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Abstract: Consumers’ interest in a high-quality healthy diet is creating a growing trend in the food
industry, focusing on the design and development of new products rich in bioactive compounds. This
work involves the formulation of a vegetable sauce obtained from a mixture of pumpkin and pepper,
the study of the evolution of bioactive compounds, quality and sensory parameters during storage at
4 and 25 ◦C, the influence of the packaging materials (PVC, PE/PA, and PS), and the migration degree.
Antioxidant activity, polyphenols, carotenoids, and brown pigments contents were studied at 25 ◦C.
Overall migration of the containers and the evolution of the physicochemical parameters and sensory
attributes of the sauce were analyzed. All plastic materials showed an overall migration lower than
the limit of EU and Mercosur Regulations. PVC better preserved polyphenols, antioxidant activity,
and carotenoids until 50, 10, and 30 days, respectively, and lower development of brown pigments
was observed. Higher storage temperatures favored undesirable changes in sensory attributes before
50 days of storage. PVC can be used to achieve greater conservation of the sensory attributes of
sauce, regardless of the storage temperature. It could be considered the best material to preserve the
bioactive properties and sensory attributes of the sauce until 30 days.

Keywords: product development; polyphenols; bioactive compounds; packaging; overall migration;
quantitative descriptive analysis

1. Introduction

Currently, consumers are becoming increasingly aware of the benefits that high-quality
healthy diets provide [1]. For this reason, the demand and consumption of functional
compounds, such as antioxidants and dietary fiber, play an increasingly important role [2].
The market offers a wide spectrum of vegetables with these characteristics, which can
be combined with other raw materials to attain the desired organoleptic properties and,
additionally, to upgrade the bioactivity of the product [3].

Sauces and dressings are commonly consumed in everyday life. Ketchup, mustard,
mayonnaise, soy sauce, fish sauce, and barbecue sauce are some of the most known
products worldwide [4], which are formulated with additives such as thickeners, colorants,
flavorings, and preservatives [5]. In this context, the formulation and development of a
sauce, rich in bioactive compounds and obtained from fruits and vegetables, represents a
great challenge.

Butternut squash (Cucurbita moschata, D.) and red pepper (Capsicum annuum, L.) are
produced in large quantities in the north east of Argentina (NEA) and they have an
appreciable content in bioactive compounds, mainly carotenoids, polyphenols, ascorbic
acid, and fiber [6–8]. These raw materials are available throughout the year and they have a
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lot of potential to design and develop new products with high added value such as sauces
which can be used to season meats, pastas, bread, and other culinary preparations.

It is important to highlight that the bioactive compounds as well as the organoleptic
properties of the final product could be affected by the packaging material used and the
storage conditions [9], as well as the perception of consumers. Thus, in order to under-
stand the behavior of bioactive compounds during their storage in different materials and
conditions, a study of the interactions between foodstuffs and packaging is very important.

There is a marked trend in the study and development of biodegradable packag-
ing [10–12]. However, although much effort has been put into this packaging being made
available for daily use, they have not been able to replace synthetic materials, mainly due
to physical properties, especially mechanical properties and moisture barrier [13,14]. In
contrast, the use of plastic food packaging has increased due to the increasing demand
caused by population growth and market expansion [15], reaching a worldwide plastic
production of 320 million tons in 2018 [16].

On the other hand, it is common knowledge that the plastic materials used for food
packaging can produce the migration of compounds to the food which can affect consumers’
health [17]. In this context, one of the most important steps during the development of
new products is the selection of the type of packaging to be used, the overall migration test
being one of the most relevant parameters to be taken into account [14,18].

Polyvinyl chloride (PVC), polyamide/polyamide alloy (PE/PA), and polystyrene (PS)
are widely used materials for many food packaging products such as meat, dairy, sauces,
and baked goods, although PVC has a restricted use for non-fat foods [19]. It should be
taken into account that the chemical components of these materials, such as phthalates
in PVC [20], PA 6 (polycaprolactam) in PE/PA [21], and styrene monomer in PS [22],
can migrate to food, affecting its final quality and nutritional value. Storage is mainly
affected by the type of plastic materials, food composition, and storage conditions until
consumption [22]. Food processing conditions also have a great impact on such migration;
and although these components are not toxic, exposure to high doses can cause serious
health and safety problems to consumers [23].

The European Regulation specifies a limit on the total mass of substance permitted to
migrate from the packaging to the food called the overall migration limit (OML), which
corresponds to the determination of the release of substances from the material or article
either into food or into a food simulant [24]. This can be understood by using a food
simulant to test a medium that imitates food behavior and the migration from food packag-
ing [14]. There are five simulants described in the legislation for plastics: distilled water
or water of equivalent quality, 3% acetic acid (m/V) in aqueous solution, 10% ethanol (by
volume) in aqueous solution, rectified olive oil, and 50% ethanol (by volume) in aqueous
solution [25,26]. These simulants mimic under worst case conditions aqueous foods, acidic
foods, alcoholic foods, and fatty foods, respectively.

The purpose of the present research was to develop a sauce rich in bioactive com-
pounds and to determine the effect of the packaging and storage conditions on the func-
tional properties and sensory attributes, as well as knowing the degree of global migration
of the components from containers.

2. Materials and Methods
2.1. Raw Material and Sauce Preparation

Butternut squash (Cucurbita moschata, D.) and red pepper (Capsicum annuum, L.) were
bought on a local market located in Resistencia, Chaco (Argentina) and stored at 4 ± 1 ◦C
until their processing. To prepare the sauce, the vegetables were tempered at 25 ◦C, washed,
peeled, and cut into slices of approximately 1.5 ± 0.2 cm. The slices of butternut squash
were washed, drained, and steamed for 20 min. Finally, the slices were mashed using a
high-speed mill (model FW100, Huanghua, China) at 24,000 rpm for 6 s and sieved with
a mesh. On the other hand, red pepper puree was prepared as follows: after washing,
peppers were covered in aluminum foil and kept in an oven for 1 h at 180 ◦C. Peels and
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seeds were removed and the peppers were mashed using a high-speed mill (model FW100,
Huanghua, China) at 24,000 rpm for 3 s. A diagram of the sauce preparation is shown
in Figure 1.
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Figure 1. Diagram of the sauce preparation.

According to previous results, purees were mixed in a ratio of 50:50 pumpkin/pepper [27]
and other ingredients were added: 1% (w/w) commercial oleic high sunflower oil, 1% (w/w)
ascorbic acid (Biopack®, Buenos Aires, Argentina), 1% (w/w) NaCl, 0.2% (w/w) potassium
sorbate (Dalton®, Mendoza, Argentina), and 0.5% (w/w) of gelatin (200 bloom). All the in-
gredients were mixed and heated in a water bath at 80 ◦C for 10 min (HHS-S model). Finally,
the sauces were aseptically packaged at room temperature, in three different sterile plastic
containers: polyvinyl chloride (PVC) provided with pressure lid, polyamide/polyamide
alloy (PE/PA) suitable for vacuum sealing, and polystyrene (PS) with threaded lid. In all
cases, the presence of headspaces was avoided.

2.2. Experimental Procedure

The experimental plan was divided into the following stages. First, the overall migra-
tion test of plastic material was carried out using three different kinds of plastic containers
at initial time, 5, 10, 15, and 20 days. Second, the sauces were packaged in each of the
containers and in order to determine the behavior of the bioactive compounds in storage
conditions, the content of polyphenols, carotenoids, brown pigments formation, and antiox-
idant activity was measured at initial time, 10, 20, 30, 40, and 50 days of storage at 25 ◦C.
Moreover, pH and titratable acidity were determined for these times. Finally, a sensory
analysis was carried out to determine a sensory description of the sauces and the impact of
the packaging materials and the storage conditions.

2.3. Plastic Containers and Storage Assay

As described above, three different commercially available plastic food containers
were used: PVC with a surface of 188 cm2, PE/PA (220 cm2), and PS with 87 cm2. All of
them were bought in a commercial market located in Resistencia, Chaco (Argentina) and
200 g of sauce was placed in each one, leaving no head space. After filling, the containers
were sealed at 25 ◦C and at atmospheric pressure. In the case of PE/PA, they were sealed
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at 30 ◦C in a vacuum packing machine (Ehrlich, Model EH-18, Buenos Aires, Argentina).
Every 10 days of storage, samples were taken and the total polyphenols, antioxidant activity,
carotenoids, and brown pigments contents were measured over a total period of 50 d.

2.4. Overall Migration Test of Plastic Material

Overall migration tests were carried out according to the European Regulation [24]
which agrees with the Mercosur Technical Regulation on migration in plastic materials,
packaging, and equipment intended to be in contact with food [25]. According to these
regulations, the migration test was carried out using food simulants. Food simulants
are simple liquids that allow the quantitative measurement of any non-volatile substance
with relative ease that could migrate from the container under test conditions [28]. In this
context, simulant B was used in order to simulate the same conditions of pH of our food
system. This simulant consists of a solution of 3% acetic acid in water (w/v) and to carry
out the migration assay, each plastic material was cut into squares of 30 cm2 and placed
into a glass beaker which was filled with 15 mL of simulant.

The beakers were sealed with parafilm® M (Brand GmbH + CO KG, Wertheim, Ger-
many) in order to avoid evaporation and incubated at 25 ◦C during 0, 5, 10, 15, and 20 days.
The aforementioned Regulation indicates that the total period of the assay should be 10 d;
however, 15 and 20 days were also analyzed. Three replicates were conducted plus one
control sample (only simulant).

After the exposition of the simulant with the plastic food containers, the liquid phase
was placed in porcelain capsules and evaporated to dryness in an oven at 105 ± 1 ◦C for
around 30 min. The capsules containing the residue were kept in a desiccator for 1 h. The
overall migration was determined gravimetrically by using the following Equation (1).

M =
Ma − Mb·1000

S
(1)

where M is the overall migration into the simulant (mgresidue/dm2
sample); Ma is the mass of

the residue from the test specimen after evaporation of the simulant which had filled the
test specimen (g); Mb is the mass of residue from the blank simulant equal to the volume
which had filled the test specimen (g), and S corresponds to the surface area of the test
specimen which was in contact with the simulant during the exposure (dm2).

2.5. Analytical Methods
2.5.1. Determination of Total Polyphenol Content

Total polyphenol content (TPC) was determined using the Folin-Ciocalteu assay with
modifications described by Tang et al. [29]. First, 30 g of the sauce was homogenized with
30 mL of methanol. The mixture was reposed for 20 min and after that, was centrifuged for
20 min. The supernatant was filtered and a methanolic extract of the sauce was obtained.
Then, 1550 µL of distilled water and 150 µL of methanolic extract were added to 100 µL of
the Folin-Ciocalteau reagent (Biopack®, Zárate, Buenos Aires, Argentina), allowed to react
for 5 min, and then added 200 µL of Na2CO3 at 10% (w/V). The mixture was stirred and
incubated for 1 h in the dark prior to measuring the absorbance at 760 nm using a UV/Vis
Perkin Elmer spectrophotometer (LAMBDA 25, Walthman, MA, USA). Chlorogenic acid
was used as reference standard and the results were expressed as mgCA/100gs, where the
subscript CA corresponds to chlorogenic acid equivalent and s, sample [30,31].

2.5.2. Antioxidant Activity

Antioxidant activity was determined by spectrophotometry, measuring the loss of color
of the radical chromogen DPPH [32]. A sample of 10 g was mixed with 25 mL of methanol
and was filtered and diluted successively with methanol until complete discoloration of
the residue. A 6 mL aliquot of methanolic DPPH solution (3 × 10−3 mM) was added to
aliquots of 0.5 mL of the obtained methanol extract and left for 20 min in complete darkness
to reach a stationary state. Then, an initial value of the methanolic DPPH solution was
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taken to monitor the decrease of its absorbance at 517 nm. DPPH radical is reduced in the
presence of antioxidants, with a change in color in the solution over time. Trolox was used
as reference standard, where the antioxidant capacity of the initial value of the sauce was
expressed as µgTeq/gs, where the subscript Teq means Trolox equivalent and s, sample.
Evolution during storage was expressed as the percentage of inhibition of DPPH radical.

2.5.3. Determination of Total Carotenoid Content

Total carotenoid content (TCC) was determined as follows: 10 g of the sample was
homogenized with 25 mL of pre-cooled acetone, filtered under vacuum, and the residue
was washed until its total discoloration. The filtrate was extracted with petroleum ether in
a ratio of 1:1. The ether phase was separated and was measured as absorbance at 450 nm
using a UV/Vis Perkin Elmer spectrophotometer (LAMBDA 25, Walthman, MA, USA),
with petroleum ether as a blank. The results are expressed as µg β-carotene per g of sample
(µgβC/gs) [33].

2.5.4. Determination of Brown Pigment Content

The determination of brown pigments was carried out according to the method
described by Viña and Chávez [34]. First, 5 g of the sample was homogenized with 25 mL
of absolute ethanol. The mixture was reposed for 15 min and it was filtered under vacuum
for 7 min and centrifuged during 15 min at 2500 rpm (model 80-2B, Shanghai, China). Then,
the volume of the alcoholic extract was measured and diluted to a final volume of 50 mL
with ethanol. The absorbance was obtained at 320 nm by using a spectrophotometer Perkin
Elmer LAMBDA 25 UV-visible (LAMBDA 25, Walthman, MA, USA) and using ethanol as a
blank. Results were expressed as absorbance units (uA) per g of sample.

2.5.5. Physicochemical Determinations

The pH of the samples was measured with a pH-meter MP103 (MRC, Holon, Israel).
Titratable acidity, expressed as citric acid in 100 mL of sauce, was analyzed following AOAC
Method 934.06 [35], titrating an aliquot of the sauce with 0.1 N NaOH until it reached a pH
of 8.1. Moisture was determined by drying in a vacuum oven DZF Model 6020 (Shangai,
China) at 70 ◦C until constant weight was reached [35]. Physicochemical determinations
were performed in triplicate.

2.6. Sensory Evaluation
2.6.1. Panel Training

The sensory assessment of sauces was performed following a quantitative descriptive
analysis (QDA) by a trained panel consisting of 10 assessors (7 women and 3 males, in an
age range of 23 to 33 years). The panelists were scientists, graduated chemical engineers,
students, and grantees from Universidad Tecnológica Nacional-Facultad Regional Resisten-
cia (UTN FRRe). Before analysis, panelists were trained in successive sessions, of short
duration (maximum 1 h) to avoid exhaustion, to verify and discuss the vocabulary and to
explain the scales being used.

Work was done on the development of the standardized vocabulary, on the selection
of product descriptors and their definitions, and on the choice of references and scales. An
exhaustive work was performed to standardize criteria on the intensity measure of the
descriptors. The definition agreements of the descriptors were achieved by working with
foods from the same category (commercial dressings and sauces acquired in a commercial
market) and with the sauce under study, previously prepared. In the cases in which there
was higher variability in the answers, a review and redefinition of the descriptors was
carried out.

To describe the sauces packaged in different materials, the panel defined a set of
5 descriptors. Supplementary Table S1 shows the descriptors based on visual, manual, and
oral perceptions, with the descriptions emitted by the panel, the references selected for
scoring and the agreement of criteria for the measurement of intensity (scales extremes).
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2.6.2. Sensory Evaluation of Sauces during Storage

QDA analysis was mainly used to evaluate the organoleptic changes of the sauce
during storage. These changes are mainly affected by the temperature and time of storage.
Sauces were prepared according to the protocol described above (Section 2.1), packaged in
three different containers (PVC, PE/PA, and PS) and stored at 4 and 25 ◦C for 50 days. Every
10 days of storage at different temperatures, samples were extracted for their descriptive
sensory evaluation. Changes in the color, aroma, spreadability, lumpiness, and flavor
attributes at different stages of storage were evaluated.

Samples were served to the panelists at room temperature (2 ± 1 ◦C) in disposable
trays in individual booths under white light and where each sample was given a random
three-digit coded number. Drinking water was provided to the panelists to refresh the
palate and at least one minute was required as a wait time before tasting the following
sample. Unstructured graphic scales anchored at the ends were used. The intensity
measurement of each of the descriptors was reflected using a 10-point scale ranging in the
vertical marks that the evaluators made on the scale line. The corresponding quantification
was carried out by measuring the distance from the left of the scale, representing the value
0 (zero), to the evaluators’ mark, to which a numerical value was assigned that was then
statistically analyzed.

2.7. Statistical Analyses

The statistical analyses were performed by one-way ANOVA by using Minitab® 15.1.20
(Minitab Inc., State College, PA, USA) in order to determine significant differences between
mean values of each measured parameter with 95% of confidence (p < 0.05).

3. Results and Discussion

Currently, numerous sauces are available on the market; however, information about
pumpkin/pepper sauce and its storage stability is very limited. In this context, data on
storage stability and quality deterioration would be useful for designing suitable storage
conditions and to optimize their shelf-life [36]. The moisture obtained for the sauce was
practically constant for all the packaging materials and for the whole studied period,
reaching a value of 85.3 ± 0.3%.

Table 1 shows the physicochemical parameters (acidity and pH) of the sauce packaged
in PVC, PE/PA, and PS during 50 days of storage. As a general trend, the acidity of the
sauce packed in PVC, PE/PA did not show differences throughout the studied period,
while PS showed little variation from day 20 of the assay. Regarding the different materials
at the same time of storage, punctual variations were registered at day 10 for PS and at
day 30 for PVC (p < 0.05). Although different acidity between the samples were registered,
no specific trend between the different materials was observed. Sosa et al. [17] reported
that acidity and pH were practically constant during a short-studied storage period at
4 ± 2 ◦C for pumpkin/pepper sauces packaged in PS material. For other similar food
products, Baiano et al. [5] did not find changes in the pH during storage of tomato sauces
at 5 ◦C, being around 4.2 for a sauce packaged in glass and about 4.0 for tomato sauce in
polymeric containers.

pH changes during storage were chosen as the primary quality index for determining
the shelf-life of some sauces; for example, soybean paste seasoning packaged in semi-rigid
PET bottles showed a pH close to 4.0 [36]. In this study, the pH of the sauces remained
unchanged until day 30 of storage. From this time, an increase in this parameter was
observed for all containers, PS being the material which showed the lowest variation. This
effect could be due to the decomposition of some organic acids into smaller compounds or
due to the reduction of oxygen pressure probably present in the containers. Baiano et al. also
reported that PS material showed the lowest oxygen stability in tomato sauces compared
to PVC, glass, and polypropylene [5]. These results are in accordance with the pH values
obtained by Giovanelli and Lavelli [37] and Muzzaffar et al. [38] for commercial tomato
pulp, purees, pastes, and fresh pumpkin.
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Table 1. Evolution of the physicochemical parameters of the sauce.

Storage
Time (Days)

Acidity (%) pH

PVC PE/PA PS PVC PE/PA PS

0 0.473 ± 0.009 a1 0.483 ± 0.009 a1 0.46 ± 0.02 bc1 4.78 ± 0.03 b1 4.78 ± 0.03 b1 4.73 ± 0.03 ab1

10 0.477 ± 0.007 a1 0.477 ± 0.007 a1 0.45 ± 0.02 c2 4.79 ± 0.02 b1 4.73 ± 0.03 bc1 4.70 ± 0.18 b1

20 0.481 ± 0.013 a1 0.49 ± 0.02 a1 0.49 ± 0.03 a1 4.68 ± 0.03 c1 4.70 ± 0.05 c1 4.75 ± 0.05 ab1

30 0.456 ± 0.004 b2 0.479 ± 0.011 a1 0.481 ± 0.011 ab1 4.86 ± 0.02 a1 4.86 ± 0.01 a1 4.79 ± 0.05 ab2

40 0.474 ± 0.008 a1 0.47 ± 0.03 a1 0.472 ± 0.004 abc1 4.81 ± 0.06 ab1 4.75 ± 0.05 bc1 4.76 ± 0.08 ab1

50 0.486 ± 0.004 a1 0.49 ± 0.02 a1 0.486 ± 0.004 ab1 4.81 ± 0.01 b2 4.85 ± 0.02 a12 4.86 ± 0.04 a1

Note: Different letters (a–c) indicate significant differences among values within columns (p < 0.05). Different
numbers (1–2) indicate significant differences between the values within lines (p < 0.05) for different containers at
the same time. PVC = polyvinyl chloride, PE/PA = polyamide/polyamide alloy, PS = polystyrene.

When selecting the most suitable packaging for each type of food, one of the most
important parameters to take into account is the overall migration of the plastic components
to food. For example, PVC is one of the resins with the higher quantity of additives and the
possibility of migration is always a concern when its intended use is food packaging [39].

In this context, overall migration assay of PVC, PE/PA, and PS was performed by
using simulant B at 25 ◦C and for a total period of 20 days of storage.

As Figure 2 shows, no differences were obtained for PS material throughout the entire
studied storage time (p > 0.05). Similarly, PVC and PE/PA do not show differences from
the initial time until 10 days of storage; however, from 15 days the overall migration of
these materials increase (8.5 ± 0.2 and 3.6 ± 1.1 mg/dm2 for PVC and PE/PA, respectively),
remaining practically constant until the end of the assay.
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Figure 2. Overall migration in simulant B at 25 ◦C. For a certain plastic material, bars with the same
letter (a–b) indicate no significant differences (p > 0.05). Different numbers (1–3) indicate significant
differences between different containers at the same time (p < 0.05). PVC = polyvinyl chloride,
PE/PA = polyamide/polyamide alloy, PS = polystyrene.

On the other hand, significant differences (p < 0.05) were observed in the total migra-
tion in the packages studied at the different tested times; in addition, the highest values
were obtained from PVC at day 5. It is important to highlight that although the over-
all migration of PVC to the simulant reached values of 8.5 ± 0.2 mg/dm2, this value
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does not exceed the maximum limit (10 mg/dm2) established by the Mercosur Technical
Regulation [25] and the EU regulation [24].

As mentioned in the Section 2, once the overall migration was measured, the sauce
developed by BIOTEC group (UTN FRRe) was stored in the different plastic containers
(PVC, PE/PA, and PS) at room temperature for a total period of 50 days and the behavior
of the bioactive compounds were measured during this time.

The initial values obtained for total polyphenols content of the sauce was 101.3 mgCA/100 gs.
Figure 3a shows the evolution of TPC of the sauces during storage, expressed as mass fraction
(kgP/kgT, where the subscripts P and T correspond to polyphenol and total, respectively).
A TPC decrease for all types of containers used can be observed (58.23, 32.53, and 27.23%
in PS, PE/PA, and PVC, respectively), reaching final values of 41.85 ± 1.34 mgCA/100 gs
(for PS), 70.9 ± 0.7 mgCA/100 gs (for PE/PA), and 80.3 ± 1.6 mgCA/100 gs (for PVC), PVC
being the material that best preserved these compounds during overall storage assay.

Bioactive compounds such as TPC are a critical factor for food quality, since these sub-
stances undergo degradation during storage. It is important to remark that phenolic stability
is dependent on the storage conditions, especially the temperature [40], processing methods
(peeling, grinding, heating, frying, or thermal treatments), and packaging materials [41].
Similar results were obtained by other researchers, who agreed that the TPC decreases over
time during storage due to many different factors. In this sense, Radovanović et al. [42]
monitored total phenol content in fruit extracts stored at 7 ◦C for 23 days and at room
temperature (25 ◦C) for 90 days. All fruit extracts exhibited fluctuations in total phenol con-
tents with an initial increase after 4 d, followed by a decrease at both storage temperatures
(less than 20%). Zorić et al. [41] reported a retention of at least 50% of the initial polyphe-
nol content in cherry samples stored at 20 ◦C packed in Pet 12 µm/PP 18 µm met/PE
100 µm (Pet/PPmet/PE) for 6 months of storage, whereas samples packed in PET/Al/PE
(polyethylene terephthalate/aluminum/polyethylene) retained the same percentage for
3 months. Rand̄elović et al. [43] studied the quality changes of dried apricot packed in
different packaging materials during 12 months’ storage period at room temperature and
results showed the highest polyphenol stability in polyester/aluminum/polyethylene
(Pet/Al/PE) laminate. According to Henríquez et al. [44], in apple peel powder stored at
38 ◦C for 120 d, the loss of polyphenols was higher when packed in high density polyethy-
lene than in metalized films of high barrier. Bakan and Eksi [45] reported a decrease in
TPC in sour cherry nectar packaged in cartons and aluminum cans, and concluded that it
could be due to the partial conversion of polyphenols to soluble polymers or due to their
condensation during storage.

The main antioxidant compounds in pumpkin/pepper sauces are carotenoids, polyphe-
nols, and ascorbic acid, which contribute to the total antioxidant activity of the product.
Thus, total antioxidant activity is the result of the contribution of the individual compounds
and to the synergistic and antagonistic effects between them and the food matrix [27].

The initial antioxidant activity value obtained for the sauce was 3.05 µgTeq/gs and in
order to describe its evolution, data were expressed as a proportionality variable, which
describes the relation between the % of DPPH chromophoric radical inhibition at time
t and the % of DPPH chromophoric radical inhibition at the initial time (t = 0) [46]. As
Figure 3b shows, all the studied sauces exhibited a decrease (p < 0.05) in the antioxidant
capacity. In the case of PS and PE/PA packaging, a decrease in antioxidant capacity from
the beginning of the assay was observed, whereas in the sauces in PVC, it remained stable
until 10 days of storage. However, from this time and for the entire storage period (50 days),
the antioxidant activity decreased (p < 0.05). At day 50, the reduction in PVC and PE/PA
was 80%, while in PS it was 75%. Thus, for short storage periods, PVC could represent
the best packaging option for pumpkin/pepper sauce, but for long periods, PS containers
preserve the activity of these bioactive compounds in a better way, being the more suitable
packaging. Bakan and Eksi [45] also observed a decrease trend in the antioxidant activity
of sour cherry nectar packaged in different materials, the main responsible factors of this
loss being the type of material used and the reduction of the TPC as was explained above.
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Figure 3. (a) Mass fraction of total polyphenolic content (TPC). (b) Ratio of the percentage of inhibition
of DPPH chromophoric radical. (c) Mass fraction of total carotenoid content (TCC) in the sauce during
storage at 25 ◦C.

It is important to note that the consumption of carotenoids in food shows important
health benefits, such as pro-vitamin A activity, antioxidant properties, and prevention
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against certain types of cancer as well as degenerative and chronic diseases, and it also
helps to improve the immune function [47]. The total carotenoid content in the sauce is
due to the contribution of the carotenoids present in both pumpkin and red pepper. The
main carotenoids present in red peppers are capsanthin, α and β-carotene, violaxanthin,
cryptoxanthin, capsorubin, lutein, and zeaxanthin [27,48]; and in pumpkin, β-carotene,
lycopene, lutein, zeaxanthin, and xanthophylls, which are positively related to several
health benefits, such as the ability to treat the age-related macular degeneration [49]. On
the other hand, due to the presence of double bonds in their chemical structure, these
compounds are very susceptible to degradation reactions [50]. Figure 3c shows the TCC of
the sauce (expressed as kgC/kgT, where C corresponds to carotenoid and T, total).

Regarding TCC of the sauces, the initial obtained value was 78.6 µgβC/gs, which
was maintained up to 30 days of the assay for the sauces packaged in PVC. After this
time, TCC decreased until 50 days (p < 0.05). However, for the sauces packaged in PS,
the TCC decreased from the beginning of the storage, maintaining high values for the
rest of the studied period, in comparison with the other materials. Oxidation could be
considered the main cause of carotenoid degradation, due to the spontaneous reaction
of free radical chains exposed to several factors such as light, the type of packaging, the
storage conditions and/or oxygen concentration, metals, enzymes, and peroxides [51,52].
Castro-López et al. [53] observed a 25% decline of TCC on fruit juices stored at 4, 8, and
11 ◦C for 12 days, concluding that the oxygen present in the headspace of the containers is
the main cause of the compound degradation.

Li et al. [54] demonstrated a decrease in the carotenoid content and color index in
a tomato hot pot sauce packed in PET/PE and PET/Al/EAA/PE at high temperatures
(25 and 37 ◦C) and an increase in hydroxymethylfurfural (HMF) content (browning indica-
tor). In contrast, low storage temperatures and high oxygen resistance packaging reduced
HMF accumulation and carotenoids reduction, slowing down the browning process, im-
proving the color of the sauce.

In order to have a better comprehension of the degradation degree of the sauce
during the storage in the different containers, the formation of brown pigments was
also analyzed. It is important to highlight that browning reactions are some of the most
important phenomena occurring in food during processing and storage, and have important
implications in food stability as well as in nutrition and health, and they can proceed
through different chemical pathways, enzymatic and non-enzymatic [55].

As can be appreciated in Figure 4, the sauce contained in PS developed the highest
content of brown pigments, reaching a value of 4.72 ± 0.12 (at 50 days of storage), while
PE/PA and PVC reached values of 2.47 ± 0.03 and 1.71 ± 0.14, respectively. Thus, the
evolution of brown pigments was more stable in PVC than in other plastic materials. On
the other hand, at 40 and 50 days, significant differences (p < 0.05) were observed in the
formation of brown pigments among the three studied plastic containers. The development
of brown pigments during storage could be related to the oxidative degradation of the
sorbate used as antimicrobial agent, which produces an increase in the concentration of
carboxyl groups which participate in the initiation of the Maillard reaction, affecting the
color and the quality of food [56].

On the other hand, it is important to highlight that ascorbic acid has been added to
pumpkin/pepper sauces as an acidulant and antioxidant agent. However, the antioxidant
effect of ascorbic acid depends on packaging material. Gliemmo et al. [57] reported a higher
degradation rate of ascorbic acid in pumpkin (Cucurbita moschata, D.) puree, packaged in
polyethylene material, indicating a pro-oxidant effect. Another research shows a significant
impact of ascorbic acid degradation on brine browning in pickled vegetables packed in
plastic pouches. This phenomenon was enhanced by the presence of both dissolved oxygen
and sorbate which could act as a catalyst in the degradation reaction of ascorbic acid,
which in turn accelerated the browning reaction [58]. Similar browning process have been
reported by Kohan-nia et al. [59], who observed that the color of catsup sauce contained in
PE, PP, and PET was altered after 180 days of storage at 22 ◦C, and Baiano et al. [5] noticed
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that a* (color parameter) decreased in a tomato sauce packed in glass, PET (PET containing
oxygen scavengers), and PP, at 5 ◦C after 4 months.
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Figure 4. Brown pigment generation in the sauces packed in PS, PVC, and PE/PA during stor-
age (expressed as a proportionality variable). For a certain plastic material, bars with the same
letter (a–e) indicate no significant differences (p > 0.05). Different numbers (1–3) indicate signif-
icant differences between the containers at the same time (p < 0.05). PVC = polyvinyl chloride,
PE/PA = polyamide/polyamide alloy, PS = polystyrene.

Sensory Evaluation

The effect of storage temperature on the sensory attributes of sauces packaged in
different materials was studied and results are shown in Figure 5.

Aroma attribute of the sauces (Figure 5a) at 4 ◦C kept their characteristic “sweet
pepper” aroma throughout the studied period for all the packaging materials, obtaining
scores varying between 1.13 ± 0.04 and 2.74 ± 0.08. Although the differences in the scores
obtained between day 0 and 50 for each packaging materials are statistically significant, it
is important to highlight that all the materials retained the characteristic aroma of the sauce
at 4 ◦C with scores close to the lower end of the scale. During storage at 25 ◦C, the sauces
packaged in PE/PA and PS experienced a tendency to develop a “rancid/oxidized” aroma
from 20 days of storage, according to the increase in the scores given by the evaluators
(between 8.1 ± 0.3 and 7.9 ± 0.2) for both cases. Meanwhile, the sauces packaged in PVC
presented a little variation of the same attribute, reaching a value of 2.3 ± 0.3 on 50 days of
the trial, which means that PVC kept the characteristic aroma of the fresh sauce during the
whole studied period (near to the lower end of the scale).

Regarding color parameters (Figure 5b), a similar trend of aroma attributes during
storage at both temperatures was observed. At 25 ◦C, the higher scores were obtained
for sauces packaged in PS and PE/PA, specifically from 20 days of the trial. This result
means that the sauce changed its color from “intense orange” to “dark brown”, possibly
due to the occurrence of a browning process. On the other hand, the sauces packaged in
PVC did not exhibit color changes during the studied period, since the scores given by the
panel of trained judges remained near the lower value of the scale (between 0.8 ± 0.1 and
1.5 ± 0.2). These results are also in agreement with the brown pigment generation in the
sauces explained in Figure 4, where PS showed the higher formation of these compounds,
which could be related to the rancid/oxidized aroma.
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Figure 5. QDA analysis of sauces packaged in PVC, PE/PA, and PS for 50 days at 4 and 25 ◦C, with
(a) aroma, (b) color, (c) spreadability, (d) lumpiness, and (e) flavor attributes.

Concerning textural attributes of the product, sauce spreadability (Figure 5c) showed
a slight trend to decrease at 25 ◦C for all studied sauces (“quite spreadable” to “something
spreadable”). It is important to highlight that sauces showed a similar spreadability to
commercial dressings such as ketchup or barbecue sauce, and null lumpiness, since the
values obtained for both parameters were close to the upper end of the scale, corresponding
to the reference “cream cheese” (according to the descriptive analysis). At 4 ◦C, as storage
progressed, a decrease in the scores obtained for spreadability of all sauces analyzed
was observed, indicating that they became “less spreadable”. This change was more
pronounced in PE/PA and PS sauces, which after 40 days of storage, experienced a decrease
of 1 point in the aforementioned attribute. The loss of spreadability coincided with the
increase in lumpiness (Figure 5d), with the sauces going from being “very slightly lumpy”
to “somewhat lumpy”. In this case, the sauces packaged in a PVC were the ones that
experienced the least changes in lumpiness during the period studied at 4 ◦C. However, at
25 ◦C the lumpiness of PE/PA and PS increases during storage.
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Finally, flavor attribute showed a decrease in the scores after 20 days of storage at
25 ◦C, mainly in sauces packaged in PE/PA (from 9.1 ± 0.2 to 2.6 ± 0.2) and PS (from
9.2 ± 0.3 to 3.3 ± 0.3), indicating a tendency to an “atypical/rusty” flavor, while sauces
packaged in PVC maintained their scores from day 10 to 50 of storage (between 9.7 ± 0.1
and 8.4 ± 0.3).

On the other hand, samples stored at 4 ◦C and packaged in PE/PA and PS reached
flavor scores close to the maximum of the scale (between 9.1 ± 0.1 and 9.7 ± 0.2) during the
entire storage period, while for PVC, no differences from the beginning and until day 30 of
storage were observed. In conclusion, low storage temperatures favor the preservation of
the sensory attributes of vegetable sauces in PE/PA and PS containers, helping to maintain
a stable flavor attribute during storage. For PVC materials, both storage temperatures
could be used since there was no significant effect on the sensory attributes of the sauces.

4. Conclusions

A new product obtained from native vegetables from the NEA region (Argentina),
with considerable functional properties, was designed and developed. A study of the sauce
behavior packaged in different materials and storage conditions was performed. Valuable
information was obtained that can be used in future innovations. The content of total
polyphenols, antioxidant activity, and carotenoid compounds in the sauces indicated its
excellent nutritional quality.

The use of simulants is useful to determine the migration from containers and the
data were compared to the legislated maximum concentration. The results showed that the
overall migration values for PVC, PE/PA, and PS plastic materials into simulant B (acid)
were lower than the upper limit for migration during the recommended period established
by EU and Mercosur Regulations.

The effect of different materials packaging on the functional compounds was deeply
studied. Regarding total polyphenol content, PVC was the material that best preserved
these compounds with a final value of 80.3 ± 1.58 mgCA/100 gs after 50 days of storage. On
the other hand, sauces packaged in PVC showed the highest values of antioxidant activity
and carotenoid contents until 10 and 30 days, respectively, compared to PE/PA and PS
materials. Finally, lower development of brown pigments was observed in sauces stored in
this material.

Quantitative descriptive sensory analysis is a very useful tool to evaluate the sensory
quality of sauces during storage, at different temperatures and packaging materials, and
can provide an objective basis for determining the sensory changes under the studied
conditions. According to this study, higher storage temperatures (25 ◦C) produced un-
desirable changes in all sensory attributes before 50 days of storage. On the other hand,
low temperature conditions favored keeping the sensory quality of the sauces because the
evaluated attributes remained with little variation throughout the entire studied period.
With regard to the packaging material, PVC can be used to achieve greater conservation of
the sensory attributes of sauce, regardless of the storage temperature to be applied.

Taking into account the results of this research, PVC could be considered the most
recommended material to preserve the bioactive properties and sensory attributes of the
developed vegetable sauce until 30 days of storage.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemengineering6030034/s1, Table S1: Definition of sensory
attributes. Anchors for all the attributes are in the brackets at the end of each definition.
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6. Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products:
Technological benefits and biological advantages. Food Chem. 2018, 274, 872–885. [CrossRef]

7. Conti, S.; Villari, G.; Amico, E.; Caruso, G. Effects of production system and transplanting time on yield, quality and antioxidant
content of organic winter squash (Cucurbita moschata Duch.). Sci. Hortic. 2015, 183, 136–143. [CrossRef]

8. Wu, H.; Zhu, J.; Diao, W.; Wang, C. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from
pumpkin (Cucurbita moschata). Carbohydr. Polym. 2014, 113, 314–324. [CrossRef]

9. Tamarindo, S.; Pastore, C. Packaging Film Impact on Food Organoleptic Properties: An Experimental Study. J. Appl. Packag. Res.
2016, 8, 78–87.

10. Medina-Jaramillo, C.; Ochoa-Yepes, O.; Bernal, C.; Famá, L. Active and smart biodegradable packaging based on starch and
natural extracts. Carbohydr. Polym. 2017, 176, 187–194. [CrossRef]

11. Sapper, M.; Wilcaso, P.; Santamarina, M.P.; Roselló, J.; Chiralt, A. Antifungal and functional properties of starch-gellan films
containing thyme (Thymus zygis) essential oil. Food Control 2018, 92, 505–515. [CrossRef]

12. Valencia-Sullca, C.; Vargas, M.; Atarés, L.; Chiralt, A. Thermoplastic cassava starch-chitosan bilayer films containing essential oils.
Food Hydrocoll. 2018, 75, 107–115. [CrossRef]

13. Chiralt, A.; González-Martínez, C.; Vargas, M.; Atarés, L. Edible films and coatings from proteins. In Proteins in Food Processing;
Yada, R.Y., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK,
2018; pp. 477–500. ISBN 9780081007297. [CrossRef]

14. Souza, V.G.L.; Fernando, A.L. Nanoparticles in food packaging: Biodegradability and potential migration to food—A review.
Food Packag. Shelf Life 2016, 8, 63–70. [CrossRef]

15. Groh, K.J.; Backhaus, T.; Carney-Almroth, B.; Geueke, B.; Inostroza, P.A.; Lennquist, A.; Warhurst, A.M. Overview of known
plastic packaging-associated chemicals and their hazards. Sci. Total Environ. 2018, 651, 3253–3268. [CrossRef] [PubMed]

16. Waring, R.H.; Harris, R.M.; Mitchell, S.C. Plastic contamination of the food chain: A threat to human health? Maturitas 2018, 115,
64–68. [CrossRef] [PubMed]

17. Fasano, E.; Bono-Blay, F.; Cirillo, T.; Montuori, P.; Lacorte, S. Migration of phthalates, alkylphenols, bisphenol A and di
(2-ethylhexyl) adipate from food packaging. Food Control 2012, 27, 132–138. [CrossRef]

18. Petersen, K.; Nielsen, P.V.; Bertelsen, G.; Lawther, M.; Olsen, M.B.; Nilsson, N.H.; Mortensen, G. Potential of biobased materials
for food packaging. Trends Food Sci. Technol. 1999, 10, 52–68. [CrossRef]

19. De Anda-Flores, Y.B.; Cordón-Cardona, B.A.; González-León, A.; Valenzuela-Quintanar, A.I.; Peralta, E.; Soto-Valdez, H. Effect of
assay conditions on the migration of phthalates from polyvinyl chloride cling films used for food packaging in Mexico. Food
Packag. Shelf 2021, 29, 100684. [CrossRef]

20. Carlos, K.S.; Dejager, L.S.; Begley, T.H. Investigation of the primary plasticizers present un polyvinyl chloride (PVC) products
currently authorized as food contact materials. Food Addit. Contam. 2018, 35, 1214–1222. [CrossRef]

http://doi.org/10.1007/s11947-017-2019-8
http://doi.org/10.1016/j.foodres.2017.09.024
http://www.ncbi.nlm.nih.gov/pubmed/28941692
http://www.ncbi.nlm.nih.gov/pubmed/22232528
http://doi.org/10.1111/nyas.13045
http://doi.org/10.1111/j.1365-2621.2005.tb07096.x
http://doi.org/10.1016/j.foodchem.2018.09.047
http://doi.org/10.1016/j.scienta.2014.12.003
http://doi.org/10.1016/j.carbpol.2014.07.025
http://doi.org/10.1016/j.carbpol.2017.08.079
http://doi.org/10.1016/j.foodcont.2018.05.004
http://doi.org/10.1016/j.foodhyd.2017.09.008
http://doi.org/10.1016/B978-0-08-100722-8.00019-X
http://doi.org/10.1016/j.fpsl.2016.04.001
http://doi.org/10.1016/j.scitotenv.2018.10.015
http://www.ncbi.nlm.nih.gov/pubmed/30463173
http://doi.org/10.1016/j.maturitas.2018.06.010
http://www.ncbi.nlm.nih.gov/pubmed/30049349
http://doi.org/10.1016/j.foodcont.2012.03.005
http://doi.org/10.1016/S0924-2244(99)00019-9
http://doi.org/10.1016/j.fpsl.2021.100684
http://doi.org/10.1080/19440049.2018.1447695


ChemEngineering 2022, 6, 34 15 of 16

21. Borzi, F.; Torrieri, E.; Wrona, M.; Nerín, C. Polyamide modified with green tea extract for fresh minced meat active packaging
applications. Food Chem. 2019, 300, 125242. [CrossRef]

22. Pilevar, Z.; Bahrami, A.; Beikzadeh, S.; Hosseini, H.; Seid, M.J. Migration of styrene monomer from polystyrene packaging
materials into foods. Characterization and safety evaluation. Trends Food Sci. Technol. 2019, 91, 248–261. [CrossRef]

23. Gelbke, H.P.; Banton, M.; Block, C.; Dawkins, G.; Eisert, R.; Leibold, E.; Pemberton, I.M.P.; Sakoda, A.; Yasukawa, A. Risk
assessment for migration of styrene oligomers into food from polystyrene food containers. Food Chem. Toxicol. 2019, 124, 151–167.
[CrossRef] [PubMed]

24. European Commission. Commission Regulation (EC) No. 10/2011 on plastic materials and articles intended to come into contact
with food. Off. J. Eur. Union 2011, 12, 1–89.

25. Common Market of the South (MERCOSUR); Resolutions of the Common Market Group. MERCOSUR/GMC/RES No. 20/21:
Annex: General Provisions for Containers and Plastic Equipment in Contact with Food; GMC (Dec. CMC N◦ 20/02, Art. 6); Common
Market of the South (MERCOSUR): Montevideo, Uruguay, 2021.

26. Schmid, P.; Welle, F. Chemical migration from beverage packaging materials—A review. Beverages 2020, 6, 37. [CrossRef]
27. Sosa, C.A.; Sgroppo, S.C.; Bevilacqua, A.E. Physicochemical changes on pumpkin/pepper sauces during refrigerated storage. J.

Food Process. Preserv. 2012, 37, 262–268. [CrossRef]
28. Watson, H.D.; Mead, M.N. Revisiones sobre ciencia y tecnología de los alimentos. In Volumen 2: Migración de Sustancias Químicas

Desde el Envase al Alimento, 1st ed.; Acribia Ed: Zaragoza, Spain, 1995; ISBN 9788420007878.
29. Tang, Y.; Li, X.; Zhang, B.; Chen, P.X.; Liu, R.; Tsao, R. Characterisation of phenolics, betanins and antioxidant activities in seeds of

three Chenopodium quinoa Willd. genotypes. Food Chem. 2015, 166, 380–388. [CrossRef]
30. Angelova, Y.; Petkova, S.; Zozikova, E.; Kotseva, E.; Iliev, L. Effects of kinetin and 4PU-30 on the growth and the content of

polyphenols in tobacco callus tissue. Bulg. J. Plant Physiol. 2001, 27, 36–42.
31. Ueda, Y.; Matsuda, Y.; Murata, T.; Hoshi, Y.; Kabata, K.; Ono, M.; Yasuda, S. Increased phenolic content and antioxidant capacity

of the heated leaves of yacon (Smallanthus sonchifolius). Biosci. Biotechnol. Biochem. 2019, 83, 2288–2297. [CrossRef]
32. Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss

Technol. 1995, 28, 25–30. [CrossRef]
33. Davies, B.H.; Matthews, S.; Kirk, J.T.O. The nature and biosynthesis of the carotenoids of different colour varieties of Capsicum

annuum. Phytochemistry 1970, 9, 797–805. [CrossRef]
34. Viña, S.Z.; Chaves, A.R. Antioxidant responses in minimally processed celery during refrigerated storage. Food Chem. 2006, 94,

68–74. [CrossRef]
35. Association of Official Analytical Chemists (AOAC). Official Methods of Analysis. In Volume I: Agricultural Chemicals, Contaminants,

Dugs, 15th ed.; Association Official Analytical Chemists, Inc.: Arlington, VA, USA, 1990; ISBN 0935584420.
36. Yun, J.H.; Cha, Y.J.; Lee, D.S. Storage stability and shelf life characteristics of Korean savory sauce products. Prev. Nutr. Food Sci.

2007, 12, 242–250. [CrossRef]
37. Giovanelli, G.; Lavelli, V. Evaluation of heat and oxidative damage during storage of processed tomato products. I. Study of heat

damage indices. J. Sci. Food Agric. 2002, 82, 1263–1267. [CrossRef]
38. Muzzaffar, S.; Babas, W.N.; Nazir, N.; Masoodi, F.A.; Bhat, M.M.; Bazaz, R. Effect of storage on physicochemical, microbial and

antioxidant properties of pumpkin (Cucurbita moschata) candy. Cogent Food Agric. 2016, 2, 1163650. [CrossRef]
39. Coltro, L.; Pitta, J.B.; da Costa, P.A.; Fávaro Perez, M.A.; Aparecida de Araújo, V.; Rodrigues, R. Migration of conventional and

new plasticizers from PVC films into food simulants: L A comparative study. Food Control 2014, 44, 118–129. [CrossRef]
40. Noureddine, T.; Hayette, L.; Chaalal, M. Effect of Time and Temperature Storage on Orange Beverage Stability. EC Nutr. 2017,

11, 48–56.
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