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We present a minimal one-dimensional deterministic continuous dynamical system that exhibits chaotic
behavior and complex transport properties. Our model is an overdamped rocking ratchet with finite dissipation,
that is periodically kicked with a δ function driving force, without finite inertia terms or temporal or spatial
stochastic forces. To our knowledge this is the simplest model reported in the literature for a ratchet, with this
complex behavior. We develop an analytical approach that predicts many key features of the system, such as
current reversals, as well as the presence of chaotic behavior and bifurcation. Our analytical approach allows
us to study the transition from regular to chaotic motion as well as a tangent bifurcation associated with this
transition. We show that our approach can be easily extended to other types of periodic driving forces. The square
wave is shown as an example.

DOI: 10.1103/PhysRevE.91.032901 PACS number(s): 05.45.Ac, 05.60.Cd, 87.15.Vv, 87.15.A−

I. INTRODUCTION

The nonequilibrium mechanism of generating directed
transport from the interaction of broken symmetry, periodic
structures, and fluctuations in the presence of an unbiased
driving force, usually known as the ratchet effect, has recently
received much attention [1–5]. This growing interest in
ratchets is mostly due to the large number of successful
applications of ratchet models to understand and control a
wide variety of physical and biological systems. For example,
ratchets have been used to model molecular or Brownian
motors inside eukaryotic cells [2,3,6–8], as well as the
operation of muscles at the body level [9]. Another important
application is in the development of devices for guiding
nano- and microparticles, such as transport of cold atoms
in optical lattices [10,11], control of the motion of vortices
in superconducting devices [12–19], and mass separation
and trapping schemes at the microscale [4,20–23]. Thermal
fluctuations produce a directed current in the motion of
Brownian particles when the thermal noise interacts with the
ratchet potential. On the other hand, even in the absence
of noise, underdamped or inertial ratchets show complex
dynamical behavior, including chaotic motion [24]. This
deterministically induced chaos to some extent replaces the
role of noise and produces certain unusual types of dynamical
behavior, including multiple current reversals [25,26], which
is particularly useful for technological applications such
as biological particle separation [20–23]. Recently, Vincent
et al. [27] considered a system of two interacting inertial
ratchets and demonstrated how the coupling can be used to
control current reversals. Recently it was found that large
ratchet currents can be generated in inertia ratchets, thanks to
the presence, in the Hamiltonian limit, of transporting stability
islands embedded in the chaotic sea. Studies with dissipation
as one of the control parameters gave a direct connection
between chaotic domains and a family of isoperiodic stable
structures with the ratchet current [28–30]. Chaotic behavior
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in continuous dynamical systems is observed if the system
possesses a certain minimum degree of nonlinearity. The
reason is that the Poincaré-Bendixson theorem stipulates that
chaotic behavior does not exist in one- or two-dimensional
continuous dynamical systems, because such systems have
regular solutions. This is in contrast to discrete systems, such as
the logistic map, that show chaotic behavior regardless of their
dimensionality. In the case of one-dimensional deterministic
overdamped ratchets, chaotic behavior has been observed by
avoiding the Poincaré-Bendixon theorem [5]. For example,
adding stochasticity to an overdamped ratchet with quenched
disorder is one way to obtain chaos and anomalous diffusion
in the system [31]. Long range spatially correlated quenched
disorder also produces anomalous diffusion in overdamped
ratchets and both the amount of quenched disorder and the
degree of correlation can enhance the anomalous diffusive
transport [32].

Synchronization is a phenomenon of considerable scientific
and technological interest (for a recent review see Ref. [33]).
In the case of ratchets, synchronized motion of particles with
an external sinusoidal driving force has been studied for both
a perfect and a disordered ratchet potential [34,35]. In the
disordered ratchet potential, anomalous diffusion was associ-
ated with a new trapping mechanism [34,35]. Coupling over-
damped ratchets increases the order of the dynamical equations
and, as a consequence, chaos may be obtained [27,28,36–38].
Another strategy to avoid the conditions of the Poincaré-
Bendixon theorem is to use a discontinuous periodic driving
force so that the vector field is no longer a continuously
differentiable function. Chaos and multiple synchronization
become possible because trajectories for non-continuously
differentiable fields may be discontinuous. This approach was
considered in Ref. [5], where a deterministic overdamped
ratchet driven by a periodic square driving force was shown to
display chaotic behavior. The strong nonlinearity of the driving
force produces a bifurcation pattern with synchronized as well
as chaotic regions. The necessary and sufficient conditions that
the ratchet potential under a periodic square-wave driving force
must satisfy in order to have a vanishing current were obtained
by Salgado-Garcı́a et al. [39]. Recently, the first experimental
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realization of a deterministic optical rocking ratchet under
a periodic square-wave driving force was obtained by Arzola
et al. [40]. A periodic and asymmetric light pattern was made to
interact with dielectric microparticles in water, giving rise to a
ratchet potential. The motion of the microparticles with respect
to the pattern with an unbiased time-periodic square-wave
function tilts the potential in alternating opposite directions.
A thorough analysis of the dynamics of the system and a
comparison between theoretical and experimental results are
presented in Ref. [41].

Our main interest in this paper is to gain a deeper insight
into the chaotic behavior of deterministic overdamped ratchet
systems by considering positive and negative δ functions as the
unbiased driving force. The reason for using alternate positive
and negative pulses as the driving force is twofold: on the one
hand, the integrability of the dynamical equations makes it
possible to obtain analytical maps of the particle dynamics,
and on the other hand, due to the strong nonlinearity of the δ

function the system develops a rich dynamical behavior.
We show in this work that alternate positive and negative δ

functions as the unbiased driving force on a ratchet potential
produce both synchronized and chaotic regions. Being an
autonomous one-dimensional (1D) system, it is possible to
obtain a 1D map where the transition from regular to chaotic
motion can be studied. We show that a tangent bifurcation
diagram is associated with this transition by analytically
obtaining a 1D map and studying the corresponding power
spectrum. In order to investigate the dynamics of the system
with other driving forces, we consider a group of n positive δ

function pulses followed by no force up to the end of the first
half of the period T and then the same number of negative
pulses with a time interval with no force up to the end of the
full period T . The number of pulses, n, is then increased until
it fills the entire time interval T . We compare the dynamics of
this system with the case of a continuous square wave as the
driving force used in Ref. [5]. In both cases the synchronization
regions are equivalent, showing that the continuous driving
force may be considered a succession of δ function pulses.

The outline of the paper is as follows. In Sec. II we present
the kicked-ratchet model and discuss the synchronization
regions and the bifurcation diagram. The analytical map is
derived in Sec. III. In Sec. IV we compare the case of a
continuous square wave with the δ function built pulse. Finally,
conclusions are presented in Sec.V.

II. THE KICKED RATCHET: TRANSPORT
AND SYNCHRONIZATION

The model under study is an overdamped ratchet, where
noninteracting particles move through a ratchet potential,
under a viscous friction with coefficient γ . The particles are
driven by a periodic force fT (t). The dynamical equation for
each particle is as follows:

γ ẋ = Rλ(x) + fT (t). (1)

The ratchet force Rλ(x) is periodic in x with spatial period
λ, and it has zero spatial mean value, 〈Rλ(x)〉x = 0. The
conservative ratchet force is related to the ratchet potential
U (x) by the relation

Rλ(x) = −dU/dx, (2)

where U (x) is analytically defined by

U (x) = −A
[
sin(2πx/λ) + μ

2
sin(4πx/λ)

]
. (3)

To make contact with our previous work [42] we use A = 1,
λ = 2π , γ = 0.1109, and μ = 0.5.

The driving force fT (t) is an alternating periodic sequence
of positive and negative δ functions with weight ±J and period
T . It may be expressed as follows:

fT (t) =
∞∑
i=0

(−1)iJ δ(t − iT /2). (4)

This driving force has zero temporal mean value 〈fT (t)〉t = 0.
Then the complete model under study is

ẋ = cos(x) + 0.5 cos(2x)

γ
+ J

γ

∞∑
i=0

(−1)iδ(t − iT /2), (5)

with J and T as control parameters. Relevant scales are the
spatial period of the ratchet, λ, for coordinate x, the period
of the external force, T , for the time t , and vω = λ/T for
velocities. The advantage of using δ function pulses is to
minimally disturb the system, allowing it to evolve freely,
between each pulse. Consequently it is possible to understand
the dynamics by only analyzing the fixed points and the
characteristic times of the autonomous system.

We integrated Eq. (5) using a fourth order, variable step,
Runge-Kutta algorithm. The studied region of the parameter
space is 0.8 < T < 2.0, and 0 < J < 20, with �T = 0.005
and �J = 0.005 steps. For J = 0 and T = 0.8 the system
starts at x = xmax � −1.19. This value corresponds to a
maximum of the ratchet potential U (x). For the other values
of T and J = 0 the initial condition is the final value for
the previous T , reduced to the first well. For the next value
of J = 0.005 and the starting value of T = 0.8 the initial
condition is the final value for J = 0 and T = 0.8, reduced
to the first well. For the other values of T and J = 0.005 the
initial condition is the final value for the previous T , and so on.
This is the “method II” used in Ref. [43]. For each value of J

and T , the initial data for a transitory time of ttran = 100T are
discarded and then the trajectory starts to be sampled before
each positive δ function pulse and it is stored from t = 100T

to t = 160T .
Two aspects of each trajectory are considered: the rotation

number of the oscillations and the current through the ratchet.
Let q be the number of periods of the driving force required
for the state variable x̃ = x mod λ and its derivative v = ẋ

to repeat within the range �x � 0.01λ and �v � 0.01 v ω,
respectively. This q is in fact the denominator of the rotation
number [42]. The synchronization is verified up to q = 60.
The current is measured in units of the mean velocity 〈v〉 =
(x160T − x100T )/60T .

The results for the normalized mean velocity, 〈ṽ〉 = 〈v〉/vω,
and the q values in the J -T parameter space, are shown in
Figs. 1(a) and 1(b), respectively, for 0.8 < T < 2.0 and 0 <

J < 5. The color scheme is described in the figure caption.
Comparing Figs. 1(a) and 1(b) clearly shows that the

particle oscillates with 〈v〉 = 0 and q = 1 for most values of T

and J . But there are stripelike regions with interesting transport
properties, where 〈v〉 �= 0 and different integer values of q
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FIG. 1. (Color online) (a) The mean velocity 〈v〉, and (b) values
of q are plotted in the J -T parameter space, with γ = 0.1109 and
μ = 0.5. The indicator bar on the right in (a) shows the corresponding
values of the mean velocity. The color scale in (b) is as follows: yellow
(lightest gray) for q = 1, cyan (second lightest gray) for q = 2, green
(third lightest gray) for q = 3, purple (fourth lightest gray) for q = 4,
blue (darkest gray) for q = 5, black for 6 � q � 32, and white for
q > 32.

are possible. The mean velocity is always negative, meaning
that particles only move backward. The maximum value of
the modulus of the mean velocity is |〈v〉/vω| = 1, which
corresponds to synchronized regions in the J -T parameter
space with q = 1.

In Figs. 2(a) and 2(b) we show enlarged views of one of
the stripes in Fig. 1. The horizontal dotted lines in the figures
mark the values J = 0.2653 and J = 0.4315. The vertical
dotted lines mark the values T = 0.8185 and T = 1.116. The
significance of these regions are discussed below.

The bifurcation diagrams for q and 〈ṽ〉 as functions of
T , with J = 0.3485, are shown in Fig. 3. In these figures
synchronization is found with a higher precision than in Figs. 1
and 2, using ranges �x � 0.001 λ and �v � 0.001 vω,
respectively.

We can give a simple explanation for the origin of the stripes
in Fig. 1. Figure 4 shows the ratchet force as a function of the
dimensionless units x/λ. As usual, in 1D systems fixed points
are alternatively stable and unstable. The location of stable
fixed points is x̃∗

s = x∗
s /λ = a � 0.19036 + n, and unstable

fixed points are located at x̃∗
u = x∗

u/λ = −a � −0.19036 + n.
Domains of attraction of the stable fixed points are limited by
nonstable ones. If the starting position of a particle, x̃0, is in
the domain of attraction of the stable fixed point x̃s

i , without
external forcing the particle will move through the ratchet to
this stable fixed point.

0.8185 1.116 1.5

0.2653

0.35

0.4315

T

J

(b)
T

J

(a)

0.8185 1 1.116 1.3 1.5
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0.35
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−0.8
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−0.4

−0.2

0

FIG. 2. (Color online) (a) Enlarged views of the mean velocity
〈v〉, and (b) values of q in the first stripe in Fig. 1 are plotted in the
J -T parameter space, with γ = 0.1109 and μ = 0.5. The indicator
bar on the right in (a) shows the corresponding values of the mean
velocity. The color scale in (b) is as follows: yellow (lightest gray)
for q = 1, cyan (second lightest gray) for q = 2, green (third lightest
gray) for q = 3, purple (fourth lightest gray) for q = 4, blue (darkest
gray) for q = 5, black for 6 � q � 32, and white for q > 32.

A δ function with weight ±J forces the particle to jump
from x̃0 to x̃0 ± J/(γ λ). This new position may be in a different
domain of attraction than the initial position. If this is the
case, the particle evolves inside a different well. Suppose
the particle starts at the stable fixed point x̃∗

s � 0.19036.
The necessary condition for a positive current is J/(γ λ) >

1 − 2a � 0.6192. For λ = 2π and γ = 0.1109, this implies
that J � 0.4315. Similarly, a negative current requires that
J/(γ λ) > 2a � 0.3807. For λ = 2π and γ = 0.1109, this
implies that J � 0.2653. These values are shown as dotted
lines in Fig. 2. They correspond to the limiting values of each
stripe zone. The negative current is favored, because it requires
a smaller value of J to reach the domain of attraction of a
stable fixed point to the left, rather than to the right. Note that
for 0.2653 < J < 0.4315 the negative 〈ṽ〉 has a maximum
absolute value of 1, because the positive δ function pulse does
not change the well of the particle but the negative one does.
This analysis is exact if T is high enough to allow the particle
to reach a stable fixed point between the δ function pulses. The
value T = 1.116 shown in Fig. 2 is the characteristic time over
which the particle does reach the stable fixed point between δ

function pulses within ˜errx .
For 0.4315 � J � 1.2653 a positive δ function force moves

the particle one well forward and the negative one moves the
particle one well backward. Consequently, 〈v〉 = 0 again.

If J is increased to J/(γ λ) > 1 + 2a, meaning J � 1.2653,
a new stripe region appears. In this region, for the same T , the
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FIG. 3. (a) Bifurcation diagram showing the dependence of q

as a function of T , with J = 0.3485, γ = 0.1109, and μ = 0.5;
(b) bifurcation diagram showing the dependence of the mean velocity
as a function of T , with J = 0.3485, γ = 0.1109, and μ = 0.5.

particle has the same values of 〈v〉 as in the previous stripe:
〈v〉/vω = −1, for example. This implies that the particle goes
forward one well and backward two wells in each period T .

III. ANALYTICAL MAP

In order to analyze the dynamical behavior of the particles
near the border between zones with different q and 〈v〉, the time
series for T = 0.85115 and J = 0.3485 is chosen, because
for these values the system displays a small negative mean
velocity and a high value of q (see Figs. 2). Figure 5 shows
the power spectrum of this time series. The spectrum shows

−0.8 0.8
−10

0

15

x / λ

R
(x

) 
/ γ

1 − 2a2a

FIG. 4. The ratchet force with fixed points for γ = 0.1109 and
μ = 0.5. Stable fixed points are located at x̃∗

s = a + n,n ∈ Z with
a � 0.1904. Unstable fixed points are located at x̃∗

u = −a + n,n ∈ Z.
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FIG. 5. Power spectrum for the the time series {x ′
n} generated

by an overdamped ratchet with γ = 0.1109 and μ = 0.5, for the
same bifurcation points in parameter space of Fig. 6 (note that the
slope in ln-ln scale is −2: (a) T = 0.81850 and J = 0.3485, and
(b) T = 1.11600 and J = 0.3485.

the characteristic 1/f power-law behavior, corresponding to
an instability produced by the tangent bifurcation.

The autonomous system is 1D and consequently it is
possible to construct a 1D map to analyze the transition from
regular motion with a rational value for v/vω to an irregular
chaotic region with an irrational value of v/vω. Below, we list
the steps in the derivation of the map.

(1) Suppose at t = 0 the particle is at the position xn.
Applying a positive δ function pulse forces the particle to
jump to position x1. As a result, we can write∫ x1

xn

dx = 1

γ

∫ 0+

0−
[cos(x) + μ cos(2x) + J ]dt = J

γ
, (6)

where

x1 = xn + J

γ
. (7)

(2) After the force is applied, the system evolves following
the autonomous differential equation:

γ ẋ = cos(x) + μ cos(2x). (8)

Equation (8) may be integrated as follows:

t+(x) =
∫ x

xn

γ

cos(x) + μ cos(2x)
dx

= 23/2

33/4

{
tanh−1

[
1 + √

3

121/4
tan(x/2)

]

− tan−1

[−1 + √
3

121/4
tan(x/2)

]}∣∣∣∣x
x1

. (9)

At the end of the first half-period t = T/2 the particle reaches
position x1/2, which is the solution of

T

2
= 23/2

33/4

{
tanh−1

[
1 + √

3

121/4
tan

(
x1/2

2

)]

− tan−1

[−1 + √
3

121/4
tan

(
x1/2

2

)]

− tanh−1

[
1 + √

3

121/4
tan

(
x1

2

)]

+ tan−1

[−1 + √
3

121/4
tan

(
x1

2

)]}
. (10)
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FIG. 6. (Color online) One-dimensional map of the system
showing the tangent bifurcation in two points of the parameter space.
The system is the overdamped ratchet with γ = 0.1109 and μ = 0.5.
(a) T � 0.81850 and J = 0.3485; (b) zoom of (a) near the bifurcation
point; (c) T � 1.11600 and J = 0.3485; (d) zoom of (c) near the
bifurcation point. The bifurcation values for T are the limits in the
bifurcation diagrams shown in Fig. 1.

(3) Now, a negative δ function force is applied and the
particle jumps to position x2, where

x2 = x1/2 − J

γ
. (11)

(4) From then on, the dynamical equation is again Eq. (8),
and during the interval �t = T/2 the particle finally reaches
position xn+1, which is the solution of the following equation:

T

2
= 23/2

33/4

{
tanh−1

[
1 + √

3

121/4
tan

(
xn+1

2

)]

− tan−1

[−1 + √
3

121/4
tan

(
xn+1

2

)]

− tanh−1

[
1 + √

3

121/4
tan

(
x2

2

)]

+ tan−1

[−1 + √
3

121/4
tan

(
x2

2

)]}
. (12)

Then xn+1 = f (xn) is the solution of the system of
Eqs. (10)–(12).

Figures 6(a) and 6(c) show the analytical map for T =
0.81850 and T = 1.11600, respectively, for J = 0.3485.
These parameter values are inside the chaotic regions (see
Fig. 3). Figures 6(b) and 6(d) show, respectively, zooms of
maps in Figs. 6(a) and 6(c) showing that the tangent bifurcation
is the origin of the instability. The fact that the bifurcation is the
origin of the instability is also confirmed by the 1/f 2 behavior
of the power spectra shown in Figs. 5(a) and 5(b).

IV. OTHER PERIODIC FORCES

It is interesting to extend the above analysis to other more
general types of periodic forces. Specifically, consider the case
of K consecutive positive δ function pulses applied at times
t = 0 + iT /1000 + nT , with i = 0 to K − 1, and the same
number K of negative δ function pulses at times t = T/2 +
iT /1000 + nT . To produce the same total impulse for all K ,
each pulse has a weight Ji = J/K . Figures 7(a)–7(h) show the
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FIG. 7. (Color online) Bifurcation regions of 〈v〉 in the parameter
space [J,T ] for positive and negative trains of δ function pulses of
length K: (a) K = 1, (b) K = 10, (c) K = 100, (d)K = 130, (e)
K = 150, (f) K = 200, (g) K = 300, and (h) K = 400.

bifurcation behavior of the mean velocity in the J -T parameter
space for different values of K . There are two idle times after
the positive δ function pulses and after the negative δ function
pulses, given by tidle = T/2 − (K − 1)T/1000.

The sequence in Fig. 7 shows the disappearance of the
synchronization region with negative transport properties
and the appearance of another synchronization region with
positive transport, as K increases. The diagram remains almost
identical to that obtained for K = 1 if the number K of δ

function pulses is small. In that case the analysis using the
one-dimensional map explained in Sec. III remains valid. But
if the number of δ function pulses increases, and the duty cycle
α = (K − 1)/500 increases, the synchronization regions with
negative current disappear. Progressively a new region with
positive current emerges and the one-dimensional analytical
map is no longer valid. Let us now consider an intermediate
K = 130 value in order to gain a deeper insight in this issue
[see Fig. 7(d)].

Let us analyze Fig. 8. This is a zoom in the current
reversal area of the mean velocity bifurcation pattern shown
in Fig. 7(d).

Let us consider seven points, A through G:
Point A: T = 2.22, J = 0.580, 〈v〉/vω = 0,
Point B: T = 2.22, J = 0.590, 〈v〉/vω = −1,
Point C: T = 2.22, J = 0.600, 〈v〉/vω = 0,
Point D: T = 2.50, J = 0.617, 〈v〉/vω = 0,
Point E: T = 2.50, J = 0.627, 〈v〉/vω = +1,
Point F : T = 2.50, J = 0.637, 〈v〉/vω = 0,
Point G: T = 2.36, J = 0.610, 〈v〉/vω = 0.
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FIG. 8. (Color online) Detail of the bifurcation regions of 〈v〉 in
the parameter space [J,T ] for positive and negative δ trains of length
K = 130. The significance of points A to G are explained in the text.

For points A and D: when the K = 130 positive Dirac
δ function pulses are applied, the normalized impulse value
J/(2πγ ) is not high enough to carry particles from around the
x̃ = 0.1904 stable fixed point to the right of the x̃ = 0.8096
unstable fixed point (see Fig. 4). Then, the force-positive-half-
cycle idle time begins, and the particle returns to a position
near the starting point, x̃ = 0.1904. Now the K = 130 negative
Dirac δ function pulses are applied, and the impulse value J is
not high enough to carry particles from around the x̃ = 0.1904
stable fixed point to the left of the x̃ = −0.1904 unstable fixed
point. Then, the force-negative-half-cycle idle time begins, and
the particle returns again to around the x̃ = 0.1904 starting
fixed point. Then, the average velocity 〈v〉/vω equals zero.

For points C and F : when the K = 130 positive Dirac
δ function pulses are applied, the normalized impulse value
J/(2πγ ) is high enough to carry particles from around the
x̃ = 0.1904 fixed point to the right of the x̃ = 0.8096 unstable
fixed point (see Fig. 4). Then, the force-positive-half-cycle idle
time begins, and the particle goes forward to around the x̃ =
1.1904 starting fixed point. Now the K = 130 negative Dirac
δ function pulses are applied, and the impulse value J/(2πγ )
is high enough to carry particles from around the x̃ = 1.1904
fixed point to the left of the x̃ = 0.8096 unstable fixed point.
Then, the force-negative-half-cycle idle time begins, and the
particle goes back around the x̃ = 0.1904 starting fixed point.
Then, the average velocity equals zero.

The question now is, why does point B have a negative
velocity and why does point E have a positive velocity? In
order to understand that, we have to take into account that a
relaxation time tr = T/1000 follows every Dirac δ function
pulse we apply. Let us stress that tr is the small time between
two consecutive Dirac δ function pulses, and not the idle time
tidle mentioned above. Since the absolute value of the ratchet
force is bigger in the 0.8096 < x̃ < 1.1904 region than in
the 0.1904 < x̃ < 0.8096 region, the ratchet force has more
influence during the K − 1 relaxation times in the negative
half cycle than during the positive half cycle. An increase
in J/(2πγ ) from point D to point E enables particles to go
from around the x̃ = 0.1904 fixed point to the right of the
x̃ = 0.8096 unstable fixed point when the positive Dirac δ

function pulses are applied. Then, the positive-half-cycle idle
time begins, and particles move forward to the x̃ = 1.1904
stable fixed point. When the negative Dirac δ function pulses
are applied, however, the influence of the ratchet force is so

important during the relaxation time, that the particles are not
able to go from the x̃ = 1.1904 fixed point and reach the left of
the x̃ = 0.8096 unstable fixed point. Then, the negative-half-
cycle idle time begins, and particles return around the x̃ =
1.1904 fixed point. Therefore, the average velocity is positive.

Let us consider now points A, B, and C. Their periods
are lower than the periods of points D, E, and F . The lower
the period, the lower the relaxation time, and the lower the
influence of the ratchet force on the particle behavior. An
increase in J/(2πγ ) from point A to point B is not enough
to make the particle go from around the x̃ = 0.1904 stable
fixed point to the right of the x̃ = 0.8096 unstable fixed point,
when the positive Dirac δ function pulses are applied. Then,
the positive-half-cycle idle time begins, and particles return
around the x̃ = 0.1904 starting fixed point. When the negative
Dirac δ function pulses are applied, however, the influence of
the ratchet force during tr is not so important and the particles
are able to go from around the x̃ = 0.1904 fixed point to
the left of the x̃ = −0.1904 unstable fixed point. Then, the
negative-half-cycle idle time begins, and particles go around
the x̃ = −0.8096 stable fixed point. Therefore, the average
velocity is negative.

Now consider point G. For those J/(2πγ ) and T values,
the Dirac δ function pulses are just large enough to carry
particles from the x̃ = 0.1904 stable fixed point to the x̃ =
0.8096 unstable fixed point during the application of the force-
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FIG. 9. (Color online) Bifurcation regions of the mean velocity
in the parameter space [J,T ]. The system is the overdamped ratchet
with γ = 0.1109 and μ = 0.5. (a) 500 consecutive positive δs at t =
0 + iT /1000 + nT ,i = 1, . . . ,499, n = 1,2, . . . and 500 consecu-
tive negative δs at t = T/2 + iT /1000 + nT ,i = 1, . . . ,499, n =
1,2, . . .; (b) square waveform with a positive half cycle of length
T/2 and amplitude A = 1000J/T , and a negative half cycle with
amplitude −A.
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positive-half-cycle Dirac δ function pulses. They also carry
particles from the x̃ = 1.1904 stable fixed point to the x̃ =
0.8096 unstable fixed point during the application of the force-
negative-half-cycle Dirac δ function pulses.

Finally, let us stress that if K is increased to 500, the α = 1
behavior is almost identical to that obtained with a square wave
with amplitude ±A and period T , with AT/2 = J = KJi .

Figures 9(a) and 9(b) show the bifurcation diagram for the
mean velocity in the J -T parameter space for 500 δ function
pulses and for a square wave. It is clear from these results
that the behavior of the system is almost identical for both
cases.

V. CONCLUSIONS

We have introduced a minimal one-dimensional determinis-
tic ratchet model in the overdamped regime driven by alternate
positive and negative pulses. The strong nonlinearity of the
driving force produces a bifurcation pattern with synchronized
as well as chaotic regions. The integrability of δ functions

allowed us to obtain analytical maps of the particle dynamics
and study the transition from regular to chaotic motion. We
find that a tangent bifurcation is associated with this transition.
Both our analytical 1D map and the power-law behavior of the
corresponding power spectrum confirm this. In order to extend
the analysis to other more general types of periodic forces we
consider a set of K alternate positive and K negative pulses
as the driving force. A transition from negative to positive
current is obtained with increasing K . Finally, we find that
the synchronization regions of both a continuous square wave
and a pulse composed of a series of δ function pulses have
equivalent dynamical behavior, indicating that the continuous
driving force may be considered a succession of pulses from
the point of view of the ratchet dynamical system we have
studied.
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[21] I. Derényi and R. D. Astumian, Phys. Rev. E 58, 7781 (1998).

[22] D. Ertas, Phys. Rev. Lett. 80, 1548 (1998).
[23] T. A. J. Duke and R. H. Austin, Phys. Rev. Lett. 80, 1552 (1998).
[24] P. Jung, J. G. Kissner, and P. Hänggi, Phys. Rev. Lett. 76, 3436

(1996).
[25] J. L. Mateos, Phys. Rev. Lett. 84, 258 (2000).
[26] M. Barbi and M. Salerno, Phys. Rev. E 62, 1988 (2000).
[27] U. E. Vincent, A. Kenfack, D. V. Senthilkumar, D. Mayer, and

J. Kurths, Phys. Rev. E 82, 046208 (2010).
[28] L. Wang, G. Benenti, G. Casati, and B. Li, Phys. Rev. Lett. 99,

244101 (2007).
[29] A. Celestino, C. Manchein, H. A. Albuquerque, and M. W.

Beims, Phys. Rev. Lett. 106, 234101 (2011).
[30] G. G. Carlo, Phys. Rev. Lett. 108, 210605 (2012).
[31] M. N. Popescu, C. M. Arizmendi, A. L. Salas-Brito, and F.

Family, Phys. Rev. Lett. 85, 3321 (2000).
[32] L. Gao, X. Luo, S. Zhu, and B. Hu, Phys. Rev. E 67, 062104

(2003).
[33] F. Family, D. G. Zarlenga, H. A. Larrondo, and C. M. Arizmendi,

AIP Conf. Proc. 1339, 181 (2011).
[34] D. G. Zarlenga, H. A. Larrondo, C. M. Arizmendi, and F. Family,

Phys. A 352, 282 (2005).
[35] D. G. Zarlenga, H. A. Larrondo, C. M. Arizmendi, and F. Family,

Phys. Rev. E 75, 051101 (2007).
[36] S. Cilla, F. Falo, and L. M. Florı́a, Phys. Rev. E 63, 031110

(2001).
[37] A. J. Fendrik, L. Romanelli, and R. P. J. Perazzo, Phys. A 368,

7 (2006).
[38] H. Goko and A. Igarashi, Phys. Rev. E 71, 061108 (2005).
[39] R. Salgado-Garcı́a, M. Aldana, and G. Martı́nez-Mekler, Phys.

Rev. Lett. 96, 134101 (2006).
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