
QCD condensates and holographic Wilson loops for asymptotically
AdS spaces

R. Carcasses Quevedo,1,2,* J. L. Goity,3,4,† and R. C. Trinchero1,2,‡
1Instituto Balseiro, Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Argentina

2CONICET, Rivadavia 1917, 1033 Buenos Aires, Argentina
3Department of Physics, Hampton University, Hampton, Virginia 23668, USA

4Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
(Received 5 November 2013; published 14 February 2014)

The minimization of the Nambu-Goto action for a surface whose contour defines a circular Wilson loop
of radius a placed at a finite value of the coordinate orthogonal to the boundary is considered. This is done
for asymptotically anti–de Sitter (AdS) spaces. The condensates of even dimension n ¼ 2 through 10 are
calculated in terms of the coefficient of an in the expansion of the on-shell subtracted Nambu-Goto action
for small a. The subtraction employed is such that it presents no conflict with conformal invariance in the
AdS case and need not introduce an additional infrared scale for the case of confining geometries. It is
shown that the UV value of the condensates is universal in the sense that they only depend on the first
coefficients of the difference with the AdS case.
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I. INTRODUCTION

The relation between large N gauge theories and string
theory [1] together with the AdS/CFT correspondence
[2–5] has opened new insights into strongly interacting
gauge theories. The application of these ideas to QCD has
received significant attention since those breakthroughs.
From the phenomenological point of view, the so-called
anti–de Sitter/QCD approach has produced very interesting
results in spite of the strong assumptions involved in its
formulation [6–11]. It seems important to further proceed
investigating these ideas and refining the current under-
standing of a possible QCD gravity dual.
As is well known the vacuum of pure gauge QCD is

the simplest setting that presents key nonperturbative
effects of QCD. In this regard, the gluon condensate
G2 ≡ g2

4π2
hFa

μνF
μν
a i plays an important role. The existence

of a nonvanishing G2 was early on identified [12]. It has
important manifestations in hadron phenomenology
[12,13], and there are indications of its nonvanishing from
lattice QCD [14–16]. The gluon condensate can be
obtained from the vacuum expectation value of a small
Wilson loop. In the holographic approach, such an expect-
ation value is obtained by minimizing the Nambu-Goto
(NG) action for a loop lying in the boundary space [17,18].
This is known to work in the strictly anti–de Sitter (AdS)
case, i.e., for a conformal boundary field theory. In
this work we assume that this procedure also works
in the nonconformal-QCD case provided an adequate
5-dimensional background metric is chosen.

The features and results of this work are summarized as
follows:
(i) The NG action for a circular loop of radius a lying

at a given value of the coordinate orthogonal to
the boundary of an asymptotically AdS space is
considered.

(ii) The minimization of this action leads to an equation of
motion, whose solution is approximated by a power
series in a.

(iii) The on-shell NG action is subtracted following the
procedure in Ref. [17]. More precisely, an extension of
this procedure is proposed for the case under consid-
eration, where the base of the loop is at a finite value of
the radial coordinate and a natural infrared limit is
considered for the case of confining theories.

(iv) The gluon condensates of even dimension n ¼ 2
through 10 are obtained from the coefficients of the
expansion in powers of a of the subtracted on-shell
NG action SsubNG, the last four ones assuming the
absence of the condensate of dimension 2.

(v) It is shown that the UV value of these condensates is
universal in the sense that for a condensate of a given
dimension, its value does not depend on the value of
the warp factor’s higher order coefficients.

The paper is organized as follows. Section II defines the
problem to be considered, including the NG action for the
circular loop and the asymptotically AdS background
metric. Section III deals with the subtraction of the on-
shell NG action. Section IV gives some model independent
results, which clarify the relation between condensates and
the expansion coefficients of the warp factor. Section V
deals with the approximate solution of the equations of
motion and the evaluation of the on-shell NG action as a
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power series in a. Section VI gives the results for the gluon
condensates, showing the above mentioned universality.
Section VII includes some concluding remarks. In addition
four appendices are included.

II. NAMBU-GOTO ACTION FOR A CIRCULAR
LOOP IN AN ASYMPTOTICALLY AdS SPACE

The distance to be considered has the following general
form:

ds2 ¼ e2AðzÞðdz2 þ ηijdxidxjÞ
¼ Gμνdxμdxν μ; ν ¼ 1;…; dþ 1: (1)

It is defined by a metric with no dependence on the
boundary coordinates and preserves the boundary space
Poincaré invariance. This should be the case if only vacuum
properties are considered. The form of the warp factor AðzÞ
to be considered is

AðzÞ ¼ − ln

�
z
L

�
þ fðzÞ; (2)

where fðzÞ is a dimensionless function. In this work fðzÞ is
taken to be a power series in z,1 i.e.,

fðzÞ ¼
X
k¼1

αkzk: (3)

The case fðzÞ ¼ 0 corresponds to the AdS metric. This
deviation from the AdS case could be produced by a
bulk gravity theory including matter fields [19]. Possible
candidates for these bulk gravity theories have been
considered in [20,21].
The area of a surface embedded in this space is given by

the NG action,

SNG ¼ 1

2πα0

Z
d2σ

ffiffiffi
g

p
; (4)

where g is the determinant of the induced metric on the
surface, which is given by

gab ¼ Gμν∂aXμ∂bXν;

where Xμ are the coordinates of the surface embedded in
the ambient dþ 1 dimensional space. The indices a, b refer
to coordinates on the surface. The case to be considered is a
circular loop whose contour lies at a constant value z1 of the

coordinate z and in the i-j spatial plane. The coordinates on
the surface are then taken to be r and ϕ, the polar
coordinates. Therefore the embedding can be described
by the following:

Xk ¼ 0 (5)

X5 ¼ zðrÞ (6)

Xi ¼ r cosϕ; Xj ¼ r sinϕ ð∀ k ≠ i ≠ jÞ; (7)

with the boundary conditions,

zðaÞ ¼ z1; z0ð0Þ ¼ 0; (8)

which state that the contour of the circular loop of
radius a is located at z1 and that no cusps are admitted.
Replacing the embedding (5) in the action (4), after a trivial
integration in the angular variable, leads to the following
expression:

SNG ¼ 1

α0

Z
a

0

e2AðzÞr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p
dr; (9)

where the prime denotes derivative with respect to r. The
minimal surface is given by the solution of the following
equations of motion with the above mentioned boundary
conditions:

r
z00ðrÞ

1þ z0ðrÞ2 þ z0ðrÞ − 2r
dAðzÞ
dz

¼ 0: (10)

For the AdS case AðzÞ ¼ − ln z
L the solution is

zðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z21 − r2

q
; (11)

which upon replacing in (4) leads to the following
expression for the on-shell NG action:

So:s:NGAdS
¼ L2

α0

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

z21

s
− 1

!
: (12)

III. THE SUBTRACTED ON-SHELL
NAMBU-GOTO ACTION

Replacing the solution of the previous section in the NG
action leads to a divergent expression when z1 → 0, i.e.,
near the UV boundary of the space. This happens in the
AdS case and also when fðzÞ ≠ 0. Therefore, a subtraction
procedure should be employed. The action requires regu-
larization, where the most obvious procedure is to choose
z1 ≠ 0, and a renormalized action is obtained by imple-
menting a subtraction, as it is discussed in detail in this
section. A procedure of minimal subtraction, defined by

1Recalling that near the UV boundary the relation between the
conformal coordinate z and Fefferman-Graham [22] coordinate ρ
is ρ ¼ z2, then a polynomial in z, as considered in this work,
corresponds to an expression involving integer and half-integer
powers of ρ. However see Sec. IV where it is shown that half-
integers powers of ρ cannot appear for a theory describing QCD.
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disregarding the 1=z1 term in SNG, was implemented
in [23].
As shown in [17] for the rectangular loop, a physically

motivated procedure is to subtract the contribution of the
“heavy quark” mass to the action. This contribution corre-
sponds to the area of a cylinder with axis parallel to z,
extending from z ¼ ∞ to z ¼ 0, for the case of the base of
the loop located at z ¼ 0. It could be thought that in the case
considered in this paper, the base of the loop located at z1,
the area of a cylinder of radius a with axis parallel to z and
extending from z ¼ ∞ to z1 should be subtracted. However,
such a procedure should be modified in two aspects, namely:
(i) First, in the AdS case, it leads to a loss of conformal

invariance, more precisely the value of SsubNG would
depend on the radius of the loop. Requiring inde-
pendence of the value of SsubNG on the radius a, leads to
the following definition of the subtracted action:

SsubNG ¼ SNG − r0ða; z1Þ
α0

Z
zIR

z1

dze2AðzÞ; (13)

where zIR is an infrared scale whose motivation and
definition is explained below. For the AdS case the
function r0ða; z1Þ is fixed by conformal invariance and
given by

rAdS0 ða; z1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z21

q
; (14)

leading to

Ssub;AdSNG ¼ −L2

α0
: (15)

The radius r0ða; z1Þ corresponds to the radius of a loop
located at the boundary whose minimal surface would
intersect the plane z ¼ z1 with a circle of radius a.
Therefore the following holds:

lim
z1→0

r0ða; z1Þ ¼ a: (16)

For non-AdS cases the same procedure could be
employed, using the corresponding value
rNon-AdS0 ða; z1Þ. However it should be noted that in
the non-AdS case using the AdS r0 given in (14) also
leads to a finite value for the SsubNG and presents no
conflict with conformal invariance. This last
procedure will be employed below.

(ii) Second, confining warp factors are such that eAðzÞ
presents a global minimum for a finite value for this
factor [24,25]. Let zm denote the location of this
minimum in the coordinate z. In these conditions,
integrating e2AðzÞ between z1 and ∞ would lead to a
divergent result. Introducing an infrared integration
limit zIR as in (13) eliminates this divergence at the
cost of introducing this ad hoc infrared cutoff. In this
respect the following remarks are important:

(a) The result for the coefficients of an, n > 1 in SsubNG
do not depend on zIR. This fact is shown in Sec. VI,
and is due to property (16).

(b) On the other hand these confining warp factors
already have a natural infrared scale. This is given
by the location zm of the global minimum. This is a
natural candidate to be identified with zIR. In this
respect it is worth noting that for z1 < zm the
minimal surface could never exceed the value zm,
otherwise it would not be minimal.2 In what
follows the choice zIR ¼ zm is made. It is empha-
sized that other choices are by no means excluded.
Different choices produce different coefficients for
the perimeter in SsubNG.

It is noted that this subtraction is nonvanishing even if the
loop is located at a finite value of the coordinate z. Figure 1
illustrates the proposed subtraction procedure, for the case of
a minimal surface bounded by a closed contour C1.

A. Convergence of the subtracted Nambu-Goto
action in the UV limit

The considered warp factors diverge in the UV, the
leading singularity is

AðzÞ ∼ − ln

�
z
L

�
→ A0ðzÞ ∼ − 1

z
; (17)

this makes the integrand appearing in the NG action diverge
at z ¼ 0.
In order to analyze the behavior of the solution near the

boundary, the approach in [26] is employed. The NG action
is written in terms of r as a function of z, rðzÞ; this leads to

FIG. 1. Substraction scheme.

2Indeed, suppose there were a minimal surface with boundary
at z1 < zm that extends to values of z > zm; then, since the warp
factor necessarily grows for these values (recall that zm is a
minimum), a surface stopping at zm will have less area than the
one originally supposed to be minimal, which is a contradiction.
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SNG ¼ 1

α0

Z
z0

z1

e2AðzÞrðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0ðzÞ2

q
dz; (18)

where rð0Þ ¼ r0 and rðz1Þ ¼ a. The equation of motion is

ð−1þ 2rA0ðzÞr0Þð1þ r02Þ þ rr00 ¼ 0: (19)

Near the boundary (19) implies

−lim
z→0

2r
1

z
r0ð1þ r02Þ þ lim

z→0
rr00 − lim

z→0
ð1þ r02Þ ¼ 0: (20)

This last equation shows that if limz1→0r00ðzÞ is assumed
to be finite, then limz1→0r0ðzÞ cannot be infinite since in that
case it will be impossible to cancel the terms containing r0.
Furthermore the cancellation of the terms involving r0ðzÞ
require that limz1→0r0ðzÞ ¼ 0 as z1þϵ, ϵ > 0. In addition the
cancellation of the constant term in (20) requires ϵ ¼ 0.
On the contrary, if limz→0r00ðzÞ is assumed to be infinite,

then limz1→0r0ðzÞ → ∞, which can be proved by integrating
the former, and again it is not possible to cancel all the
divergent terms due to their different degrees of divergence.
Therefore,

lim
z→0

r0ðzÞ ¼ 0 (21)

r0ðzÞ ¼ − z
a
þ � � � ðz ≫ aÞ: (22)

Next, this asymptotics is plugged in the SsubNG (13). In this
respect it is convenient to rewrite it in the form,

SsubNG ¼ 1

α0

Z
z0

z1

e2AðzÞðrðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0ðzÞ2

q
− r0ða; z1ÞÞ

− r0ða; z1Þ
α0

Z
zm

z0

dze2AðzÞ:

For the considered cases of AðzÞ, the second term
is convergent because the integrand has no poles in the
finite integration interval. The first term is also finite,
indeed:

lim
z→0

e2AðzÞ
�
rðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0ðzÞ2

q
− a

�

¼ lim
z→0

1

z2

�
a

�
1þ 1

2
c20z

2 þ � � �
�
− a

�
¼ finite.

Thus, the integrand is finite everywhere inside the finite
integration region and therefore the integral is finite.
Furthermore this last equation shows that the divergent
term in the UVof SNG is proportional to the perimeter of the
loop, which is consistent with the fact that also the
subtraction is proportional to the perimeter of the loop in
the UV, as shown by (16). In this respect, it is important to
note that if only subtractions proportional to the perimeter of

the loop when z1 → 0 are considered, then the coefficients
of an with n > 1 will be independent of the precise
subtraction considered. An example of this independence
is given by changing zIR, where such a change only affects
the coefficient proportional to the perimeter. In fact the
role of the radius a in this calculation is similar to that
of an the external momentum in a standard correction to a
Green function in quantum field theory. Derivatives with
respect to the external momenta of order higher than the
degree of divergence of such a diagram are not admitted as
counterterms. In the calculation considered in this work
subtractions proportional to an with n > 1 are therefore
excluded.

IV. MODEL INDEPENDENT RESULTS

In this section some results that follow from the general
setting described in the previous sections are considered.
No approximation is involved in the derivation of these
properties.

A. In QCD f ðzÞ is even
It is recalled that fðzÞ is the function appearing in the

warp factor (2). The title of this subsection means the
following: the basic hypothesis underlying this work is that
the vacuum expectation value of the Wilson loop in QCD is
given by SsubNG. It will be shown below that under this
assumption, the fact that there are no odd-dimensional
condensates3 in QCD implies that fðzÞ ¼ fð−zÞ. The proof
of this assertion is based on the following intermediate
result.
If the expansion of α0

L2 SNG½z�ðaÞ as a power series in a only
involves even powers of a then,

fðzÞ − fð−zÞ ¼ const: (23)

Proof: Denoting by SNG½z�ðaÞ the NG action with param-
eter a, the hypothesis is

SNG½z�ðaÞ ¼ SNG½z�ð−aÞ:

Noting that the change a → −a is, at the level of the NG
action, the same as changing z → −z implies

SNG½z�ð−aÞ ¼ SNG½−z�ðaÞ
⇓ ð23Þ

SNG½z�ðaÞ ¼ SNG½−z�ðaÞ:
Due to this last equality if zðrÞ extremizes the NG action
so does −zðrÞ. Therefore −zðrÞ must also be a solution

3By definition a condensate of dimension n is the coefficient of
an in the expansion of α0

L2 SNG½z�ðaÞ in powers of a.
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of the equation of motion. The equation of motion for
zðrÞ is

r
z00ðrÞ

1þ z0ðrÞ2 þ z0ðrÞ − 2r

�
− 1

z
þ df

dz
ðzÞ
�

¼ 0:

On the other hand, the equation of motion for −zðrÞ is

−
�
r

z00ðrÞ
1þ z0ðrÞ2 þ z0ðrÞ − 2rð− 1

z
− df
dz

ð−zÞÞ
�

¼ 0:

Adding these two equations leads to

df
dz ð−zÞ − df

dz ðzÞ ¼ 0 ⇒ d
dz ½fð−zÞ − fðzÞ� ¼ 0

⇓

fð−zÞ − fðzÞ ¼ const:

as claimed. For arbitrary z the only solution to the last
equation is

foddðzÞ ¼ fðzÞ − fð−zÞ ¼ 0;

which shows that only even functions fðzÞ are relevant for
QCD. In particular for the warp factors considered in the
present work, the above general result implies that if
the only nonvanishing condensates are even dimensional,
the coefficients αn must vanish if n ¼ odd.

B. Condensates of dimension n > 1 are independent
of αm for m > n and z1 → 0

First it is noted that α0
L2 SNG½z�ða; αÞ is dimensionless and

that αn has dimension of length to the −n. Therefore if αm
would contribute to the condensate of dimension n < m
then inverse powers of αk should appear for some k > n.
Therefore in that case α0

L2 SNG½z�ða; αÞ would diverge when
αk → 0. However the integrand in α0

L2 SNG½z�ða; αÞ is well
defined when any or all of the α’s vanish. Indeed the only
divergence in α0

L2 SNG½z�ða; αÞ is proportional to a, and
appears when all the αn vanish, but something proportional
to a does not contribute to the condensates with n > 1.
Therefore only positive powers of the α’s can appear and
the result follows from dimensional reasons. It should be
noted that this result holds for z1 → 0, otherwise since z1
has dimensions of length all the dimensional arguments
made above are not valid. In conclusion, the general
expression for the expansion in powers of a of the NG
action is

α0

L2
SNG½z�ða; αÞ ¼ sð0Þ þ sð2Þα2a2 þ ðsð4Þ2 α22 þ sð4Þ4 α4Þa4

þðsð6Þ2 α32 þ sð6Þ2;4α2α4 þ sð6Þ6 α6Þa6 þ � � � ;

where the coefficients sðnÞ are dimensionless.

V. ON-SHELL NAMBU-GOTO ACTION
EXPANDED IN POWERS OF THE RADIUS a

A. Condensates of dimension 2 and 4

The approach employed in this section is basically the
same as in [23]. That is, expand the solution of the equation
of motion as a power series in a2, replace in the Lagrangian,
expand it in powers of a2 and then integrate. However they
differ in some aspects. An important difference is that in
this work more general curved backgrounds are considered.
More precisely, the warp factors given in (2)–(3) are
considered for n ¼ 1 and for both α2 and α4 nonvanishing.
The consideration of α4 ≠ 0 is particularly relevant from
the phenomenological point of view. This is so because
α4 ≠ 0 allows for a nonvanishing gluon condensate of
dimension 4 without having at the same time one of
dimension 2 which is not allowed in QCD.4 The other
difference concerns the subtraction procedure which in this
work is done as described in Sec. III. According to this
procedure the NG action should be calculated for a loop
lying at a value z1 of the coordinate orthogonal to the
boundary. In this respect it is convenient to define the
variable,

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

1 − ρ2
q

; w1 ¼
z1
a
; ρ ¼ r

a
:

In this variable the AdS solution (11) is written as

wðtÞ ¼ t; w ¼ z
a
:

In terms of the variable ψðtÞ ¼ w2ðtÞ the NG action is given
by

SNG ¼ L2

α0

Z
1

0

e2ða2α2ψþa4α4ψ2Þt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ð1þw2

1
−t2Þψ 0ðtÞ2
t2ψðtÞ

q
2ψðtÞ dt:

(24)

The equation of motion for this action reads

64a4t3α4ψðtÞ3 − ð1 − t2 þ w2
1Þð2t − ψ 0ðtÞÞψ 0ðtÞ2

þ 16ψðtÞ2ð2a2t3α2 þ a4tð1 − t2 þ w2
1Þα4ψ 0ðtÞ2Þ

− 4ψðtÞð4t3 − ð1þ t2 þ w2
1Þψ 0ðtÞÞ

− 4ψðtÞð−2a2tð1 − t2 þ w2
1Þα2ψ 0ðtÞ2

þtð1 − t2 þ w2
1Þψ 00ðtÞÞ ¼ 0: (25)

As explained earlier, the boundary conditions to be required
are the following ones:

4In this assertion the effect of renormalons is neglected. This
assumption is supported by the results in [15,27].
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ψðw1Þ ¼ w2
1; ψ 0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

1

q
Þ ¼ finite;

which correspond to the loop located in the plane z ¼ z1
and the surface with no cusp at r ¼ 0.
Next, a power series expansion ansatz for the solution is

considered, namely,

ψðtÞ ¼
X∞
n¼0

a2nψnðtÞ: (26)

Replacing in (25) and requiring the vanishing of the
coefficient in front of a2n, for n ¼ 0 this leads to

ð−1þ t2 − w2
1Þð2t − ψ 0

0ðtÞÞψ 0
0ðtÞ2

þ 4ψ0ðtÞððð1þ t2 þ w2
1Þψ 0

0ðtÞÞ
þtð−4t2 þ ð−1þ t2 − w2

1Þψ 00
0ðtÞÞÞ ¼ 0;

whose solution is the AdS one ψ0ðtÞ ¼ t2. For n ¼ 1,

2ð1þ w2
1Þð4t3α2 þ ψ 0

1ðtÞÞ þ tð−1þ t2 − w2
1Þψ 00

1ðtÞ ¼ 0;

whose solution up to order Oðw2
1Þ is

ψ1ðtÞ ¼ − 1

1þ t
4ftð−2 − tþ t2 þ ð−4þ ð−2þ tÞtÞw2

1Þ
þ 2ð1þ tÞð1þ 2w2

1ÞarctanhðtÞ
þ ð1þ tÞð1þ 2w2

1Þ logð1 − t2Þgα2:

In a similar fashion the equation and its solution for ψ2ðtÞ
are obtained.
Next the NG action expansion in powers of a is

computed. Replacing the solution (26) in the integrand
of (24), expanding in powers of a and w1 and integrating
leads to

SNG ¼ L2

α0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

1

p
w1

− 1 þ a2α2

�
10

3
− 3w1 þ

14

5
w2
1

�

þa4
�
α22

�
14

9
ð17 − 24 log 2Þ − 8

3
w1 þ w2

1

4

45
ð599 − 744 log 2Þ

�
þ α4

�
14

9
þ 124

45
w2
1

��
þ � � �

�
: (27)

The first term in the parenthesis is divergent in the UV limit
w1 → 0. This divergence, as will be seen in the next
section, is canceled by the subtraction SCT. The other
terms are finite in this limit. Also, in this limit the result for
the coefficients of a2 and a4 coincide with the ones in [23].

B. Condensates of dimension 6, 8 and 10

It is recalled that as in Sec. IV A a condensate of
dimension n is by definition the coefficient of an in the
expansion of α0

L2 SNG½z�ðaÞ in powers of a. The calculation of
these condensates is done in the UV limit, z1 → 0. This
procedure is valid since, according to the analysis in the
subsection of Sec. III A, the only coefficient that diverges in
this limit, is the one corresponding to the perimeter of the
loop, i.e., the coefficient of a1. Taking into account this
remark, the calculation of these condensates follows the
same technique as in the previous subsection except that
z1 ¼ 0 is taken from the start. Their computation is possible
under the assumption α2 ¼ 0, i.e., no dimension 2 con-
densate. As an example the condensate of dimension 6 is
considered. That condensate must be proportional to α6.
This follows from the dimensional arguments which are
considered in Appendix B. There it is shown that for the
warp factor of the form (2), α0SNG=L2 should be dimen-
sionless; thus, the coefficient of a6 in this quantity should

have dimension of length to the −6. Next recalling that the
dimension of αn is length to the −n, then the only way of
getting such a dimension in terms of positive5 powers of the
α’s is by means of α2α4 or α6; thus, the assumption α2 ¼ 0
leaves only α6. In terms of the variables t and ψ the action to
be considered is therefore

Sð6ÞNG ¼ L2

α0

Z
1

0

e2a
6α6ψ

3

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ð1þw2

1
−t2Þψ 0ðtÞ2
t2ψðtÞ

q
2ψðtÞ dt: (28)

Next, an expansion in powers of a2 of the solution is
considered as in (26); replacing this in the equation of
motion determines the coefficients ψnðtÞ, giving

ψ ð6ÞðtÞ¼ t2þa6
α6
10

ð24t−12t2−6t4−4t6−24logð1þ tÞÞ:
(29)

Replacing in (28) gives the following contribution propor-
tional to a6:

5See IV B.
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α0

L2
SNGj

a6
¼ 3

5
α6a6:

For the case of the dimension 8 condensate, for
dimensional reasons, only α4 and α8 are relevant. The
action to be considered thus involves only these two
coefficients in the warp factor. The solution can be
obtained as a power series in a up to order a8, having
an expression considerably more lengthy than (29), which
is given in Appendix C. The contribution proportional to
a8 to the NG action is given by

α0

L2
SNGj

a8
¼− 11

5670
ðð−2111þ 3360 log2Þα24− 270α8Þa8:

For the case of the dimension 10 condensate, for
dimensional reasons, only α4, α6 and α10 are relevant.
The action to be considered thus involves only these
coefficients in the warp factor. The solution can be obtained
as a power series in a up to order a10, having an expression
considerably more lengthy than (29), which is given in
Appendix C. The contribution proportional to a10 to the
NG action is given by

α0

L2
SNGj

a10
¼ 13

4725
ðð2999−5040log2Þα4α6þ175α10Þa10:

VI. THE GLUON CONDENSATE,
UV UNIVERSALITY

A. The computation of the subtraction

The subtracted NG action is

SsubNG ¼ SNG − SCT;

where

SCT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z21

p
α0

Z
zm

z1

dze2AðzÞ

¼ L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z21

p
α0

Z
zm

z1

dz
e2
P

n¼1
αnzn

z2
; (30)

and zm denotes the minimum of e2AðzÞ. Here the compu-
tation is done for the case where only α2 and α4 are different
from 0. In this case,

zm ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 þ 4α4

p
α4

− α2
α4

s
: (31)

Because the integrand in (30) is well behaved in the
integration region, the exponential in the integrand can
be expanded before performing the integral.6

Proceeding in this way leads to

α0

L2
SCT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z21

q Z
zm

z1

dz
e2α2z

2þ2α4z4

z2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z21

q Z
zm

z1

dz

�
1

z2
þ 2α2þð2α22 þ 2α4Þz2 þ

�
4α32
3

þ 4α2α4

�
z4 þ � � �

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z21

q �
− 1

z
þ 2α2zþ

2

3
ðα22 þ α4Þz3 þ

4

15
α2ðα22 þ 3α4Þz5 þ � � �

�
jzmz1 : (32)

Note that the −1=z appearing in the last equality, when evaluated at z ¼ z1 and multiplied by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z21

p
, cancels

the divergent term, when z1 → 0, appearing in the on-shell NG action in (24).

6For the case considered, αn ¼ δn4α4, the integral in (30) can be explicitly calculated as

Z
zm

z1

dz
e2α4z

4

z2
¼ 1

4

�E5
4
ð−2z41α4Þ
z1

− E5
4
ð−2z4mα4Þ
zm

�
¼ 1

z1
þ
�
−E5

4
ð−2z4mα4Þ
4z1

þ Γð− 1
4
Þð−α4Þ1=4
2 23=4

�
≅ − 2α4z31

3
− 2

7
α24z

7
1 þOðz81Þ;

where EνðzÞ denote the exponential integral and the last approximate equality is an expansion in powers of z1. From this expression it is
clear that the coefficients of positive powers of z1 are the same as the ones obtained expanding the integrand in (30).
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B. The subtracted on-shell NG action

SsubNG is defined in (13). Using (24), (32) and keeping
terms up to order z1, explicitly, leads to,

α0

L2
SsubNG ¼ −1þ a

�
1

zm
− 2zmα2

�
þ 10

3
a2α2

þ a4
�
α22

14

9
ð17 − 24 log 2Þ þ α4

14

9

�

− 8

3
a3z1α22 þOðz21Þ: (33)

The first two lines correspond to the terms that survive in
the UV limit z1 → 0. The IR scale zm should be replaced by
its expression (31). In this respect it is worth noticing that
the contribution of that scale is proportional to a, therefore
a change in that scale only changes the coefficient of the
perimeter. For α4 ¼ 0 the results for the coefficients of a2

and a4 coincide in the UV limit with the ones in [23].
Next the expression of SsubNG as a power series in a2 in the

UV limit z1 → 0, is given for the case α2 ¼ 0,

α0

L2
SsubNGj

z1¼0

¼−1þ 1

zm
aþα4

14

9
a4þ3

5
α6a6

− 11

5670
ðð−2111þ3360log2Þα24−270α8Þa8

þ 13

4725
ðð2999−5040log2Þα4α6þ175α10Þa10:

(34)

Due to the proof in IV B these results are unchanged by
considering additional α’s in the expression (3). It means that
the coefficients ofan in this expression are exact, the inclusion
of additional terms in the expansion of the warp exponent do
not change their value. This is a strictly UV result, it is only
valid in the limit z1 → 0. It shows that if the expectationvalue
ofWilson loops are related tominimal areas in thedual theory,
as assumed, then the expectation values of gauge invariant
operators inQCDcanbeused tosystematicallybuild theQCD
dual background. In particular, since there is no dimension 2
gauge invariant operator in pure QCD then the coefficient of
a2 should be zero.7 Thus, under these conditions, this
absence implies α2 ¼ 0. The case of the coefficient of
a4 is different since in QCD there is a gauge invariant
quantity of dimension 4, which is the expectation value of
hFμνFμνi. This coefficient is related to the gluon conden-
sate, and its value fixes the value of α4. This procedure can
be continued for higher order terms in the expansion.
Higher dimensional condensates fix the values of higher
index αi coefficients, once the ones with lower indices are
known. This is clearly exemplified by expression (34).

C. Computation of the gluon condensates

For the soft wall case αi ¼ δi2 α2 the results are the same
as in [23].
For the z4 case, αi ¼ δi4α4. Equation (33) shows that in

this case the coefficient of a4 in SsubNG is 14
9
L2

α0 α4. Using the
expression of G2 in terms of this coefficient appearing in
[23] leads to the expression for α4:

α4 ¼
1

56

π4

L2

α0
G2; (35)

which according to the value of G2 ¼ 0.028 GeV4 in [27]
gives L2

α0 α4 ¼ 4.9 × 10−3 GeV4.
In Appendix D it is shown how an additional relation

between L2

α0 and α4 can be obtained by means of computing
the string tension for the linear potential between static
quarks. This argument is based on the important fact that
the coefficient in front of the NG action, i.e., L2

α0 , is
independent of the loop’s shape. In particular it is the
same for the circular and for the rectangular loops. In the
case αi ¼ δi4α4 this relation is σ ¼ L2

α0 2
ffiffiffi
e

p ffiffiffiffiffi
α4

p
where σ is

the string tension mentioned above. Taking for it the slope
in the linear term of the Cornell potential [28], i.e.,
σ ¼ 0.186 GeV2 leads to

L2

α0
¼ 0.65; and α4 ¼ 7.5 × 10−3 GeV4: (36)

For the case αi ¼ δi6α6 the coefficient of a6 in SsubNG is
equal to

L2

α0
3

5
α6: (37)

In [29] a relation between this expectation value and the
coefficient of a6 in the expansion of a circular loop on its
radius a is derived, namely,

hWðCÞi⌋a6 ¼
π2

192Nc
hg3fabcFa

αβF
b
βδF

c
δαi; (38)

which should be equal to the coefficient (37). Furthermore
as shown in Appendix D the string tension for this case is
given by σ ¼ L2

α0 ð6α6eÞ1=3. Using the value of σ already
quoted and the one of L2

α0 obtained in (36), one obtains
α6 ¼ 1.4 × 10−3 GeV6, leading to

hg3fabcFa
αβF

b
βδF

c
δαi ¼

192Nc

π2
L2

α0
3

5
α6

¼ 3.18 × 10−2 GeV6;

which is compatible with the estimation ⋍4.5 × 10−2 GeV6

given in [12] for this condensate.7See footnote 4.
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VII. CONCLUDING REMARKS

In this work the calculation of the minimal area bounded
by a circular loop lying at a certain value z1 of the radial
coordinate z has been considered. This surface is embedded
in a 5-dimensional space with a global metric which in
conformal coordinates depends only on the warp factor
e2AðzÞ. The connection of this calculation with QCD
observables is shown in the following scheme:

Global metric⟷
NG

Min area⟷
a-exp

QCD condensates;

where a-exp goes for the expansion of the minimal area in
powers of the loop radius a. The continuation of this
scheme to the left would require the knowledge of a
gravity-string theory from which the warp factor could
be obtained. In this respect it is worth remarking that if such
a theory would include a dilaton field then the warp factor
e2AðzÞ considered in this work corresponds to the string
frame warp factor [25]. The arrows in the above scheme go
in both directions, trying to indicate that these connections
could be employed in both ways. That is, knowledge of
QCD condensates could be employed to obtain warp
factors as in (35) and, in the other direction, details of a
higher dimensional theory would give information
about QCD.
Regarding the connection between the minimal area and

the condensates, it is emphasized that an important ingre-
dient for this connection is the subtraction employed. This
subtraction involves both UV and IR divergences, the first
already present in the AdS case are treated as in [17] and
maintaining conformal invariance, the second coming from
the consideration of confining warp factors, require an IR
scale which is argued to be given naturally by the location
of the minimum of these warp factors. In this respect, it is
important to realize that the approximations employed are
well suited for the calculation of the first coefficients in the
expansion in powers of the radius a for the subtracted NG
action.
Finally it is noted that the techniques employed in this

work are not restricted to the particular family of warp
factors (2). Any other choice that can be made convergent
by the subtractions appearing in Sec. III would work.8 If
this is not the case other subtractions should be considered.
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APPENDIX A: THE SUBTRACTION FOR
Dp-BRANES INSPIRED WARP FACTORS

As an example of other warp factors of interest, the
following are considered:

AðzÞ ¼ −n log
�
z
L

�
þ fðzÞ: (A1)

The case n ¼ 1 is the one already studied in III A. For
backgrounds generated by a stack of Dp-branes, one often
arrives to metrics with n ≤ 1. These warp factors diverge in
the UV; the leading singularity is

AðzÞ ∼ −n log
�
z
L

�
⇒ A0ðzÞ ∼ −nL

z
: (A2)

The equation of motion near the boundary implies

−lim
z→0

2rn
1

z
r0ð1þ r02Þ þ lim

z→0
rr00 − lim

z→0
ð1þ r02Þ ¼ 0;

which in a similar way as in III A leads to the following
asymptotic behavior:

lim
z→0

r0ðzÞ ¼ 0r0ðzÞ ¼ 1

að1 − 2nÞ zþ � � � ðz ≪ 1Þ:

Inserting this in SsubNG, shows that the leading behavior of the
integrand in the NG action is governed by

lim
z→0

e2AðzÞðrðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0ðzÞ2

q
− aÞ

¼ lim
z→0

1

z2n

�
a

�
1þ 1

2
c20z

2 þ � � �
�
− a

�

¼ alim
z→0

1

z2n

�
1

2
c20z

2 þ � � �
�

¼ 0:

This implies that for n > 1 the regularization procedure
does not work since the expression diverges. However
n ≤ 1 corresponds to the metrics obtained from top-bottom
approaches with stacks of Dp-branes. A concrete example
can be found in [30], where the area of the circular loop is
found to be

SNGjDp ¼ 1

2πα0

Z
a

0

�
5 − p
2

1

z

�7−p
5−p
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p
dr: (A3)

The regularization procedure ensures the convergence of
the subtracted area except for the cases p ¼ 4 and p ¼ 5.8See Appendix A for an example.
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APPENDIX B: ADMISSIBLE MONOMIALS IN
THE EXPANSION OF THE NAMBU-GOTO

ACTION SOLUTION

The NG action times α0 is an area and therefore has
dimension of length squared. Making explicit the first term
in (A1) it is written as follows:

α0SNG ¼ L2n

Z
a

0

e2
P

k¼1
αkzk

z2n
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p
dr:

Therefore, the integral in this last equation should have
dimensions of length to the power 2 − 2n. In particular for
the case n ¼ 1 (deformation of AdS), it should be dimen-
sionless. This integral depends on a, z1 which have
dimension of length, and the α’s. In this respect it is useful
to note that the αk has dimensions of length to the power−k.
Any monomial contributing to α0

L2n SNG of the general form,

ajzm1 α
l
k;

will have vanishing coefficient unless

jþm − kl ¼ 2 − 2n:

The same general conclusions are valid for α0
L2n SCT.

APPENDIX C: SOLUTIONS NEEDED TO OBTAIN
THE CONDENSATES OF DIMENSIONS 8 AND 10

The solution expanded in powers of a reads

ψðtÞ ¼ t2 þ
X∞
n¼1

a2nψnðtÞ: (C1)

To obtain the condensates up to dimension 10 one needs to
include terms up to n ¼ 5. For the case where α2 ¼ 0, the
functions ψn are found to be

ψ1ðtÞ ¼ 0

ψ2ðtÞ ¼ − 2

3
α4ðtðt3 þ 2t − 4Þ þ 4 logðtþ 1ÞÞ

ψ3ðtÞ ¼ − 1

5
α6ðtð2t5 þ 3t3 þ 6t − 12Þ þ 12 logðtþ 1ÞÞ

ψ4ðtÞ ¼ − 2

945
α24

�
−6720Li2

�
tþ 1

2

�

− 8 logðtþ 1Þð105tðt3 þ 6tþ 6Þ þ 210 logðtþ 1Þ − 478Þ
þ ðtðtð135t5 − 156t3 − 304tþ 1260Þ þ 5272Þ − 3824Þt

þ 13440t logð2Þ þ 6720 logð1 − tÞ log
�

2

tþ 1

�
þ 560π2 − 3360log2ð2Þ

�

− 2

21
α8ðtð3t7 þ 4t5 þ 6t3 þ 12t − 24Þ þ 24 logðtþ 1ÞÞ

ψ5ðtÞ ¼ − 1

1890

�
2α4α6

�
−30240Li2

�
tþ 1

2

�

þ tðtðtðtðtð420t5 − 321t3 − 1772tþ 2772Þ þ 240Þ þ 2604Þ þ 26184Þ − 22128Þ
− 24 logðtþ 1Þð21tð2t5 þ 15t3 þ 42tþ 48Þ þ 252 logðtþ 1Þ − 922Þ

þ60480t logð2Þ þ 30240 logð1 − tÞ log
�

2

tþ 1

�
þ 2520π2 − 15120log2ð2Þ

�

þ 35α10ðtð12t9 þ 15t7 þ 20t5 þ 30t3 þ 60t − 120Þ þ 120 logðtþ 1ÞÞ
�
; (C2)

where Li2 denotes the dilogarithm function.

APPENDIX D: LINEAR POTENTIAL BETWEEN STATIC QUARKS

The string tension is given by the value at its minimum of the function [24],

fðzÞ ¼ α0

L2
e2AðzÞ:
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For the case αn ¼ α4δn4 it is given by

fðzÞ ¼ α0

L2
e2ð− log zþα4z4Þ:

Its minimum and the corresponding string tension are
respectively given by

z0 ¼
1ffiffiffi
2

p
α1=44

; σ ¼ fðz0Þ ¼
2α0

L2

ffiffiffiffiffiffiffi
eα4

p
;

which has the right units since α4 has units of length to the
minus 4, thus

ffiffiffiffiffi
α4

p
has units of energy squared as it

corresponds to a string tension.
For the case αn ¼ α6δn6 the minimum and string tension

are respectively given by

z0 ¼
1

ð6α6Þ1=6
; fðz0Þ ¼

α0

L2
ð6α6eÞ1=3:
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