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A mixed integer linear problem is called symmetric if the variables can be permuted without changing
the structure of the problem. Generally, these problems are difficult to solve due to the redundant solu-
tions which populate the enumeration tree. In Unit Commitment problems the symmetry is present
when identical generators have to be scheduled. This article presents a way to reduce the computational
burden of the Branch and Cut algorithm by adding appropriate inequalities into the mixed-linear
formulation of the Unit Commitment problem. In the examples considered, this approach leads to a
substantial reduction in computational effort, without affecting the objective value.
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1. Introduction

The Unit Commitment (UC) calculation is extensively used in
daily system operation and it is an exercise of very large-scale,
time-varying, non-convex, mixed-integer modeling and optimiza-
tion. Security Constrained Unit Commitment (SCUC) is an exten-
sion to conventional UC with the inclusion of system network
constraints. The main objective of SCUC is to ensure not only the
economic operation but also the security of the system [1,2]. This
extension introduces extra levels of complexity to the UC problem.
This is the main reason why many methods solve the UC and the
power flow-based network constraints separately as a two level
optimization problem. A master level which includes the UC calcu-
lation, and the sub-problem level which checks the network secu-
rity constrains. In summary, despite the complexity of SCUC
problem, the master level still remains as a classic single bus UC
problem. Currently, Lagrangian Relaxation (LR) and Mixed-Integer
Linear Programming (MILP, branch-and-cut based algorithms) are
the main UC solution contenders depending on the specific UC
problems being solved.

An important factor that usually affects the performance of the
algorithms is when the system has identical generating units.
Unfortunately, this situation occurs frequently. Identical genera-
tors are very common in combined cycle plants, large hydraulic
facilities, and thermal plants. Modeling identical generators origi-
nates an algorithmic issue known as the symmetry problem. In
the case of LR algorithm will produce oscillations during the itera-
tion process [3–5] while in branch-and-cut algorithms will pro-
duce redundant computational effort exploring equivalent search
regions unnecessarily [6].

Different techniques have been applied in different areas to
solve symmetry problems for the branch-and-cut methodology.
They can be classified into two main methodologies: reformulation
methods and removal methods. Reformulation techniques basi-
cally rewrite the problem in order to remove the symmetries [6].
They have been applied in different areas. One of the first imple-
mentation proposed a reformulation method for cutting stock
problems [7]. It has also been applied to urban transit scheduling
[8], airline crew scheduling [9,10], vehicle routing [11], graph col-
oring [12], as well as binary cutting stock problems [10]. Results
proved that it is a very effective method. However, the identifica-
tion of how to reformulate a specific problem is not an easy task.
Furthermore, its applicability is not general and can increase the
dimension of the problem to solve. On the other hand, removal
methods rely on the elimination of the symmetry from the prob-
lem mainly by adding constraints. The addition of constraints can
be done dynamically or statically. The first one exploits symmetry
during the tree search process while the second one attempts to
remove the symmetry by adding hierarchies in the selection
process.
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Different alternatives of the dynamic removal methods have
been proposed [6]. A method to solve binary problems using iso-
morphism pruning is presented in [13]. Symmetry breaking via
dominance detection used in constraint programming is described
in [14–16]. As another alternative, in [17,18] the symmetry break-
ing was applied during the search step, ensuring that only one iso-
morphic solution is allowed at every tree node. These methods
exploits symmetry during the tree search process, therefore, it is
difficult to be implemented using off-the-shelf software.

On the other hand, the static methods try to remove the sym-
metry by adding hierarchies in the selection process. Several
authors proposed different ways of symmetry static removal ap-
plied to different areas [19–22]. Results suggest that the static
methods can be very effective. The main advantages of these meth-
ods are that they only require the addition of hierarchical con-
straints and no special software is needed.

The objectives of this article are: First, to identify the elements
that generate symmetry, then, to evaluate the algorithm under the
presence of symmetry, and finally, to use a static removal strategy
to set a priority to the generator status variable, in order to reduce
the computational burden of the branch-and-cut algorithm.
2. Symmetry in Mixed Integer Linear Programming

A Mixed Integer Linear Programming (MILP) problem has the
following form:

minfcxþ hy : Axþ Gy P b; x 2 Zn; y 2 Rpg ð1Þ

where A and G are m � n matrices, b is a m-vector, c and h are n-vec-
tors, and x, y are the n-vector variables, where the x variables are
integers and the y variables are continuous.

From the set of all feasible solutions Q, the MILP problem repre-
sented by Eq. (1) may allow multiple equivalent solutions, each of
them representing a symmetry group G. Further detailed informa-
tion can be found in [6]. Mathematically, the symmetry group G of
MILP (1) can be defined as the set of all permutations p of the n
variables mapping Q on itself and mapping each feasible solution
on a feasible solution having the same objective value:

G ¼ fp 2 Pnj8x 2 Q : pðxÞ 2 Q ^ cT x ¼ cTpðxÞg

If the equivalence of these sub-problems is not identified this may
lead to solve unnecessary problems, making a relatively easy prob-
lem very difficult to solve. Therefore, the main challenge in symme-
try reduction is to identify a subset of a symmetry group in order to
reduce the computational burden.

The static symmetry methods consists of adding constraints to
the initial formulation, cutting some of the symmetric solutions,
while keeping at least one optimal solution. It is a common prac-
tice to compute a subgroup GLP of G [6,19], being GLP the linear
relaxation of Eq. (1). However, another practical option is to exploit
the knowledge of the model. An alternative of this knowledge-
based method is proposed in [22], where the authors identify the
identical objects of their models, and they impose hierarchical
decisions to mitigate the symmetry effect.

In UC problems, the identical objects that generate symmetry
are the generator state variables. Given a scheduling pattern of
generating units with identical production costs connected to the
same system bus, it can be found several identical patterns by per-
muting the state variables among the identical units. Therefore, in
this article, we impose hierarchical decisions based on the knowl-
edge of power system generation, and on the ideas suggested by
[22]. These hierarchies are supported by Corollary 1 [6], see Appen-
dix A.
3. Nomenclature
T
 Scheduling horizon

Gen
 Number of generation plants

C(�)
 Total cost ($)

Cpgt
 Production cost, for unit g, at hour

t ($/h)

Csgt
 Startup cost ($)

pgt
 Active power variable (MW)

ugt
 Binary state variable. 1 meaning

on and 0 off

Dt
 Hourly system demand (MW)

A(�), b
 Set of operational constraints

fcg
 Fixed cost ($/h)

vcg
 Variable cost ($/MWh)

Ks

g
 Cost for startup cost step s ($/h)
Eg
 Number of start up steps

BGen
 Subset of identical units in a bus
4. Symmetry in MILP based Unit Commitment

The Unit Commitment (UC) problem can be formulated as a
minimization problem which main objective is to determine the
generation dispatch to supply the demand requirements and sev-
eral other operational constraints, at minimum cost over a period
of time. Mathematically can be represented as follows:

min
u;p

z ¼
XT

t¼1

XGen

g¼1

Cðpgt ;ugtÞ ð2Þ

subject to:

Dt �
XGen

g¼1

pgt ¼ 0 8t ð3Þ

Aðpgt ;ugtÞ 6 b 8ðg; tÞ ð4Þ

where:

Cðpgt;ugtÞ ¼ Cpgt þ Csgt

Cpgt ¼ fcg ugt þ vcg pgt

Csgt P Ks
g ½ugt �

Xs

n¼1

ug;t�n� 8ðg; tÞ 8s ¼ 1; . . . ; Eg

Csgt P 0 8ðg; tÞ

The main factors that generate the existence of symmetry in UC
problems are the presence of identical production (fcg, vcg) and
start-up ðKs

gÞ cost functions among generators.
On the other hand, there are some unit constraints that can

potentially help to diminish symmetry. These constraints are the
minimum up/down time constraints, ramping rate constraints
and power limit constraints. Nevertheless, these operational con-
straint differences do not entirely eliminate symmetry, mainly
when identical cost units face the same dispatch conditions. More-
over, when solving SCUC problems, mainly for real-time or day-
ahead planning horizons, it is a very common practice to consider
a simplified model where some data and constrains are approxi-
mated or even worst not considered. Nowadays, in order to avoid
symmetry in SCUC applications, it is a common practice to slightly
modify the identical cost data.

Therefore, dealing with the effect of symmetry is a very impor-
tant task when solving practical SCUC problems.



Table 1
Two generation units system.

Item Symbol Value

Fix cost fc 8
Variable cost vc 2
Start up cost Kg 10
Start steps Eg 1
Planning horizon T 2
Fix demand Dt 30, 50
Max power Pg 60

Min power Pg
6

Table 2
Two generation units system results.

Num. LPs for feasible solution Num. LPs for global optima

Base Case 4 16
Adding Eq. (5) 3 8
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4.1. Illustrative example

A small system with two identical generators is used to illus-
trate the symmetry issue and the application of the static symme-
try method. Table 1 shows the data used for the simulations. For
simplicity, from the full set of operational constraints, only power
limit constraints are included into the formulation.

Applying the general formulation given by Eqs. (2)–(4), it can be
formulated as follows:

min
u;p

z ¼
XT¼2

t¼1

XGen¼2

g¼1

½ð8 ugt þ 2 pgtÞ þ Csgt �

s:t:
Csg1 P 10 ug1 8g

Csg2 P 10 ug2 � 10 ug1 8g
Csgt P 0 8ðg; tÞ
6 ugt 6 pgt 6 60 ugt 8ðg; tÞ

30�
XGen

g¼1

pg1 ¼ 0 8g

50�
XGen

g¼1

pg2 ¼ 0 8g

After solving this problem, a set Q containing 9 feasible solutions is
obtained. The solutions for the ugt variables, represented as vectors
[u11, u21, u12, u22], and the corresponding objective value zi are:

Q ¼

f½0;1;0;1�g# z1 ¼ 186
f½1;0;1;0�g# z2 ¼ 186
f½0;1;1;0�g# z3 ¼ 196
f½1;0;0;1�g# z4 ¼ 196
f½0;1;1;1�g# z5 ¼ 204
f½1;0;1;1�g# z6 ¼ 204
f½1;1;0;1�g# z7 ¼ 204
f½1;1;1;0�g# z8 ¼ 204
f½1;1;1;1�g# z9 ¼ 212

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

All the solutions with the same objective value z are equivalent.
In order to see the effect of the hierarchical constraints on the set
Q, the following inequalities are included into the set of operational
constraints:

u1t P u2t 8t ð5Þ

The inclusion of these constraints modifies the set Q. Now, the
set Q contains only 4 feasible solutions:

Q ¼

f½1;0;1;0�g# z1 ¼ 186
f½1;0;1;1�g# z2 ¼ 204
f½1;1;1;0�g# z3 ¼ 204
f½1;1;1;1�g# z4 ¼ 212

8>>>>>><
>>>>>>:
Hierarchy (5) has imposed an order on the binary variables that
avoids recalculations on redundant solutions. Moreover, a reduced
set of feasible solutions is obtained by imposing this ordering. To
illustrate this fact, a simulation instance using CPLEX is performed.
The following search strategies are used:

� Node selection: down branch first.
� Variable selection: minimum infeasibility variable.
� Branch selection: depth first search.

The problem is solved with and without adding the hierarchical
constraint of Eq. (5). Simulation results are illustrated in Table 2,
the comparison is based on the number of Linear Program solu-
tions that each method needs.

From Table 2 can be inferred that adding hierarchical con-
straints leads to a significant reduction of computational burden.

4.2. Symmetry subset

Although the UC problem is a single-bus calculation, it is not al-
ways possible to break symmetry in all identical units of the power
system. It is important to emphasize that UC is one part the prob-
lem in the SCUC calculation. The other issue is related to the secu-
rity constraints feasibility checking. Therefore, as a consequence of
the inclusion of the transmission network, only the units con-
nected to the same bus can be considered to break the symmetry.

In order to obtain the groups of units which generate redundant
solutions, Corollary 1 is used to form a subset BGen of G, restricted
to N, which is the number of integer variables allowed to be per-
muted. The key here is to identify the generating units, candidates
for permutation, and to form groups with them. These groups are
identified by a specific algorithm.

Algorithm outline:

1. Obtain the subset of generation buses from the full set of system
buses.

2. Form groups of units connected to the same bus, from the sub-
set of step 1.

3. Identify units with identical production costs from the groups
of step 2.

4. Form generating groups with permutation potential.
5. Form hierarchical constraints according to the groups from step

4.
6. Set priorities for the hierarchical constraints.

Once BGen is obtained, the following constraints can be included
in the UC problem:

ugt P uggt 8t ^ pðg;ggÞ 2 BGen ð6Þ

These constraints are activated according to the initial conditions of
the units within the groups arranged in step 2.

5. Computational results

The test system described in [23,24] is used to illustrate the
proposed method. This system has ten generation units which
are all different in terms of production and start up cost. The total
generating capacity is 1662 MW, with a system peak load of



Table 4
Total cost comparison with respect to the benchmark system [23].

20 Units 100 Units Relative difference with
[23]

[23] 1.130.660 5.627.437 20 Units 100 Units
MILP proposed

approach
1.101.377 5.494.339 �2.59% �2.37%

[24] With ramps 1.124.475 5.606.413 �0.55% �0.37%
WO ramps 1.123.216 5.600.883 �0.66% �0.47%
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1500 MW. In order to carry out different simulations, three differ-
ent systems are created: a 20 generating system is built by dupli-
cating the original system, a 50 generation system is built by five
folding the 10 unit system, and a 100 generation system is built fol-
lowing the same pattern. This approach permits to build systems
with ten symmetric groups, each of them having 2, 5 and 10 iden-
tical generation units respectively. In addition to that, a real system
with 225 thermal units is also tested [25]. It has 10 groups of iden-
tical units, each of them with different number of units, the total
thermal capacity is 17,031 MW with a system peak load of
10,323 MW. All the systems are modeled with the characteristics
taken from references [23,24] except for operative reserve which
is omitted. The model considers: piece-wise and step-wise produc-
tion and start-up costs respectively; min up/down times; unit
power capacities; state, start-up, and shut-down logics; initial con-
ditions; and the energy balance equation. The model is imple-
mented in GAMS using CPLEX as the solver, with all the
parameter options set to the default values.

Each case is solved considering the original system (BC, Base
Case) as well as the inclusion of static symmetry breaking con-
straints (SSBC). Additionally, in order to do a fair comparison be-
tween the solver and the proposed methodology, all the BC
simulations were repeated changing the CPLEX symmetry-break-
ing parameter from moderate to aggressive. The simulation results
are exhibited in Table 3.
5.1. Discussion of the results

To validate the results of this work they are compared with re-
sults given in [23,24]. Results given in [23] are used as the
reference.

In [24] a Gravitational Search Algorithm (GSA) algorithm is pro-
posed to solve a thermal UC problem. Likewise, in [23] a Genetic
Algorithm (GA) is proposed to solve the same problem. In [24]
the GSA total costs are compared to those of different meta-heuris-
tics methods and no gap tolerance is reported. In [23] the GA total
costs are compared to those of LR and Dynamic Programming (DP)
algorithms, and a gap tolerance is reported. In addition, it is
mentioned in [23] that can be expected to obtain better solutions
-lower costs-.

Table 4 gives the total costs comparison:
Table 3
Examples comparison using default CPLEX options.

Units

Case 20 50 100 225

Equations BC 5821 14,476 26,401 74,302
SSBC 6071 14,976 28,501 75,452

B Variables BC & SSBC 1500 3750 7500 16,817
R Variables BC & SSBC 4026 10,026 17,526 33,768

Non zeros BC 22,724 56,735 103,420 248,640
SSBC 23,224 57,735 107,620 250,940

Optimal Cost BC & SSBC 1,101,377 2,748,513 5,494,339 424,787

Nodes BC 463 19,513 11,802 3627
SSBC 139 1854 1076 1738

Relative gap BC 0.0 0.0 0.02% 0.0
SSBC 0.0 0.0 0.0% 0.0

Solution time BC 8.17 163.72 261.73 163.80
SSBC 3.43 66.81 115.64 120.00
SYM 1 8.05 159.07 276.11 168.12
SYM 2 8.04 165.96 262.65 176.30
SYM 3 7.18 222.42 205.76 127.25
SYM 4 6.88 228.64 206.71 error
SYM 5 7.20 386.51 200.17 153.35

BC: Base Case. SSBC: With Static Symmetry Breaking Constraints. SYM #: CPLEX
symmetry-breaking parameter.
The differences described in Table 4 are less than 3%, being our
optimal costs lower. The differences can be justified by two main
reasons:

� The algorithms used. It is important to mention that our MILP
implementation allowed us to get global optimal solutions,
except for the Base Case, 100 units instance, which gives a
gap of 0.02%.
� The system operative reserve. These constraints are omitted in

this article.

6. Conclusion

Classic MILP UC models have inherent disadvantages when they
have to deal with systems with identical generating units con-
nected to the same bus. In this paper, a static strategy of symmetry
breaking is applied to solve MILP based UC problems with identical
generating units. Numerical results for different systems show that
the proposed methodology leads to a considerable reduction of the
search on the branch-and-cut enumeration tree. As a consequence,
a significant time computation reduction is also obtained.

Appendix A. Hierarchical constraints

A fundamental region F for G can be defined as [6]:

� "g 2 G, g – I,
� g(int(F)) \ int(F) = ø,
� [g2G gðFÞ ¼ Rn,

where int(F) represents the interior of region F and I the identity
permutation. The last equality implies that F includes at least
one optimal solution of the MILP problem.

Theorem 1 [6]. Let G be the symmetry group for MILP problem (1)
and let F be a fundamental region for G. Then, an optimal solution of
the MILP problem (1) can be found by optimizing over the intersection
of the feasible set of Eq. (1) with F.
Theorem 2 [26]. Let G be the symmetry group for MILP problem (1)
and let �x 2 Rn such that gð�xÞ– �x for all g 2 G, g – I. Then,

F ¼ x 2 Rnj8g 2 G; g – I : ðgð�xÞ � �xÞ � x 6 0f g ðA:1Þ

is a fundamental region for G.
In practice, simple sets of static symmetry breaking inequalities are

used, and most of them can be derived from the following corollary:
Corollary 1 [6]. Theorem 1 remains true when the fundamental
region F is replaced by the region obtained from Theorem 2 by relaxing
its statement in the following ways:

� Inequalities (A.1) are written only for a subset of permutations
in G.
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� The condition gð�xÞ – �x 8g 2 G; g – I is removed.

Consequently, if the MILP problem has n integer variables
0 6 xi 6 k for i = 1, . . . , n. G is restricted on these variables and
the following inequalities can be added:

x1 P x2 P � � �P xn ð2Þ

These inequalities are called Hierarchical constraints and they can be
applied to MILP based UC problems.
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