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In this work we solved the time dependent Ginzburg–Landau equations numerically finding profiles of
the flux-flow resistivity for different widths of superconducting stripes. We found vortex pinning induced
by the surface superconductivity. This pinning avoids the movement of the vortex lattice preventing the
generation of a voltage. We also found the existence of a mesoscopic region where the flux-flow resistiv-
ity shows size effects and we observed a transition to a macroscopic regime as the width increases.
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1. Introduction

One of the most important features of a superconductor is the
absence of a resistivity when a current is applied on it. However
when a magnetic field is applied in the superconductor the interac-
tion between the vortex lattice and the current could induce the
appearance of a resistivity. The origin of this resistivity is a Lorentz
force between the current in the superconductor and the magnetic
flux of the lattice. This Lorentz force causes a continuous move-
ment of the lattice. This movement is transverse to the current
and induces an electric field: E = B � v/c, where v is the velocity
of the vortex lattice. For a superconductor without pinning, the dis-
placement of the lattice is retarded only by a viscous force per unit
length, Fl. This force is modeled proportional to the velocity of the
vortices and includes a viscous coefficient, l: Fl = -lv.

Therefore, the relation between E and the applied density cur-
rent J defines the flux-flow resistivity qff ¼ E

J ¼ B U0

lC2, where U0 is
the quantum of magnetic flux [1].

Previous works with numerical solutions of the time-dependent
Ginzburg–Landau (TDGL) and the generalized TDGL showed sev-
eral kinds of regimes with different velocities of the vortex lattice
motion [2–5]. In particular, for an infinitely long slab the transition
from the low to the fast vortex motion was studied solving the gen-
eralized TDGL equations. For this geometry, a transition from a
moving Abrikosov lattice with triangular structure to a set of par-
allel rows is found when the applied current increases [5]. The cre-
ation of phase-slip lines and the interplay with a vortex lattice in a
finite-length thin stripe with finite-size normal leads was studied
showing channels with fast and slow vortices. The leads at the edge
of the stripe produce the curvature of the channels in the vicinity of
the leads [6]. However, the effects of the surface superconductivity
in the movement of the vortices have not been studied in the flux-
flow regime. In this work we studied the flux-flow resistivity for
different widths of an infinite superconducting strip searching
the transition between a microscopic regime, where the flux-flow
resistivity is proportional to B, and a mesoscopic regime where
the effects of the surface superconductivity are present.

2. Model system

As a model system, we use a bulk superconductor which is infi-
nite in the z and x directions and is finite in the y direction (Fig. 1).
With this model we neglect the possibility of curved vortices in the
z direction.

The time-dependent Ginzburg–Landau equations for our sys-
tem are:

g
@

@t
w ¼ ð$� iAÞ2wþ ð1� jwj2Þw

@

@t
A ¼ Re½w�ð�i$� AÞw� � j2$� $� A

Where the physical quantities are measured in dimensionless units:
length in units of the coherence length n, magnetic field in units of
the critical field Hc2, w in units of 4kBTcg1/2/p(1–T/Tc)1/2, temperature
in units of the critical temperature Tc, and time is scaled in units of
the Ginzburg–Landau relaxation time t0 = h/16kB(Tc–T)g = n2/gD. In
the last units D is the diffusion constant, kB and h are the Boltzmann
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Fig. 2. Ex vs. I of a superconducting slab with w = 36, H = 0.425 and j = 2. The
current zone where the superconductivity disappears is marked with an arrow.

Fig. 1. The model system is a slab (infinite in the z and x directions). The applied
magnetic field is parallel to the z axis and the transport current is parallel to the x
axis.

Fig. 3. Snapshots of the order parameter at different values of the current in the flux-flow
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and Planck constants and the parameter g is taken to be equal to
5.79 [7].

Periodic boundary conditions are applied in the x direction:
w(x) = w(x + L) and A(x) = A(x + L), where L is the period. The usual
boundary condition superconductor-vacuum is applied in the y
direction:

@
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� iAy

� �
w

����
y¼0;y¼w

¼ 0

The transport current is introduced via the boundary condition for
the vector potential in the y direction, $� Ajzðy ¼ 0; y ¼ wÞ ¼
H � Hind, where H is the applied magnetic field and Hind is the mag-
netic field induced by the current [5].

To solve the TDGL equations we consider a rectangular mesh
consisting of nx � ny cells, with mesh spacings ax and ay. We use
finite difference method based on gauge-invariant link variables
[8]. This numerical method is defined by the finite unknowns of
the method, w, Ax, and Ay, plus the equations relating these
unknowns.

3. Results and discussion

As the electric field E is a time-dependent variable, we averaged
it over a long finite time interval. In Fig. 2 we show the current-Ex

characteristic of our system, where the current I is the current per
unit length in the z-direction, Ex is the electric field parallel to the
current direction, j = 2, L = 80 and the width w = 36 at H = 0.425.
Due the presence of the surface barrier the vortices start to flow
for a finite current and the vortex lattice is close to the Abrikosov
structure. Above this current the vortices start to flow incoming
from the superior edge and outgoing to the inferior edge. The gra-
dient of the magnetic field in the system helps the movement of
the vortices. Thus, on the edge where the applied and induced
fields have the same orientation, superconductivity is depressed
and this depression allows the entry of new vortices. In the flux-
flow regime (small currents and linear behavior in the Ex vs. I
regime for the system described in the Fig. 2. The currents are I = 0.5, 1, 1.5 and 2.



Fig. 4. qff/Bav vs. w. All the curves for different applied magnetic fields converge for
wider systems. However under a critical width (w�15) the macroscopic prediction
does not work.
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curve) the vortex structure is a slightly deformed Abrikosov lattice
(Fig. 3). With increasing current there are several jump transitions
where the vortex velocity increases and we have a state with volt-
age jumps. A detailed study of these jumps can be obtained in [5].
Finally for I = 4.5 the system evolves to the normal state.

Keeping j = 2, we calculated the flux-flow resistivity and the
average magnetic induction Bav for different widths and applied
magnetic fields. As were shown previously, in the macroscopic case
the flux-flow resistivity qff is proportional to B and therefore qff/B is
a constant. For widths greater than w = 15, the system obeys the
predicted macroscopic behavior, but under this critical width we
found evidence of the existence of a mesoscopic region where
the flux-flow resistivity shows the effects of the existence of the
surface barrier (Fig. 4).

4. Conclusions

From the characteristic curves, we have evidence that surface
superconductivity acts like a surface barrier. That surface barrier
avoids the outgoing of the vortex lattice below a critical current.
We determined also the existence of different widths where a mes-
oscopic regime for the flux-flow resistivity is manifested. For wider
stripes a transition from mesoscopic to macroscopic regime is
found.
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