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Influence of molecular motors on the motion of particles in viscoelastic media
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We study theoretically and by numerical simulations the motion of particles driven by molecular motors in
a viscoelastic medium representing the cell cytoplasm. For this, we consider a generalized Langevin equation
coupled to a stochastic stepping dynamics for the motors that takes into account the action of each motor separately.
In the absence of motors, the model produces subdiffusive motion of particles characterized by a power-law scaling
of the mean square displacement versus the lag time as tα , with 0 < α < 1, similar to that observed in cells. Our
results show how the action of the motors can induce a transition to a superdiffusive regime at large lag times
with the characteristics of those found in experiments reported in the literature. We also show that at small lag
times, the motors can act as static crosslinkers that slow down the natural subdiffusive transport. An analysis of
previously reported experimental data in the relevant time scales provides evidence of this phenomenon. Finally,
we study the effect of a harmonic potential representing an optical trap, and we show a way to approach to a
macroscopic description of the active transport in cells. This last point stresses the relevance of the molecular
motors for generating not only directed motion to specific targets, but also fast diffusivelike random motion.
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I. INTRODUCTION

Active cargo transport mediated by molecular motors (also
called motor proteins) is essential for cell functioning. Two
main mechanisms can be distinguished which are ubiquitous
in eukaryotic cells, namely, microtubule-based transport [1,2]
and actin-based transport [1,3]. Microtubules and actin fil-
aments are polymeric structures along which the molecular
motors can translocate (or walk) carrying different types of
cargos such as vesicles, lipid droplets, mitochondria, and
organelles with pigments [1–3]. For this, the motors use
energy taken from the hydrolysis of the adenosine triphosphate
(ATP) [1]. Both microtubules and actin filaments are polar
structures with well defined plus and minus ends, so that the
spatial symmetry is broken on each filament and the motors
can recognize the appropriate direction of motion. Transport
along microtubules is mediated by kinesin motors, which walk
to the plus end, and dynein motors, which walk in the opposite
sense [2]. Meanwhile, actin-based transport is mediated by
different types of myosin motors [1,3]. For instance, myosin
V walks to the plus end of the actin filaments (also called the
barbed end) while myosin VI walks to the minus end [1,3,4].
Inside cells, the microtubules are mostly oriented with their
minus ends close to the nucleus and their plus ends close to
the cell membrane, while actin filaments are distributed in a
rather random way generating the actin network [1].

The cell cytoplasm is a complex crowded environment with
macromolecules embedded and also semiflexible polymers of
different sizes, including the mentioned actin network and the
microtubules, which together with the intermediate filaments
constitute the cytoskeleton [1,5]. Due to this, the cytoplasm
shows both viscous and elastic responses to deformations or
movement of particles inside and, thus, it has the properties
of a viscoelastic medium [5,6]. The rheological properties of
a viscoleastic medium are closely related to the mean square
displacement (MSD) associated to the thermal motion of the
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particles embedded on it [5]. In fact, the determination of the
MSD of the particles as a function of the lag time (i.e., the time
between two measurements of the particle position) allows us
to estimate the complex modulus G(ω) of the medium [5,7],
which characterizes both its viscous and elastic properties.
Depending on the behavior of the MSD as a function of the lag
time t , the motion of particles is classified as diffusive (MSD
∼ t), subdiffusive (MSD ∼ tβ with 0 < β < 1), superdiffusive
(MSD ∼ tβ with 1 < β < 2), or ballistic (MSD ∼ t2). Due to
the viscoelastic properties of the cytoplasm, the thermal motion
inside cells in the absence of active transport is normally
subdiffusive at small and intermediate lag times [5,8], and
slowly diffusive at large lag times [5]. Meanwhile, the action
of molecular motors can generate ballistic or superdiffusive
transport at intermediate and large lag times [9,10], and also
diffusive transport similar to the thermal motion but much
faster [11]. Transitions from subdiffusion at t � 0.1 s to
superdiffusion at larger t triggered by the action of molecular
motors have been observed in several systems [9,10,12–14].

Although there is a vast literature concerning the mathemat-
ical modeling of transport by molecular motors in pure viscous
environments (see [15–17] and references therein), the mod-
eling of organelle transport in viscoelastic media taking into
account the action of individual motors is on its beginnings.
In Ref. [18], the authors studied the influence of a viscoelastic
fluid on the transport by kinesin with special focus on the
calculus of the force-velocity relations and on the analysis of
the transient processes. For this, they consider a deterministic
version of the generalized Langevin equation (GLE) [19–24]
for the motion of the cargo and a detailed stochastic dynamics
for the kinesin stepping which takes into account the motion
of the two heads. The coupling between the cargo and the
motor heads is nonlinear and elastic. In a recent paper [25], the
coexistence of normal and anomalous transport by molecular
motors inside cells and the delivery efficiency are theoretically
analyzed. The authors consider a generalized Kubo-Langevin
equation for the organelle position under the influence of a
ratchet potential that models the action of a motor. Meanwhile,
in a quite recent work [26], the same authors considered
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separate descriptions for motor and cargo to analyze how the
power stroke of the motor can beat subdiffusion. These works
have interesting precedents on the subject of subdiffusive
ratchets [27,28] and dynamics in viscoelastic media [23,24].
In [12], a model based on the GLE was used to interpret a tran-
sition from subdiffusion to superdiffusion induced by myosin
motors. In that paper, the action of the molecular motors is
modeled simply as an external time-correlated noise. Note
that all the works just mentioned consider versions of the GLE.
This is because in the same way that the standard Langevin
equation results in an outstanding model for diffusion of free
particles in purely viscous media, the GLE provides a suitable
framework for describing subdiffusive motion in viscoelastic
media. For this, it includes a friction kernel that weights the
history of the velocity and a time-correlated thermal noise
related to the kernel through a fluctuation-dissipation relation
(see Refs. [20,24] and this work following).

Here, in order to investigate the influence of molecular
motors on the motion of particles inside cells, we study the
dynamics of an organelle pulled along a linear filament by
two opposing motor types in a viscoelastic medium. This can
correspond, for instance, to transport by kinesin and dynein
on a microtubule [2,17,29,30] or to transport by myosin V
and myosin VI along an actin filament [3,4]. We consider the
motion of the organelle or cargo as given by a GLE coupled to a
stochastic stepping dynamics for the motors. As in the models
used in Refs. [17,30–34] for analyzing cargo transport by mul-
tiple motors in purely viscous media, the stepping dynamics
for the motors is discrete and considers independent elastic
linkers for individual motors. It also includes detachment of
motors from the filament and attachment of detached motors.
The stepping, detachment, and attachment events are ruled by
a Monte Carlo type dynamics with probabilities that depend
on the force between each motor and the cargo [30,31,33].

In the absence of motors, the GLE model here considered
represents a viscoelastic medium with complex modulus
G(ω) ∼ ωα with 0 < α < 1, in which thermal fluctuations
produce a subdiffusive motion of particles characterized by
a tα scaling of the MSD. The main purpose of this work
is to investigate in which way the action of the molecular
motors modifies this behavior at the different scales of the lag
time within the range 10−5–10 s which is usually considered
in experiments [9,35,36]. We focus on the emergence of
superdiffusion at large lag times and on the modification of
the subdiffusive properties at small lag times. We discuss
our results in connection with important experiments in the
literature. In particular, we provide approximate descriptions
for results for transport in frog melanocytes [12] and we
present a new analysis of the small lag time regime of
those experiments. Finally, we study the dynamics under the
influence of an external harmonic potential that models the
action of an optical trap, and we discuss the effects associated
to the dimensionality of the system.

II. MODEL FOR THE MOTION OF A CARGO PULLED BY
MOLECULAR MOTORS IN A VISCOELASTIC MEDIUM

A. Cargo motion

As stated in the Introduction, we are interested in analyzing
the mean square displacement (MSD) of particles transported

along a linear filament by molecular motors. Our modeling
framework will thus be mainly one dimensional, although at
the end of this work we discuss the case of bidimensional
motion.

Our starting point for modeling is the one-dimensional gen-
eralized Langevin equation (GLE) [20–22,24] which describes
the subdiffusive motion of a particle in a viscoelastic medium
in close to equilibrium [20] conditions

mẍ(t) = −
∫ t

0
γ (t − t ′)ẋ(t ′)dt ′ + ξ (t). (1)

Here, x(t) is the position of the particle, m is its mass, γ (t) is
the frictional kernel given by

γ (t) = γ0

�(1 − α)
t−α, (2)

and ξ (t) is the time-correlated Gaussian thermal noise satisfy-
ing the fluctuation-dissipation relation

〈ξ (t)ξ (t ′)〉 = kBT γ (t − t ′). (3)

The parameters α (0 < α < 1) and γ0 (γ0 > 0) characterize
the properties of the viscoelastic medium in a way that
we later indicate in connection with the viscous modulus.
Equation (1) produces subdiffusive motion with logarithmic
slope α [20,23,24]. The diffusive limit in which the MSD
has logarithmic slope α = 1 is described by the standard
Langevin equation with friction term −γ0ẋ(t) and white
Gaussian thermal noise. This corresponds to a pure viscous
medium. For a detailed explanation of this limit in connection
with Eq. (1), see [24].

Equation (1) with the same kernel and noise was studied in
many works (see [12,19–24,35–37] and references therein)
since it constitutes an outstanding model for subdiffusive
motion in viscoelastic media. The particular functional form
of the kernel is found to be the only one that produces
subdiffusion given the fluctuation-dissipation relation (3) and
three additional conditions on ξ (t) which are important on
physical grounds [20]. Namely, that the associated general-
ized Wiener process B(t) [i.e., the stochastic process such
that ξ (t) = dB(t)/dt] should be Gaussian, self-similar, and
with stationary increments [20]. The process B(t) is called
fractional Brownian motion, while its derivative ξ (t) is known
as the fractional Gaussian noise [20]. The model has also a
clear microscopic interpretation since it can be derived [20,24]
by assuming that the particle interacts harmonically with a
large number of environmental particles which are in turn able
to move due to these interactions. The right hand side of Eq. (1)
emerges as the continuous limit of the sum of the forces exerted
by the environmental particles [20,24]. Note that in [20] and
other works, the theory is developed using the Hurst parameter
H = 1 − α/2 instead of α.

Now, we introduce our model for the motion of an organelle
(or cargo) driven by molecular motors along an actin filament
or microtubule in a viscoelastic medium. We consider the
dynamics of the organelle as given by the overdamped limit
of Eq. (1) with the addition of a harmonic force −ax(t)
representing the action of an optical trap, plus another force
term FM (x(t),t) which stands for the action of the molecular
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motors. We get

∫ t

0
γ (t − t ′)ẋ(t ′)dt ′ = −ax(t) + FM (x(t),t) + ξ (t), (4)

with γ (t) and ξ (t) defined as before. Note that the parameter
a is just the elastic constant associated to the harmonic
potential representing the optical trap. The force FM (x(t),t)
will be determined by the stochastic stepping dynamics for the
molecular motors that we introduced later.

The overdamped limit is considered because the motion
of particles inside cells shows inertial effects only for lag
times of the order 10−6 s or lower [35,36], while here
we analyze the range from 10−5–10 s. As we later show,
the consideration of the overdamped limit gives us relevant
computational advantages for the numerical treatment of the
system. It is important to mention that the formal procedure
of setting m = 0 in Eq. (1) to obtain the overdamped equation
is mathematically well defined. This is indicated for instance
in [20], where the author studies the overdamped Eq. (4) with
FM (x(t),t) = 0 considering the pathway interpretation to find
the covariance of x(t) for the general case a �= 0. Moreover, it
is also shown in the developments in [35], where the authors
study the solutions for the MSD in the overdamped limit.

Before introducing the Monte Carlo stepping dynamics
describing the motion of the molecular motors, we provide
a Markovian approximation for Eq. (4) that enables for an
easy numerical solution of the system. Note that the numerical
treatment is unavoidable since the forces FM (x(t),t) will be
determined by the motor’s dynamics.

B. Markovian approximation and numerical solution for the
overdamped generalized Langevin equation

Here, we search for a Markovian approximation to Eq. (4).
At this instance, FM (x(t),t) can be considered as an arbitrary
function. Our approach is based on the one given in [23] for
solving the underdamped equation

mẍ(t) = FM (x(t),t) −
∫ t

0
γ (t − t ′)ẋ(t ′)dt ′ + ξ (t), (5)

with γ (t) and ξ (t) as in Eqs. (2) and (3). The method in [23]
(see also [24] for a review) uses the fact that the noise ξ (t) can
be approximated by a sum of independent Ornstein-Uhlenbeck
noise components, while the power law of the memory kernel
can be approximated by a sum of exponentials as

γ (t) �
N−1∑
i=0

ηi exp(−νit). (6)

Here, the constants ηi and νi , i = 0, . . . N − 1 are defined in
terms of a high-frequency cutoff for the noise called ν0, and
a scale parameter b as ηi = [γ0/�(1 − α)]Cα(b)να

0 /biα and
νi = ν0/b

i . Finally, Cα(b) is a constant that can be chosen in
such a way that Eq. (6) results in a good approximation for
1/ν0 < t < b(N−1)/ν0 [23].

With these definitions, Ref. [23] shows that the non-
Markovian dynamics of Eq. (5) can be well approximated

by the Markovian system

mẍ(t) = FM (x(t),t) +
N−1∑
i=0

ui(t),

(7)
u̇i(t) = −ηiẋ(t) − νiui(t) +

√
2νiηikBT ζi(t),

which is called a Markovian embedding [23] for Eq. (5).
Here, ui(t) with i = 0, . . . N − 1 are N auxiliary variables,
while ζi(t) are white Gaussian noises satisfying 〈ζi(t)ζj (t ′)〉 =
δij δ(t − t ′). The initial values ui(0) have to be sampled
from unbiased Gaussian distributions with standard deviations
σi = √

kBT ηi . The fact that the dynamics behind Eq. (7)
is Markovian becomes clear by noting that it is possible to
redefine the system in terms of variables p(t) ≡ mẋ(t), x(t),
and ui(t) using only first order stochastic differential equations.

Note that, according to Eqs. (5) and (7), given the variables
ui(t) satisfying the second Eq. (7), within the framework of
the Markovian approximation we have the formal equivalence

−
∫ t

0
γ (t − t ′)ẋ(t ′)dt ′ + ξ (t) =

N−1∑
i=0

ui(t). (8)

Let us now go back to the overdamped system of Eq. (4).
By replacing the power-law kernel by the approximation (6)
so that we get a finite value γ (t = 0), we can perform an
integration by parts of the left hand side of Eq. (4). Then,
assuming x(t = 0) = 0 for the sake of simplicity, we get

γ (0)x(t) +
∫ t

0
γ ′(t − t ′)x(t ′)dt ′

= −ax(t) + FM (x(t),t) + ξ (t), (9)

where γ ′(t) = ∑N−1
i=0 (−νiηi) exp(−νit). This is just(

a +
N−1∑
i=0

ηi

)
x(t)

= FM (x(t),t) −
∫ t

0
γ ′(t − t ′)x(t ′)dt ′ + ξ (t). (10)

Now, using the formal relation of Eq. (8) with γ ′(t − t ′)
instead of γ (t − t ′) and x(t) instead of ẋ(t), we get to the
following Markovian approximation for the non-Markovian
equation (4):

x(t) = 1

a + ∑N−1
i=0 ηi

(
FM (x(t),t) +

N−1∑
i=0

ui(t)

)
,

(11)
u̇i(t) = νiηix(t) − νiui(t) +

√
2νiηikBT ζi(t),

where ηi,νi,ζi(t) and ui(0) are defined as before. Note that the
term −ηiẋ(t) on the right hand side of Eq. (7) has changed to
νiηix(t) in Eq. (11).

It is interesting to note that only the evolution of the N

variables ui(t) is nontrivial since x(t) is formally determined
at each time by the sum

∑
i ui(t). In particular, for the case of

the stochastic dynamics for motors that we later introduce,
the dependence of FM (x(t),t) on x(t) is piecewise linear.
This enables the integration of Eqs. (11) using Euler or
Runge-Kutta stochastic methods [38] which are explained
in the Supplemental Material [39]. Time steps in the range
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5 × 10−8 s � dt � 5 × 10−6 s are used depending on the
values of γ0 and α and on the value chosen for ν0. We found that
the larger the ν0, the smaller the value of dt needed to obtain
algorithm stability and the better the approximation to the
analytical solution for the MSD that we describe below. In most
of our calculations, we consider a number N = 16 of modes
ui(t) with the scale parameter b0 = 5, and ν0 = 5 × 10−7.
The constant Cα(b) is always of order 1 and chosen as the
one that minimizes the square distance associated to the
approximation (6). For instance, we get C3/4(5) = 1.3124 and
C1/2(5) = 0.91 for ν0 = 5 × 10−7. Embeddings with N = 32
and different values of b, ν0, and dt were used in order to
check the results of some selected examples.

Importantly, in Refs. [24–28], the authors studied a more
general overdamped GLE which, compared to Eq. (4), includes
an additional friction term μẋ and its corresponding white
noise with correlation proportional to μδ(t − t ′). It can be
shown that the Markovian embedding given in Eqs. (11)
can also be obtained as the μ → 0 limit of the embedding
considered in [24–28] for this system. In the Supplemental
Material [39], we study in some detail the relation between the
two overdamped Markovian dynamics and show that they give
essentially the same results provided a small enough value of
μ is considered.

C. Dynamics without molecular motors: Testing the
Markovian approximation

Here, we check the validity of the Markovian approximation
by comparing the numerical solution of Eqs. (11) with
analytical results known for Eq. (4) for the case FM (x(t),t) =
0, and with numerical results for the underdamped system (7).

The main quantity we are interested in is the mean
square displacement (MSD) of the particles in the viscoelastic
medium as a function of the lag time. For a single trajectory
x(t) sampled at times ti = iδt with i = 0,1,2, . . . ,N after
skipping an initial nonstationary stage, the MSD as a function
of the (discrete) lag time t � Nδt is computed as

x(t)2 = 1

N − t/δt

N−t/δt∑
i=1

[x(iδt + t) − x(iδt)]2. (12)

Then, we average over realizations to get the ensemble
averaged mean square displacement ρ(t) = 〈x(t)2〉. For the
sake of simplicity we refer to ρ(t) as the MSD. Throughout
this work, we consider δt = 10−5 s.

The analytical results for the MSD of particles with
overdamped dynamics given by Eq. (4) with FM (x(t),t) = 0
and a = 0 is known to be [35]

ρ(t) = 2kBT

γ0�(1 + α)
tα. (13)

Meanwhile, for a �= 0 (i.e., in the presence of a harmonic
potential) the MSD is given by [35]

ρ(t) = 2kBT

a

[
1 − Eα

(
− a

γ0
tα

)]
. (14)

Here, Eα(y) is the Mittag-Leffler function (see [20,22] and
further references therein). It is important to stress that this
analytical result is valid only if the time averages of Eq. (12)
are performed on the stationary stages of the trajectories.
Moreover, it is worth noting that the direct ensemble averaging
of the displacements (without temporal average first) yields a
different result [40].

Let us first consider the case a = 0. Figure 1(a) compares
the MSD results from simulations of Eqs. (11) with the
analytical result given in Eq. (13) considering the parameters
α = 0.75 and γ0 = 7.2 × 10−4 pN sα/nm, which are com-
patible with those measured in cultured human cells [35].
The very good agreement between the numerical solution
for the Markovian approximation and the exact solution for
the system (4) is apparent. Only for t � 5 × 10−4 s the
approximation slightly overestimates the analytic result (the
logarithmic slope is slightly underestimated). This error can
be decreased by simultaneously increasing ν0 and decreasing
dt but with a considerable growth of the computational cost.
Figure 1(a) also shows MSD results for the underdamped
system (7) considering the same values of α and γ0 and a mass
m = 2 × 10−7 g. We see that for the underdamped system,
the behavior ρ(t) ∼ tα matching the ovedamped dynamics
is found only for lag times larger than the crossover time
τp = (m/γ0)1/(2−α) = 0.0014 s [23,35]. For smaller lag times,
the MSD of the underdamped system is ballistic (∼ t2)

(a) (b) (c)

FIG. 1. Dynamics without molecular motors [FM (x(t),t) = 0]. (a) MSD results for a = 0. The circles indicate simulations from the
Markovian approximation (11) for Eq. (4) with ν0 = 5 × 10−7/s and dt = 5 × 10−8 s, the solid line corresponds to the exact analytical solution
in Eq. (13), and the crosses correspond to the underdamped dynamics with m = 2 × 10−7 g. (b) MSD results for a = 0.02 pN/nm. The circles
correspond to the numerical solution of Eqs. (11), while the solid line corresponds to the analytic result in Eq. (14). (c) Results for the covariance
for the same system studied in (b), comparison between analytic (solid line) and numerical solution (circles). In all the cases, the parameters
considered are α = 0.75 and γ0 = 7.2 × 10−4 pN sα/nm.
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as expected [23,36]. Note that the value of the mass here
considered is about 106 times larger than the actual masses
of the organelles in cellular systems, which are typically of
the order m ∼ 10−13 g [35] (considering water density and
radius of the order of half-micron). Realistic masses lead to
much smaller crossover times of order τp � 10−6 s or lower,
as those recently found in [36]. The numerical solution of
Eqs. (7) with realistic values of the mass would demand a
time discretization with steps of the order 10−12 s or lower.
This means much smaller than those used here. This clearly
shows the relevance of the consideration of the overdamped
dynamics for analyzing the region of lag times t > 10−6 s,
where the MSD behavior is expected to be nonballistic [5,36].

Now, we analyze the case a �= 0. First, Fig. 1(b) shows
that the numerical solution of Eqs. (11) correctly matches
the analytical result for ρ(t) given in Eq. (14). The value
considered for the elastic constant of the harmonic potential
is a = 0.02 pN/nm, which is in the range of those recently
used in experiments in optical trapping microrheology [35].
Finally, in Fig. 1(c) we compare the results for the covariance
〈x(t0)x(t0 + t)〉 (where 〈. . .〉 indicate average both on the initial
time t0 and ensemble) computed from the numerical solution
of Eqs. (11), with the expected analytic result given in [20]

〈x(t0)x(t0 + t)〉 = kBT

a

[
Eα

(
− a

γ0
tα

)]
. (15)

Again, the numerical approximation correctly matches the
exact theory. It is worth mentioning that for t � 0.2 s our
algorithm for computing the Mittag-Leffler function loses
stability when calculating the analytic covariance, while the
statistics of the simulations becomes poor.

D. Relation between the overdamped GLE
and the complex modulus

The rheological properties of an isotropic viscoelastic
medium are characterized by the complex modulus G(ω) [5] of
the material which quantifies the stress response of the medium
to an applied oscillatory deformation of frequency ω. The real
part of the complex modulus is the elastic modulus G′(ω)
which measures the in-phase response to the deformation [5],
while the imaginary part G′′(ω) is the viscous modulus that
characterizes the out-of-phase response. A purely viscous
material (with very small elasticity, like water) has G′(ω) � 0,
while a purely elastic material (like a solid rubber) has
G′′(ω) � 0. In general, the cell cytoplasms have nonvanishing
G′(ω) and G′′(ω) and are thus viscoelastic. The viscoelastic
properties of the cells are usually measured taking into account
the relation between the complex modulus and the MSD of
particles embedded in the medium. In fact, the amplitude of
the complex modulus can be well approximated as [5,7,18,35]

|G(ω)| = kBT

πR〈r(t)2〉�[1 + α(t)]

∣∣∣∣
t=1/ω

, (16)

where R is the radius of the particle, 〈r(t)2〉 is
the mean square displacement measured in three di-
mensions, and α(t) is the local logarithmic slope of
〈r(t)2〉. Meanwhile, the elastic and viscous modulus
are given by G′(ω) = |G(ω)| cos[πα(1/ω)/2] and G′′(ω) =
|G(ω)| sin[πα(1/ω)/2], respectively [5,7,35].

Within the model of Eq. (4), in the absence of molecular
motors and considering a = 0, we have that 〈r(t)2〉 is just
three times the value of ρ(t) given in Eq. (13), while α(t)
coincides with the constant value α. Thus, Eq. (4) with a = 0
and FM (x(t),t) = 0 represents a viscoelastic medium with

|G(ω)| = γ0ω
α

6πR
. (17)

As mentioned before, the extreme case α = 1 represents a
purely viscous medium with G′(ω) = 0 while for α = 0 we
obtain a purely elastic medium with G′′(ω) = 0. Note that the
parameter γ0 has units that depend on α and so the way in
which it characterizes the properties of the system is rather
unintuitive. For instance, it is meaningless to compare systems
with a constant numerical value of γ0 and different values of
α. Therefore, following [18] we consider a different dimen-
sionless parameter to describe the properties of the medium
instead of γ0. Namely, the ratio nw of the viscous modulus of
the medium to that of water, both measured at a low reference
frequency [18]. We define [18] nw = G′′(ωr )/G′′

w(ωr ) with
G′′

w(ω) = η0ω the viscous modulus of water, η0 the viscosity
of water, and considering the low reference frequency ωr =
2π/(100s). With this definition we get

γ0 = 6πRη0ω
1−α
r

sin(πα/2)
nw, (18)

which is the value we consider in Eq. (4) given the desired
values of α, nw, and R. Note that in the case of a purely
viscous fluid (i.e., α = 1), Eq. (18) leads to the standard
Stokes formula γ0 = 6πRη, with η = nwη0, which is used in
most works on cargo transport in viscous media [17,30–33].

E. Molecular motors stochastic dynamics

Here, we introduce the model for the molecular motors
stochastic dynamics that we use to define the force FM (x(t),t)
in Eq. (4). As indicated in the Introduction, we consider a
discrete stepping dynamics based on the models analyzed
in [17,30,31,33,34]. From the point of view of modeling,
the main newness in this work is the combination of the
stepping dynamics for motors with the GLE for the cargo
motion since all the mentioned previous works considered
either nonviscosity or a purely viscous medium.

The model considers that each molecular motor constitutes
an elastic linker between the organelle and the filament. This
linker moves in discrete steps on the filament transporting the
cargo in a preferred direction [17,30–34]. This mechanical
picture is common to microtubule-based [16,17,30,31,33] and
actin-based [4] transport, although it has been much more
extensively studied for microtubule transport.

Usually, the transport of a single organelle is mediated by
several motors [2,4,15,30,32]. In the case that both plus-end
and minus-end motors participate of the transport (for instance,
kinesin and dynein on microtubule transport [2,15,30] or
myosin V and myosin VI on actin [4]) the transport is
bidirectional. This means that the organelle can move back
and forth on the filament [4,15,17,30]. The way in which the
bidirectional transport is coordinated and regulated is today
a subject of very active research [4,15–17,29] and may differ
from one system to another, but it is clear that the motors
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can detach from the filament and also rebind after some time.
Thus, the direction of the motion is determined essentially
by the species that dominates at each time. When both motor
types are pulling the cargo at the same time, the motion of the
organelle is temporally paused (or the velocity considerably
reduced). This is called the tug of war effect [4,15,30].

We consider the force FM (x(t),t) in Eq. (4) [and in its
Eq. (11)] as due to the action of two types of motors with
opposite polarities that move along the same x coordinate used
to represent the cargo position on the filament. The organelle
is assumed to be linked permanently to Nf forward motors
(which advance in the positive direction) and Nb backward
motors (which advance in the negative direction). At a given
time, each motor may be either engaged on the filament or
detached. The allowed positions for engagement of motors are
the discrete sites xj = jx with integer j . Values x = 8
or 32 nm are considered in agreement with the experimental
findings for different motor types [41,42].

As in Refs. [17,18,30–33], each engaged motor is con-
sidered as a nonlinear elastic linker that can only exert
an attractive force provided a critical distance x0 (i.e., the
maximum relaxed length of the linker) is surpassed. Let xi(t)
be the position of engagement of the motor i (that we refer
to as the position of the motor i) and x(t) the position of the
cargo. The force fi(t) exerted by the motor i on the cargo
is defined as follows [17,18,30–33]. For xi(t) > x(t) + x0,
we set fi(t) = ki[xi(t) − (x(t) + x0)], where ki > 0 is the
stiffness of the motor i. Note that in this case we have
fi(t) > 0 and, thus, the motor pulls to the positive direction
(i.e., to the right). Meanwhile, for xi(t) < x(t) − x0, we set
fi(t) = ki[xi − (x(t) − x0)]. Hence, we have fi(t) < 0 and
thus the motor pulls to the left. Finally, for motors engaged at
positions satisfying |x(t) − xi(t)| � x0 as well as for detached
motors, we set fi(t) = 0. It is important to stress that, normally,
forward motors pull to the right while backward motors pull to
the left. However, due to fluctuations in the cargo position, a
forward (backward) motor can pull to the left (right) for a short
time interval [32] (see Fig. 1 in the Supplemental Material [39]
for a description of the different motor-cargo configurations).

Now, we call R(t) the set of motors that pull to the right
at time t , L(t) the set of motors that pull to the left, and
P(t) = R(t) ∪ L(t) the set of all the pulling motors [32]. Then,
the force FM (x(t),t) defined as the sum of the nonvanishing
forces fi(t) can be written as

FM (x(t),t) = −
⎛
⎝∑

P(t)

ki

⎞
⎠ x(t) +

⎛
⎝∑

P(t)

kixi(t)

⎞
⎠

−
⎛
⎝∑

R(t)

ki

⎞
⎠ x0 +

⎛
⎝∑

L(t)

ki

⎞
⎠ x0, (19)

where
∑

P(t) ,
∑

R(t), and
∑

L(t) indicate sum over the motors
belonging to P(t), R(t), and L(t), respectively.

The motion of the motors is determined by the forces
−fi(t) exerted by the organelle on the motors. In order to
get expressions for the stepping probabilities valid both for
forward and backward motors, the motor’s dynamics will be
given in terms of the load forces Li(t), which are defined
as Li(t) = fi(t) for forward motors and Li(t) = −fi(t) for

backward motors. With these definitions, Li(t) is positive if
the force that the cargo exerts on the motor i acts against the
polarity of the motor, while Li(t) < 0 indicates an assisting
force. For simplicity, from now on we do not indicate the time
dependence of the load forces Li(t) and just write Li .

We consider that each engaged motor performs a step of
length x toward its polarity with a probability per time unit
equal to pstep(Li) = v(Li)x. Here, v(Li) is the mean velocity
of the motor as a function of the load force. This function is
usually measured in experiments using optical traps [17,42].
In agreement with experimental results for different motor
types [15,31,42], we consider v(Li) = v0[1 − (Li/Fs)w] for
0 � Li < Fs , with Fs the stall force and w the exponent of
nonlinearity [31]. Meanwhile, we set v(Li) = 0 for Li � Fs

and v(Li) = v0 for Li < 0 (assisting forces) [31,32,42]. It is
important to stress that, although the parameter v0 is considered
positive both for forward and backward motors in order to
obtain positive stepping rates, forward motors always step
toward the positive direction (i.e., to the right) while backward
motors always step to the left.

The detachment rates of the motors are usually assumed to
grow exponentially with the load force [15,31], following the
results found in pioneering experiments [42] and the theoreti-
cal concepts of the Kramers theory. However, recently [17] it
has become clear that, at load forces of the order of the stall and
larger, the detachment rates for different motors show a satura-
tion effect or even a decrease with the load. Here, we take into
account this fact considering an exponential growth at small
forces and saturation at large forces. We consider that each
motor detaches from the filament with a probability per time
unit given by ε exp[|Li |/Fd ] for |Li | � Fs and ε exp[Fs/Fd ]
for |Li | > Fs , where ε is the zero-load detachment rate and Fd

is the detachment force of the motor [15,17,31].
Finally, following the assumptions in [15,17,30,31,33], we

consider that a detached motor reattaches to the filament with
constant probability per time unit �. The engagement occurs
with equal probability in any of the discrete sites xj satisfying
|xj − x(t)| < x0 [32,33]. This means that it is assumed to
occur with the nonlinear spring relaxed. In general, the set
of parameters v0, Fs, Fd, ε, �, x0, and x, as well as the
stiffnesses of the motors, can be different for forward and
backward motors. However, as we later explain, in this paper
we focus mainly on the symmetric situation in which both
motor species have the same parameters.

A detailed description of the computational procedure for
evolving the motor dynamics can be found in [39]. The
complete model of cargo plus motors thus couples the Eq. (4)
and the motor dynamics through the forces fi . This is done
in the same way as in models in [17,30–33] but considering
the overdamped GLE instead of the standard Langevin
equation [32,33] or other purely viscous dynamics [17,30,31].

III. ORGANELLES DRIVEN BY MOLECULAR MOTORS
IN VISCOELASTIC MEDIA

A. Simulations and system parameters

In several systems showing bidirectional transport by two
opposing motor species [17,29,43], the parameters of both
motor types are found to be similar to each other, and the
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transport is approximately symmetric. Hence, we focus our
analysis on the motion of organelles pulled along a filament
by two opposing motor teams of equal number of motors
and parameters. The symmetry assumption is not rigorous
for transport by myosin V and myosin VI since myosin V is
dominant 79% of the time [4]. However, as we will show when
analyzing the transport by a single motor species in connection
with a particular experiment, our main results and conclusions
are independent of the symmetry assumption.

Using Eqs. (11) coupled to the stochastic stepping dynamics
for motors we generate trajectories of 25 s long. In the case
that all the motors are detached before the maximal time, the
simulation is not interrupted and the motors are allowed to
engage again. Then, considering Eq. (12) with δt = 10−5 s
and averaging over runs we compute the ensemble averaged
MSD for the range of lag times 10−5 s < t < 10 s. In most
cases, the average is done over 100 realizations. For some
special examples in which lag times larger than 10 s result
relevant, trajectories of 50 or 100 s long are considered.

As we are interested in analyzing phenomena that may
occur in different systems, we vary the system parameters over
relatively wide ranges. This enables us to identify the effects of
each parameter on the dynamics and to check the robustness of
our main results. For our scanning of the parameter space we
consider a reference parameter set (RS) and then we change
each parameter over a reasonable range. The parameters of
the RS are the following. We consider α = 0.75, which is
the value found in cell systems at low lag times [5,9,35]
and explained in base of the theory of semiflexible poly-
mers [8]. An organelle radius R = 400 nm, the standard
room temperature kBT = 4.1 pN nm, and a ratio between
viscosity and water viscosity at low frequencies nw = 176.
Using the water viscosity η0 = 10−9 pN s/(nm)2, this leads to
γ0 = 7.2 × 10−4 pN s3/4/nm, which is the value used in Fig. 1
and recently found in human cells in [35]. Meanwhile, the
parameters considered in the RS for the stochastic dynamics of
motors are Nf = Nb = 1, k = 0.3 pN/nm, x = 8 nm, x0 =
100 nm, v0 = 500 nm/s, w = 2, Fs = 2.5 pN, ε = 0.25/s,
Fd = 3 pN, and � = 1/s. Note that k = 0.3 pN/nm is the
value measured for kinesin and also considered usually for
dynein in stochastic models [17,30,33]. x = 8 nm is the step
length measured for kinesin while x0 = 100 nm is a typical
length for different motors [1]. When varying the parameters
we consider also x = 32 nm [41], and x0 = 70 nm, with no
relevant changes in our results. The velocity v0 = 500 nm/s
is a standard value for molecular motors [1,4,17]. Stall forces
Fs � 2.5 pN were recently found in vivo both for kinesin and
dynein [17,29] and are also in the range of those found for
myosin [4]. More standard values for kinesin and dynein of
order 5 pN are also analyzed when varying the parameters.

In Fig. 2, we show four typical trajectories for an organelle
generated with the parameters of the RS. As expected,
bidirectional motion with plus and minus runs is observed.
Reversion of the motion can occur with or without intermediate
pauses [15].

B. Results for the mean square displacement

In Fig. 3, we show the MSD results for the RS considering
the dynamics of the Eqs. (11) with motors (i.e., coupled to

FIG. 2. (Color online) Trajectories for organelles pulled by
molecular motors. Simulations of Eqs. (11) with a = 0 and FM (x(t),t)
given by the stochastic dynamics for motors. In all the cases, the
parameters are those of the RS.

the stochastic dynamics of motors) and without motors [i.e.,
setting FM (x(t),t) = 0]. The molecular motors modify the
ρ(t) ∼ tα behavior of the viscoelastic medium in various ways
at different ranges of the lag time. In fact, we can identify four
different regimes for the MSD of the system with motors,
that in the figure are separated by the displayed times t1 =
5 × 10−5 s, t2 = 0.016 s, and t3 = 3 s. First, for very short lag
times (t < t1), the MSD tends to the tα behavior of the system
without motors. Then, for t1 < t < t2, we find a subdiffusive
regime with a well defined value of the logarithmic slope of
ρ(t) smaller than α, which for the RS is approximately 0.57.
Then, at t2, a relatively slow crossover to a superdiffusive
regime starts. The superdiffusive regime is well established at
lag times of order 0.1 s � 5 × t2 with a power-law behavior

FIG. 3. MSD vs lag time for the RS with a = 0. The solid line
corresponds to FM (x(t),t) = 0 while the dashed line corresponds
to the results with FM (x(t),t) given by the stochastic dynamics for
motors with the RS. The times t1, t2, and t3 indicate the changes of
regimes (see text). The solid segments indicate different power-law
behaviors found.
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ρ(t) ∼ t1.7 for the RS. Finally, at lag times larger than t3 ∼ 3 s,
we find a pure diffusive regime with ρ(t) ∼ t .

The four regimes of ρ(t) can be understood by analyzing
the role played by the motors on the determination of the
cargo dynamics at the different time scales. First, the crossover
from subdiffusion to superdiffusion occurs at a region of lag
times at which the steps of the motors begin to be appreciable.
In fact, we have defined t2 as the mean time between two
steps of an unloaded motor, which is just x/v0 = 0.016 s
for the RS. Clearly, during a time interval larger than a few
times t2 (i.e., t ∼ 0.1 s) we may observe several motor steps
and, thus, processive motion leading to superdiffusion. In
contrast, during time intervals much smaller than t2, the motors
are essentially stalled and act as static crosslinkers which
contribute to reduce the mobility of the cargo. This leads to
the subdiffusive regime with a logarithmic slope smaller than
α observed at t < t2. As we later explain, this reduction of
the slope of the MSD at short lag times due to the action of
motors is observed in the results of the experiments for myosin
V driven transport in frog melanocytes presented in [12].

The time t3 of the order of a few seconds which charac-
terizes the transition from superdiffusive motion to diffusive
motion is the typical time between reversions from plus to
minus processive motion (see Fig. 2). Thus, the diffusive
motion at lag times t > t3 is due to the fact that the cargo
comes back and forth in symmetric bidirectional processive
motion. Recall that the motion is symmetric due to that the
parameters of forward and backward motors are the same. In
case that this hypothesis is abandoned, the long time behavior
is expected to change, as we later show.

For very short lag times (t < t1), the thermal fluctuations
dominate the dynamics. The convergence of the MSD for the
system with motors to that of the systems without motors
occurs for values of the lag time such that ρ(t) itself is
lower than 10 nm2. This corresponds to position changes in
the range of a few nanometers. Although the motors act as
static crosslinkers, at such small time and space scales there is
no confinement of the cargo by the elastic constants k of the
crosslinkers. We can understand this by analyzing the motion
of the cargo in a harmonic potential of constant k equal to
that of the motor linker. This is exactly the same system as
that analyzed in Fig. 1(b), with analytic solution given in
Eq. (14), but with elastic constant k = 0.3 pN/nm instead
of a = 0.02 pN/nm. Note that the asymptotic (confinement)
value of the MSD for a particle is 2kBT /k. Thus, considering
the value k ∼ 0.3 pN/nm for the motor linkers in the RS,
we obtain ∼27 nm2 as the confinement value of the MSD
by a static motor. Clearly, at lag times t < t1 in Fig. 3
we have ρ(t) � 27 nm2, thus, we are still in the ρ(t) ∼ tα

regime. These are of course unrefined arguments since our
model includes two motors with nonlinear springs so that the
confinement conditions depend on the relative positions of the
motors and do not correspond to a simple harmonic potential.

In Fig. 4, we analyze the dependence of the MSD on the
values of the parameters that regulate the motor’s dynamics.
We find that in all the cases studied, the qualitative shape of
the ρ(t) curve is the same as that shown in Fig. 3. Thus, the
results before analyzed are robust to changes of the parameters.
Figure 4(a) shows results for Nf = Nb = 2 considering two
different values of ε and compares with the RS case with Nf =

Nb = 1. We see that the change generated by the increasing of
the number of motors can be compensated approximately by
a decreasing of the detachment rates. Figure 4(b) analyzes
the dependence on v0. It can be seen that, as v0 grows,
the transition to the superdiffusive regime occurs at smaller
values of t following the decreasing of the transition time
t2 = x/v0 (indicated with vertical segments). Figure 4(c)
shows that an increasing of the stall force to a value Fs = 5 pN
(typical for kinesin and dynein in several systems) produces an
upward shift of the MSD curve without changing its form. The
dependence on ε [Fig. 4(d)] is more involved, as this parameter
(in addition to N ) is the main one responsible for defining the
typical times of plus and minus runs, pauses, and complete
detachment of the organelle [33]. In fact, the cargo dynamics
has been shown to be particularly sensitive to changes in the
value of ε for the case of purely viscous media [32]. Figure 4(e)
shows that the MSD curves are shifted to the right when the
attachment rate � is increased. Finally, Figs. 4(f), 4(g) and 4(h)
show that variations of the parameters k, x, and w produce
tiny effects on the MSD results. The most remarkable one is
the dependence of ρ(t) on k at small lag times, which indicates
that the time t1 at which the effects of the motors begin
to be appreciable decreases with k. This could be expected
taking into account the argument given above concerning the
confinement by a static crosslinker and its relation with t1.

In Fig. 5, we analyze the dependence of the MSD on
the parameters α and nw characterizing the properties of the
viscoelastic medium. Again, we verify the robustness of the
results shown in Fig. 3. As could be expected, while α controls
the average slope of the ρ(t) curves [Fig. 5(a)], a growth of nw

produces a quasiparallel shift of the curves to smaller values of
the MSD [Fig. 5(b)]. In Fig. 5(c), we show the ratio of the MSD
values of the two solid curves shown in Fig. 5(b). For t → 0,
the ratio converges to that expected for two systems without
motors (i.e., the quotient of the two involved nw values), while
for larger values of t the ratio oscillates but remaining below
its t → 0 limit. In Fig. 5(d), we show the ratio of the MSDs
for other two values of nw, with the same findings. Note that
the parameters nw and R enter in the model only through their
product [see Eq. (18)]. Hence, the analysis of the dependence
of the results on R is not necessary since a change in R at
constant nw is equivalent to a change in nw at constant R.

It is interesting to see that in all the curves in Figs. 5(a)
and 5(b), the convergence to the ρ(t) ∼ tα behavior occurs
when ρ(t) � 10 nm. This means that such convergence is
determined essentially by the parameters associated to the
motors (in particular, k, ε, and �), reinforcing our arguments
on the loss of confinement by motors at very small lag times.

A last remarkable fact to observe is that, in the case α = 1
shown in Fig. 5(a), for which the dynamics without motors
is diffusive, the molecular motors produce subdiffusion at
intermediate lag times. Thus, the crosslinking effect of the
molecular motors alone enables us to get subdiffusion in
a purely viscous medium. The effect is somehow small in
the case shown, but it is more notable for smaller values
nw or R (results not shown). It is worth mentioning that
the trajectories for α = 1 were calculated using the standard
Langevin equation coupled to the motor dynamics [33]
instead of the Markovian approximation for the overdamped
GLE.
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(a)

(c) (d) (e)

(f) (g) (h)

(b)

FIG. 4. MSD vs lag time for a = 0 considering different parameters for the motor dynamics. For the sake of comparison, in all the panels
we include the results for the RS without motors (solid line) and with motors (dashed line). The parameters varied are indicated in each panel,
the rest of the parameters for all the curves are those of the RS. In panel (b), the vertical segments indicate the times t2 where the transition to
the superdiffusive regime starts. From left to right, the segments are for v0 = 1000 nm/s,v0 = 500 nm/s, and v0 = 250 nm/s.

C. Relation with experiments

Our results for the transition from subdiffusion to superdif-
fusion have strong parallels with those found in experiments
in [9,10,12–14]. Here, we investigate more deeply the relation

of our model to the experiments in [12] while in the
Supplemental Material [39] we give a qualitative approach
to the experiments in [9]. It is important to indicate that in
our approach to the experiments, we only aim at finding good

(a) (b) (c)

(d)

FIG. 5. MSD vs lag time for a = 0 considering different parameters for the viscoelastic medium. (a) MSD curves for different values of
α with and without motors at fixed nw = 176. (b) MSD curves for different values of nw with and without motors at fixed α = 0.75. (c) The
curve corresponds to the MSD for nw = 176 divided by the MSD for nw = 1000. (d) MSD for nw = 400 divided by the MSD for nw = 1000.
In all the cases, the parameters that are not indicated in the panels are those of the RS.
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qualitative agreement in the correct relevant scales of times
and logarithmic slopes. The search for fine tuned curves by
varying the system parameters would be meaningless since
the model is limited due to its hypothesis of a single power
law in G(ω). Moreover, as we explain later, there are also
factors concerning the dimensionality of the system and the
winding of the trajectories that should be taken into account
for a meaningful fine tuning.

We will show that the experimental data in [12] provide
relevant evidence of the action of motors as static crosslinkers
reducing the logarithmic slope of the subdiffusive regime as
predicted by our model, although this particular point was
not discussed in the mentioned reference since the attention
was focused on the transition to the superdiffusive behavior.
In that work, the authors analyzed myosin V driven transport
of melanosomes in frog melanocytes. Microtubules were de-
polimerized to ensure actin-based transport and two different
stimulation conditions called aggregation and dispersion were
studied which correspond to the addition of melatonin and
melanocyte stimulating hormone, respectively. Finally, the
authors also analyzed transport in cells with mutated myosin V
motors that can not attach to actin so that the action of motors
is inhibited. The main results in [12] show the existence of a
crossover from a subdiffusive to a superdiffusive regime both
in cells stimulated for aggregation and dispersion, while only
subdiffusive and diffusive behaviors (but not superdiffusive)
are found in cells with mutant myosin V.

The authors studied the MSD of the three systems in the
ranges of lag time 0.07 s � t < 7 s [12]. Using a model based
on the GLE but in which the motors force is considered as
a stochastic noise with a power-law autocorrelation function
(i.e., with no model for the motor dynamics), the authors
arrived to quite accurate analytical fittings of the local
logarithmic slope of the ρ(t) curves of the experimental data in
the analyzed region of lag times. The fittings are given by [12]

β(t) = d ln[ρ(t)]

d ln t

=
λ

�(λ+1) (t/t0)λ + ε(2λ − α0)Kλ,α0 (t/t0)2λ−α0

1
�(λ+1) (t/t0)λ + εKλ,α0 (t/t0)2λ−α0 + δ

, (20)

with t0 = 1 s, Kλ,α0 = �(α0 − 2λ){sin[π (λ − α0)] −
sin(πλ)}/π , and the set of dimensionless parameters
(λ,α0,ε,δ) equal to (0.96,0.58,202,41) for aggregation,
(0.98,0.58,83,4) for dispersion, and (0.94,α0,0,0.061) for
the mutant system. Note that the value of α0 is irrelevant for
the mutant system given that ε = 0. For an explanation of the
meaning of the parameters within the model in [12], see such
reference.

In Fig. 6(a), we show the plots of β(t) as a function of
the lag time t as given by Eq. (20) for the three systems
studied in [12]. Note that we consider the time interval where
Eq. (20) accurately fits the data of the three experiments
and no extrapolation is performed. We see that for small
lag times, the logarithmic slope β is larger in the system
with inactive (mutant) motors than in the two systems with
active motors. In other words, the activation of the motors
reduces the values of β(t) at small t . This is in fact what
our model predicts concerning the action of motors as static
crosslinkers. The effect in the experiments is particularly

notable when comparing the results for mutant motors with
those for aggregation, but it is also appreciable in the case of
dispersion. Note that the fact that the mutant motors can not
link the actin filament implies that these motors can neither act
as transport drivers at large t nor as static crosslinkers at small
t . Importantly, the present small-t analysis of the experimental
curves in [12] is new since in such work the authors focused
in the intermediate and large-t regimes.

In order to approach to a description of the experiments
in [12] using our model, we have to note first that the
consideration of a single power-law behavior for G(ω) would
be an important limitation since the experimental results for
mutant motors show a nonconstant value of β(t). Nevertheless,
we assay an approach focusing on the case of dispersion. We set
α = 0.4, which is a value in the range that an extrapolation of
the β(t) curve for the mutant system attain at t ∼ 10−2 s. Thus,
with the action of motors we can expect slopes in the range
β ∼ 0.5 or larger for t ∼ 0.1 s, as those seen in the experiments
for dispersion. Importantly, we have to leave the hypothesis
of two symmetric teams of motors and consider a single type
of motors. For this, we set Nf = 1 and Nb = 0. We consider
an organelle radius R = 500 nm as indicated in [12], and all
the parameters of the RS excepting for ε = 0.1/s,Fs = 2 pN,
and v0 = 150 nm/s. This leads us to the β(t) curve shown
in dashed lines in Fig. 6(b). We see that it has a quite similar
behavior to that of the curve for dispersion shown in panel 6(a),
although slightly overestimated. In Fig. 6(b), we also include
β(t) results for a simulation with two opposing symmetric
motors [corresponding to the MSD curve with α = 1

2 shown
in Fig. 5(a)]. The main qualitative difference between systems
with symmetric motors and with a single species of motors oc-
curs in the long time regime. We see that for symmetric motors
β(t) decrease at large t until it reaches values of order β(t) ∼ 1
corresponding the diffusive behavior before discussed. In
contrast, for a single type of motors, the superdiffusive
behavior is not depleted at long times (at least for t ∼ 10 s), as it
happens in the experiments in [12]. The inset in Fig. 6(b) shows
the same curves in the range 10−5 s < t < 6 s where we can see
how β(t) converge to the corresponding α value at small times
(α = 0.4 and 0.5 for the dashed and dotted lines, respectively).

D. Organelles in harmonic potentials and a macroscopic
approach to the dynamics

Here, we analyze the action of a harmonic potential on
a motor-driven organelle. For this, we consider Eqs. (11)
with a �= 0 and the force FM (x(t),t) as given by the motor’s
stochastic dynamics. The situation may correspond to an
optical trapping microrheology experiment as those reported
in [35,36]. In our analysis, we consider the harmonic potential
V (x) = ax2/2 as extended in the range −∞ < x < ∞, so that
the organelle would result always confined, independently of
the action of motors. It has to be mentioned that in experiments
with optical traps, many organelles may escape from the trap
due to the action of motors and to the finite size of the trap. For
instance, in the experiments in [35], fractions of order 30% or
50% of the organelles escaped in different setups.

In Fig. 7(a), we show the ρ(t) curve considering the
parameters in the RS and a harmonic potential with elastic
constant a = 0.02 pN/nm (solid line). For reference, we also
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(a) (b)

FIG. 6. (a) Fittings for the logarithmic slope β(t) of the MSD measured in the experiments in [12]. The curves correspond to the analytic
formula given in [12] [Eq. (20) of this paper] with the parameters found in [12] for dispersion, aggregation, and mutant motors. The results show
that the logarithmic slope at small lag times grows when the action of motors is inhibited (mutant motors), in agreement with the prediction
of our model. (b) Results for β(t) from simulations using our model. The dashed line corresponds to simulations with a single type of motors
that allow us to approach to the experimental results for dispersion shown in panel (a). The parameters are those of the RS excepting for
α = 0.4,R = 500 nm,ε = 0.1/s,Fs = 2 pN, and v0 = 150 nm/s. The dotted line corresponds to symmetric motors with parameters as those
in the curve with α = 1

2 in Fig. 5(a). The inset in panel (b) shows the same curves on a wider range of the lag time.

include the curve for a = 0 (dashed line) which is the same as
that in Fig. 3, and the results for an organelle without motors
in the harmonic potential with a = 0.02 pN/nm (dotted line).
The comparison with the case a = 0 indicates that the action of
the harmonic potential reduces the time t1 at which the MSD
changes from a ρ(t) ∼ tα behavior to a ρ(t) ∼ tβ behavior
with β < α. Moreover, the value of β is reduced, as it changes
from β ∼ 0.57 for a = 0 (see Fig. 3) to β ∼ 0.42. Finally, the
superdiffusive power law is also reduced (from slope 1.7 to
1.2 in this particular case) and a confinement state of constant
ρ(t) is found at large t instead of the diffusive regime.

Figure 7(b) shows MSD curves for different harmonic
potentials. As expected, excepting for the 0.75 value found
at small lag times, all the slopes decrease with a, as well
as the asymptotic value of the MSD. In Fig. 7(c), we show
the dependence of the asymptotic value of the MSD on the
parameter a for two different values of v0. Interestingly, we
find that for small enough elastic constants (a < 10−2 pN/nm)
the MSD decreases as a−1. This result allows us to provide a
macroscopic description for the diffusion by molecular motors
in a viscoelastic medium at large lag times. Note that for a
system with no motors, the long time MSD value in a harmonic
potential is 2kBT /a. This is so independently of α and in
particular for a pure diffusive system. The fact that we find a−1

enables the definition of an effective temperature Teff such that
ρ(t → ∞) = 2kBTeff/a. Note that such effective temperature
is associated to the motors plus cargo plus viscoelastic medium
system, and would depend on all the system parameters. In
particular, we found kBTeff = 400 pN nm for the RS and
kBTeff = 800 pN nm for the system with a duplicated value
of v0 analyzed in Fig. 7(c). Thus, the effective temperature
seems to be proportional to the velocity of the motors. On the
other hand, recalling that for a = 0 we find a pure diffusive
regime at large times to which we can associate an effective
diffusion constant Deff such that ρ(t) = Deff t , then, taking
into account the relation for pure diffusive media D = kBT /γ0

with γ0 the friction coefficient [see Eq. (13) with α = 1],
it is possible to define an effective friction constant γeff

associated to the system given by γeff = kBTeff/Deff . For the
RS, we find γeff = 3.07 × 10−3 pN s/nm. In this way, we
obtain a macroscopic simplified diffusive model for the long
time dynamics of the cargo-motors system in the viscoelastic
medium characterized by the parameters Teff and γeff . We
remark that these two macroscopic parameters may depend on
all the system parameters associated to the motors and to the
viscoelastic medium but would be independent of the stiffness
a of the harmonic potential and of any other external force
that could be considered in the system. Note that in the case of
nonsymmetric motors, the motion at large time is expected to
be biased and thus not purely diffusive so that the macroscopic
description just presented should be not valid, as it happens
with the system with Nb = 0 studied in Fig. 6(b).

The effective temperatures found in our macroscopic
description are of order 100 times the absolute temperature, in
agreement with the findings in [10]. Such large values of Teff

stress the relevance of molecular motors for transport inside
cells even in the symmetric motors case where there is no
preferred direction of motion [11].

E. MSD in two dimensions

Most of the measurements of the MSD in cell rheology
experiments are normally performed on two-dimensional
(2D) trajectories �r(t) = [x(t),y(t)]. Thus, instead of the one-
dimensional (1D) definition for the MSD given in Eq. (12), we
have

r(t)2 = 1

N − t/δt

N−t/δt∑
i=1

[x(iδt + t) − x(iδt)]2

+ [y(iδt + t) − y(iδt)]2. (21)

To take this into account, we analyze a generalization of our
model to two dimensions. Importantly, although we allow
the organelle to move in two dimensions, we still consider
a straight (not bended) filament where the motors ends (or
heads) step.
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(a)

(b)

(c)

FIG. 7. MSD for organelles in harmonic potentials. (a) Results for
the RS considering a = 0.02 pN/nm (solid line) and a = 0 (dashed
line). The dotted line corresponds to a = 0.02 pN/nm with FM (t) =
0 (absence of motors). (b) MSD for the RS considering different
values of a. (c) Asymptotic value of the MSD as a function of a

for two values of the zero load velocity v0. The solid lines that fit
the simulations at small a correspond to 800 pN nm/a for v0 =
500 nm/s and 1600 pN nm/a for v0 = 1000 nm/s. In all the cases,
the parameters not indicated in the panels are those of the RS.

We consider the 2D version of Eq. (4) [37]

−
∫ t

0
γ (t − t ′)�̇r(t ′)dt ′ − a�r(t) + �FM (t) + �ξ (t) = 0, (22)

where now the position of the cargo �r(t) = [x(t),y(t)], the
forces and thermal noise are vectorial quantities [37]. Note
that the generalization of the Markovian approximation is
straightforward. Concerning the model for motors motion, we
still consider a one-dimensional filament along the x axis so
that the allowed positions for the motor ends on the filaments
are of the form �r = (jx,0) with integer j and x = 8 or
32 nm as before. The one-dimensional dynamics for the motors
remains the same but now the force exerted on the cargo (at
position �r) by a motor at position �ri is calculated as �fi = 0 for
|�r − �ri | � r0 and �fi = −k(|�r − �ri | − r0)(�r − �ri)/|�r − �ri | for
|�r − �ri | > r0, with r0 = 100 nm.

In Fig. 8, we compare 2D and 1D results for the MSD
considering the parameters of the RS both with and without
harmonic potential. It can be seen that at short lag times the

(a)

(c)

(b)

FIG. 8. MSD for the 2D model and comparison with the 1D
model. (a) Results with a = 0. (b) Results with a = 0.02 pN/nm.
(c) Ratio between the 2D and 1D MSD curves shown in panels (a)
and (b). In all the cases, the parameters are those of the RS.

MSD of the 2D model doubles that of the 1D model, as it is
expected for organelles with no motors. Meanwhile, at large
lag time both models show essentially the same results since
the most relevant displacements are those in the x direction
due to the action of the motors. This all shows that the main
conclusions found for the 1D system are also valid for 2D
systems with straight filaments since one can only expect a
modification of the MSD curves by a factor of order 2 at short
lag times.

For the case of bended filaments, we also expect changes
on factors of order 1 provided that the persistence length of
the filaments is larger than the mean length of the forward
and backward excursions of the organelles. Note that this
condition depends not only on the filament type, but also
on the motor types and on the number of motors of each
polarity. Another limiting condition for the validness of our
model comes from the possibility of an organelle to change
the filament on which it is being transported. In the case of
microtubule-based transport, this may not be very important
since neighbor microtubules are usually almost parallel, but
in the case of actin-based transport the effect could be more
notable. In any case, the effects of changes of filaments or of
bended filaments would be relevant only for long lag times
(larger than the typical times between changes on the angle
of motion). At such long time scales, the changes of direction
would necessarily cause a decreasing of the logarithmic slopes
of the MSD curves with respect to those predicted by our
models. For instance, note that our model predicts a diffusive
behavior at large t only for symmetric motor teams, while
nonsymmetric motors lead to superdiffusion at large lag times
[as shown in Fig. 6(b)] or even to ballistic average motion
(results not shown). However, when random changes of the

062707-12



INFLUENCE OF MOLECULAR MOTORS ON THE MOTION . . . PHYSICAL REVIEW E 89, 062707 (2014)

angle of motion occur, diffusive motion in 2D can arise in
the case of nonsymmetric motors or even for a single type of
motors.

IV. CONCLUSIONS AND FINAL REMARKS

We have presented a model based on a generalized Langevin
equation (GLE) coupled to a stochastic stepping dynamics
for molecular motors that allowed us to analyze important
phenomena observed in experiments in cell transport. In
particular, the model reproduces transitions from subdiffusive
motion at small lag times to superdiffusive motion at large lag
times triggered by the action of motors.

The results of our model also indicate that at small lag times,
the molecular motors can act as static crosslinkers reducing the
logarithmic slopes of the subdiffusive transport in cells with re-
spect to those that would be observed in the absence of motors.
Importantly, we have provided a new analysis of the experi-
mental data for transport in frog melanocytes reported in [12]
that supports this finding. We have shown that the fittings of
the experimental results presented in [12] indicate that the log-
arithmic slopes of the MSD at small lag times for mutant (inac-
tive) motors are larger than those observed with active motors.

Our approach based on the treatment in [23] considers
Eq. (4) as the overdamped limit of the underdamped GLE
[Eq. (5)] studied in [23]. This overdamped GLE was also
used in [20,35,36] as a model for subdiffusive transport in
viscoelastic media. In [39], we show that the main results of
the paper can be reproduced considering a more general GLE
which includes an additional viscous term [24,25], provided
that the corresponding viscosity is small, as expected for
cellular systems [25].

We have shown that our general results for the dependence
of the MSD on the lag time are rather robust against variations
of the parameters defining the motor stepping dynamics. This
latter fact suggests that the consideration of more detailed
descriptions of the motor’s dynamics would not affect our
main conclusions. Following the assumptions in [17,29–31],

the stochastic stepping dynamics for the motors considered
in this paper does not include backstepping. In [32], models
with and without back steps have been found to produce very
similar results for the force-velocity curves of cargos pulled
by multiple motors. The effect of backstepping on the MSD
curves is expected to be small, at least clearly much smaller
than those produced by the strong variations of the motor
parameters analyzed in Fig. 4.

Regarding the influence of the motor dynamics, we have
performed an additional check. Note that, in our simulations,
an 8-nm motor step occurs in the very small time interval used
for the time discretization (dt ∼ 107 s), while real motor’s
steps take more time (typically 10−5 s). To take this into
account, we considered a modified model (see [39]) in which
the probability of a step is ruled by the same Monte Carlo
dynamics before introduced, but in which once the algorithm
determines the realization of a motor step, the motor step takes
a time ts involving many time discretization steps. During the
time ts , the position of the motor evolves linearly with time
at constant velocity 8 nm/ts . The results for the MSD curves
obtained with this model are indistinguishable (see [39]) from
those found with the original dynamics in the whole range of
lag times from 10−5 to 10 s, even when we consider ts as large
as 10−4 s (i.e., larger than the minimal lag time analyzed).
This check provides additional support to our developments,
as well as to previous studies of stochastic stepping dynamics
for motors coupled to continuous dynamics for cargos in pure
viscous environments such as those found in Refs. [30–33].

Finally, we have analyzed the influence of harmonic poten-
tials on the dynamics, and we have discussed the limitations
of our model regarding the dimensionality of the system and
the possible winding of the organelle trajectories in cells.
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