005, 0.1, 0.5, 1, 2. The left panel shows the mirror concurrence CM and in the right panel the negativity N can be observed.

Fig. 6. The negativity as a function rD for values of t ′ = 5, 10, 20, 30, 40, 50. These measures show a monotonous behavior, and for rD ≫ 1 the negativity
goes asymptotically to zero.

values of dissipation rD = 0, 0.01, 0.05, 0.1, 05, 1, 2. The total QD is in good agreementwith the behavior of the totalmirror
concurrence and the negativity analysis, see Fig. 5, as both display a non-monotonic behavior and asymptotically decay at
long time for rD > 0. In Fig. 7 we note that these correlations (quantum and classical) increase and then decrease with time
t ′ for several values of dissipation rD. As expected, the behavior of these quantum measures (CC, N, QD) are converse to the
increase in entropy for a DQW interacting with a quantum bath [25].

4.2. On the two-qubit density matrix with rotational symmetry around the z-axes

Finally, we show a 3D plot of the QD and CC associated with the state ρAB of our two-qubit system in a general way.
Using Eq. (11) with s1 = −s; s2 = s and a localized initial condition for the DQWwe arrive to the symmetries pointed out in
Eq. (32), it means that we can define non-null quantities as given by:

Γxx = Γyy = c1 = c2
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Fig. 7. The sum of the mirror quantum discord for the sites −s and s as function of t ′ , for values of rD = 0, 0.01, 0.005, 0.1, 0.5, 1, 2 (left panel). In the
right panel the total classical correlations (CC) are shown. Using a localized initial condition for ρ(0).

Γzz = c3

Γ0z = c4 = −
1
2
(1 + c3) = −

1
2
(1 + Γzz), (39)

where Γβγ = Tr[ρABσβ ⊗ σγ ], with β = 0, x, y, z; here σβ is a Pauli matrix with β = x, y, z, and σ0 is the identity matrix,
where ρAB

=


(α,β)=0,x,y,z Γαβ σα ⊗ σβ . In this way Eq. (39) tells us that ρAB depends only on two parameters, showing the
rotational symmetry around the z-axes.

In Fig. 8 we show the results for QD and CC (with the symmetry considered above). In the top panel of Fig. 8 the QD is
shown; it can be noted that for Γzz = −1 (Γ0z = 0) and |Γxx| ≤ 1 the quantum discord reaches its maximum value (one),
this type of state was analyzed in Ref. [57]. And the QD is zero in the point defined by Γxx = 0,Γzz = 1 (Γ0z = −1), which
means thatρAB

= {I⊗I+σz⊗σz−(σz⊗I+I⊗σz)}/4, this corresponds to the triplet statewith effectivemagnetization in the
z-direction. In the bottompanel the CC can be observed, wherewe show that it ismaximum forΓzz = −1;Γxx = −1 (singlet
state, |ψ (−)

s ⟩ = (|1−s, 0s⟩ − |0−s, 1s⟩) /
√
2) and Γzz = −1;Γxx = 1 (triplet state, |ψ (+)

s ⟩ = (|1−s, 0s⟩ + |0−s, 1s⟩) /
√
2);

these states can be used as initial condition as we did in our previous work [26]. It can also be noted that the CC is zero in
the line defined by Γxx = 0 and |Γzz | < 1. This 3D phase diagram, for these correlation functions, are valid for two-qubit
states with the symmetries mentioned above.

5. Conclusions

A dissipative quantumwalk in interaction with a thermal phonon bath has been used to define a set of dissipative qubits.
The fact that we have solved the quantummaster equation associated with the dissipative quantumwalk allows us to work
out several correlation functions analytically.

By introducing two different bipartitions on the lattice wewere able tomeasure several quantum correlations associated
with a set of qubits (our dissipative systemof interestAB). This provides alternativeways to study the effect of the dissipation
on the lattice. From the first bipartition (see Fig. 1) we define two qubits by tracing out the rest of lattice sites s′ ≠ ±s. Then
exact expressions for mirror concurrence and mirror quantum discord was obtained. Using a second bipartition (see Fig. 2)
i.e., considering the left and right sites with respect to the origin of the lattice, a different subsystem ABwas defined, in this
case with infinite degrees of freedom, then the negativity was used to measure entanglement in the system AB.

The evolution of correlations (such as concurrence, negativity, quantum discord, and classical correlations) depends on a
non-trivial form of the rate of energies of the system, sowe defined the rate rD =

2D
Ω/h̄ as the important dissipative parameter

of the system. Intriguingly, all these correlation measures are in good agreement with each other in a qualitative way. Our
results allow us to study analytically the non-dissipative limit D = 0 (rD ≪ 1), and the classical limit Ω = 0 (rD ≫ 1),
which have been found to be in agreement with the physical expectations made on a related quantum system [25]. This
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Fig. 8. Quantum discord as a function of physical observables Γxx and Γzz (top panel). The bottom panel shows the total classical correlations (CC). The
physical observables are calculated as Γββ = Tr[ρABσβ ⊗ σβ ], with β = x, z, and ρAB is expressed in a similar way to Eq. (11).

analysis allows us to understand the effects induced by the decoherence mechanism in the quantum correlations by using
quantum information tools.

Our framework opens up the possibility of carrying out an analytical analysis on several quantities related to the study
of the quantum correlations in dissipative systems. In particular, using the same type of dynamic (semigroup) it is possible
to write down the quantum master equation for a set of two free particles interacting with a thermal phonon bath, which
is of great interest in quantum information theory, and work along this line is in progress.
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Appendix A. The completely dissipative regime

From the QME (see Eq. (4)) in the caseΩ = 0, we obtain the following expression for the quantum semigroup:

ρ̇ = D

aρaĎ + aĎρa − 2ρ


. (A.1)

This equation can be worked out on the Wannier basis, where we know that a|s⟩ = |s − 1⟩ and aĎ|s⟩ = |s + 1⟩. Then the
time evolution of the density matrix elements follows the equation:

⟨s|ρ̇|s′⟩ = D

⟨s − 1|ρ|s′ − 1⟩ + ⟨s + 1|ρ|s′ + 1⟩ − 2⟨s|ρ|s′⟩


. (A.2)

In particular, for the diagonal elements (s′ = s),we get using thenotationρs,s′ = ⟨s|ρ|s′⟩ and Ps ≡ ρs,s, that the probability
of finding the walker in the position s follows the evolution:

Ṗs = D (Ps−1 + Ps+1 − 2Ps) . (A.3)

For the time evolution of the off-diagonal elements ρs,s′ (where s′ ≠ s), from (A.1) we obtain the expression:

ρ̇s,s′ = D

ρs−1,s′−1 + ρs+1,s′+1 − 2ρs,s′


. (A.4)

Then it can be noted that for any initial condition fulfilling ρs,s′(0) = 0,∀s′ ≠ s, the time evolution of the off-diagonal
elements of ρ is zero (ρs,s′(t) = 0, with t ≥ 0), so the time evolution of ρ is ruled by Eq. (A.3), which is the evolution
equation for a classical random walk [45,46] (some-times called the Pauli master equation for the diagonal elements). In
the case that ρs,s′(0) ≠ 0 for some value of s′ ≠ s, the off-diagonal elements contribute to the quantum correlations (for
instance: concurrence, negativity and QD), which have been called the quantum remanence of the correlations [26].

Appendix B. Diagonalizing the matrixM1

To diagonalize the infinite matrix M1 (see the matrix ρTA after Eq. (23)), we study the finite matrix (N × N) with the
same symmetry given by the following expression

M =


0 a∗

1 a∗

2 · · · a∗

N
a1 0 0 · · · 0
a2 0 0 · · · 0
...

...
...

. . .
...

aN 0 0 · · · 0

 . (B.1)

Using an appropriated program for diagonalizing this matrix, it is straightforwardly to see thatM has only two eigenvalues
different from zero. These eigenvalues are:

µ = −

 N
i=1

|ai|2

β =

 N
i=1

|ai|2. (B.2)

Then, the matrixM has only one negative eigenvalue. This result can be extend for the limit N → ∞, namely for the matrix
M1.

To end this appendix, we note here that the block M2, which is not altered by the transport partial operation TA, has not
negative eigenvalues as it is expected.

References

[1] Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48 (1993) 1687.
[2] N.G. van Kampen, J. Stat. Phys. 78 (1995) 299.
[3] A. Ambainis, Int. J. Quantum Inf. 1 (2003) 507;

N. Shenvi, J. Kempe, K. BirgittaWhaley, Phys. Rev. A 67 (2003) 052307;
A. Childs, E. Farhi, S. Gutmann, J. Quantum Inf. Process. 1 (2002) 35.

[4] J. Kempe, Contemp. Phys. 44 (2003) 307.
[5] D.E. Katsanos, S.N. Evangelou, S.J. Xiong, Phys. Rev. B 51 (1995) 895.
[6] M. Esposito, P. Gaspard, Phys. Rev. B 71 (2005) 214302.
[7] F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, C.F. Roos, Phys. Rev. Lett. 104 (2010) 100503.
[8] A. Schreiber, K.N. Cassemiro, V. Potoček, A. Gábris, I. Jex, Ch. Silberhorn, Phys. Rev. Lett. 106 (2011) 180403.
[9] N. Konno, Quantum Inf. Process. 8 (2009) 387.

http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref1
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref2
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref3a
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref3b
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref3c
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref4
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref5
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref6
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref7
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref8
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref9


46 M. Nizama, M.O. Cáceres / Physica A 400 (2014) 31–46

[10] Balaji R. Rao, R. Srikanth, C.M. Chandrashekar, Subhashish Banerjee, Phys. Rev. A 83 (2011) 064302;
C.M. Chandrashekar, R. Srikanth, S. Banerjee, Phys. Rev. A 76 (2007) 022316;
R. Srikanth, S. Banerjee, C.M. Chandrashekar, Phys. Rev. A 81 (2010) 062123.

[11] A. Romanelli, Phys. Rev. A 76 (2007) 054306.
[12] M.A. Broome, A. Fedrizzi, B.P. Lanyon, I. Kassal, A. Aspuru-Guzik, A.G. White, Phys. Rev. Lett. 104 (2010) 153602.
[13] D. Shapira, O. Biham, A.J. Bracken, M. Hackett, Phys. Rev. A 68 (2003) 062315.
[14] W. Dür, R. Raussendorf, V.M. Kendon, H.-J. Briegel, Phys. Rev. A 66 (2002) 052319.
[15] A. Joye, M. Merkli, J. Stat. Phys. 140 (2010) 1.
[16] H. Schmitz, R. Matjeschk, Ch. Schneider, J. Glueckert, M. Enderlein, T. Huber, T. Schaetz, Phys. Rev. Lett. 103 (2009) 090504.
[17] Yue Yin, D.E. Katsanos, S.N. Evangelou, Phys. Rev. A 77 (2008) 022302.
[18] M.O. Cáceres, A.K. Chattah, J. Mol. Liq. 71 (1997) 187.
[19] Oliver Mülken, Alexander Blumen, Phys. Rev. E 71 (2005) 036128.
[20] H.B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, Y. Silberberg, Phys. Rev. Lett. 100 (2008) 170506.
[21] A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M.G.

Thompson, J.L. O’Brien, Science 329 (2010) 1500.
[22] M. Karski, et al., Science 325 (2009) 174.
[23] C.A. Ryan, M. Laforest, J.C. Boileau, R. Laflamme, Phys. Rev. A 72 (2005) 062317.
[24] M.O. Cáceres, M. Nizama, J. Phys. A: Math. Theor. 43 (2010) 455306.
[25] M. Nizama, M.O. Cáceres, J. Phys. A: Math. Theor. 45 (2012) 335303.
[26] M. Nizama, M.O. Cáceres, Physica A 392 (2013) 6155.
[27] V. Kendon, Math. Structures Comput. Sci. 17 (2006) 1169.
[28] H.P. Breuer, F. Petrucione, The Theory of Open Quantum Systems, Oxford University Press, Oxford, 2003.
[29] V. Gorini, A. Kossakowski, J. Math. Phys. 17 (1976) 821.
[30] G. Lindblad, Comm. Math. Phys. 48 (1976) 119.
[31] A. Lakshminarayan, V. Subrahmanyam, Phys. Rev. A 67 (2003) 052304.
[32] Y. Omar, N. Paunković, L. Sheridan, S. Bose, Phys. Rev. A 74 (2006) 042304.
[33] S.M. Tan, D.F. Walls, M.J. Collett, Phys. Rev. Lett. 66 (1991) 252;

L. Hardy, Phys. Rev. Lett. 73 (1994) 2279;
J. Dunningham, V. Vedral, Phys. Rev. Lett. 99 (2007) 180404;
J.J. Cooper, J.A. Dunningham, New J. Phys. 10 (2008) 113024.

[34] M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
[35] J. Preskill, Phys. Today 52 (1999) 24.
[36] W.K. Wootters, Phys. Rev. Lett. 80 (1998) 2245.
[37] G. Vidal, R.F. Werner, Phys. Rev. A 65 (2002) 032314.
[38] H. Ollivier, et al., Phys. Rev. Lett. 88 (2001) 017901;

L. Henderson, et al., J. Phys. A 34 (2001) 6899.
[39] S. Luo, Phys. Rev. A 77 (2008) 042303.
[40] M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 81 (2010) 042105.
[41] X. Qian, Y. Li, Z. Song, C.P. Sun, Phys. Rev. A 72 (2005) 062329.
[42] P. Zanardi, X. Wang, J. Phys. A: Math. Gen. 35 (2002) 7947.
[43] A.O. Caldeira, A.J. Legget, Ann. Phys. (USA) 149 (1983) 374.
[44] A.A. Budini, A.K. Chattah, M.O. Cáceres, J. Phys. A: Math. Gen. 32 (1999) 631.
[45] N.G. van Kampen, Stochastic Processes in Physics and Chemistry, second ed., North Holland, Amsterdam, 1992.
[46] M.O. Cáceres, Elementos de Estadística de no Equilibrio y sus Aplicaciones al Transporte en Medios Desordenados, Reverté S.A., Barcelona, 2003 (in

Spanish).
[47] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, Nueva York, 1995.
[48] A. Romanelli, Phys. Rev. A 85 (2012) 012319.
[49] A. Patel, et al., Phys. Rev. A 71 (2005) 032347.
[50] K.M.O. Connor, W.K. Wootters, Phys. Rev. A 63 (2001) 052302.
[51] E.A. Evangelidis, J. Math. Phys. 25 (1984) 2151.
[52] P.A. Martin, J. Phys. A: Math. Theor. 41 (2008) 015207.
[53] A. Peres, Phys. Rev. Lett. 77 (1996) 1413.
[54] S. Lee, D.P. Chi, S.D. Oh, J. Kim, Phys. Rev. A 68 (2003) 062304.
[55] R. Dillenschneider, Phys. Rev. B 78 (2008) 224413.
[56] M.S. Sarandy, Phys. Rev. A 80 (2009) 022108.
[57] M. Nizama, D. Frustaglia, K. Hallberg, Phys. Rev. B 86 (2012) 075413.

http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref10a
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref10b
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref10c
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref11
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref12
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref13
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref14
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref15
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref16
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref17
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref18
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref19
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref20
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref21
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref22
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref23
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref24
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref25
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref26
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref27
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref28
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref29
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref30
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref31
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref32
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref33a
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref33b
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref33c
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref33d
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref34
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref35
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref36
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref37
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref38a
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref38b
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref39
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref40
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref41
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref42
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref43
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref44
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref45
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref46
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref47
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref48
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref49
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref50
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref51
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref52
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref53
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref54
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref55
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref56
http://refhub.elsevier.com/S0378-4371(13)01129-1/sbref57

	From quantum correlations in dissipative quantum walk to two-qubit systems
	Introduction
	A review of the dissipative quantum walk
	Moments of the DQW

	Quantum correlations on the lattice
	Mirror concurrence
	From the DQW to the occupation two-qubit definition

	Negativity
	From the lattice degrees of freedom to the effective two-qubit definition

	Mirror quantum discord

	Results from an initial localized QDW state
	On the dissipative two-qubit models
	On the two-qubit density matrix with rotational symmetry around the  z -axes

	Conclusions
	Acknowledgments
	The completely dissipative regime
	Diagonalizing the matrix  M1 
	References


