
A Web-based model-driven platform for Web augmentation

Matias Urbieta1,2, Franco Mahl1,Gustavo Rossi1,2, Gabriela Bosetti 1

1Facultad de Informática, Universidad Nacional de La Plata, calle 50 y 120,1900, La Plata, Buenos Aires, Argentina
2CONICET, La Plata, Argentina

{matias.urbieta, gustavo,gabriela.bosetti}@lifia.info.unlp.edu.ar, francomahl@gmail.com

Keywords: Model-Driven Web Engineering, Augmentation, End-User Development, Separation of Concern

Abstract: The emergence of Web personalization allowed introducing improvements to an application that runs as
a black box just considering those perceivable behaviors by the end-user. In spite of which mechanisms
(personalization, customization, etc.) that a particular application supports; it is not realistic to state that
any application, being idealized by few people (e.g., its owners), covers every single user’s needs. In this
sense, users may have unsatisfied requirements. Nowadays available Web augmentations are making full use
of server-side capabilities for meeting requirements. We present a Web Augmentation modeling approach
contemplating a client-server application that hides the back-end complexity to users. In this work we present
a Web CASE tool to model server-side behavior for Web augmentation. This tool provides a full web-based
experience for designing and running Web augmentations that requires client and server-side components.

1 INTRODUCTION

The emergence of Web personalization allowed
introducing improvements to an application that runs
as a black box just considering those perceivable
behaviors by the end-user. In spite of which
mechanisms (personalization, customization, etc.)
that a particular application supports; it is not realistic
to state that any application, being idealized by
few people (e.g., its owners), covers every single
user’s needs. In this sense, users may have
unsatisfied requirements. To tackle this problem a
mechanism, widespread used nowadays, is to alter
Web page once these are loaded on the client-side.
By manipulating the Web site’s Document Object
Model (DOM), the user would perceive a variation
of the Website that may add, remove or change
both contents and functionalities. This technique,
called Web Augmentation, is widely adopted and is
commonly deployed as Web browser extensions that
package software artifacts able to access these DOMs
and altering it by using its interface. Nowadays
available Web augmentations are making full use of
server-side capabilities for meeting requirements that
demand high-performance computing (i.e. Similar
Sites1), collaborative features –nowadays a de-facto

1Similar Sites, https://chrome.google.com/
webstore/detail/similar-sites-discover-re/

requirement– (i.e. Evernote2), persistence (i.e.
Last Pass3), data synchronization between devices.
For the purpose of clarification, let’s consider again
the Grammarly extension; at the server-side end,
the sentences are processed using Natural Language
Processing which demands CPU resources, and
storage for the text under processing. The reader must
note that companies are using Web augmentations
technique for enhancing their solutions which aim
at providing an improved experience to the user
and this increasing its adoption among users. Web
augmentation has an interesting combination of real
use from part of the users crowd of Web applications
and some research works aiming at conducting
this activity promoting good software development
practices, such as reuse (Garrido et al., 2013),
robustness (Dı́az et al., 2010), etc.. Most of these
approaches rely on client-side, i.e. without the
need of a back-end application for performing the
augmentation effect. However, since this architecture
limits the power of the augmentation because it does
not profit from collaborative features (nowadays a de

necpbmbhhdiplmfhmjicabdeighkndkn
2Evernote,https://chrome.google.com/

webstore/detail/evernote-web-clipper/
pioclpoplcdbaefihamjohnefbikjilc?hl=es-419

3Last Pass, https://chrome.google.com/
webstore/detail/lastpass-free-password-ma/
hdokiejnpimakedhajhdlcegeplioahd?hl=es-419

https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/similar-sites-discover-re/necpbmbhhdiplmfhmjicabdeighkndkn
https://chrome.google.com/webstore/detail/evernote-web-clipper/pioclpoplcdbaefihamjohnefbikjilc?hl=es-419
https://chrome.google.com/webstore/detail/evernote-web-clipper/pioclpoplcdbaefihamjohnefbikjilc?hl=es-419
https://chrome.google.com/webstore/detail/evernote-web-clipper/pioclpoplcdbaefihamjohnefbikjilc?hl=es-419
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd?hl=es-419
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd?hl=es-419
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd?hl=es-419

facto requirement) and the limited resources provided
by the browser (i.e. processing power, storage
alternatives, etc.), other approaches have a traditional
client-server architecture, allowing, for instance, the
synchronization of devices to support distributed user
interfaces , the use of complex services that cannot
be deployed only on client-side (such as the use
of a recommender system, and social Web content
management tools, such as Diigo (Diigo, 2017). The
reader must note that all these back-end counterparts
are dedicated applications specifically designed and
deployed for the particular kind of augmentation,
but, to our knowledge, there are not approaches
considering both client and server-sides in a more
generic way. That is, the end-user only contribute
designing client-side improvements keeping him-self
excluded from contributing complex behavior at
server-side because the lack of coding skills that let
him face technical challenges (e.g. Database access,
complex algorithms design and coding, and User
Interfaces component definition).

This paper relies on our previous work (Urbieta
et al., 2017) that presents a Web Augmentation
modeling approach contemplating a client-server
application that hides the back-end complexity to
users. One manner to reduce the associated
complexity to this task is to rise up the level of
abstraction required to specify this logic. With this in
mind, we present a novel domain specific modeling
languages that may be used in a dedicated server
to create Web augmentation back-end counterparts
extending our previous work (Urbieta et al., 2017).
On client-side, we propose a specialized end-user
development tool that allows them to recreate an
object model of the target application (the one being
augmented) by abstracting Web contents. As we
will discuss later, applications owners could use
our ideas and supporting tools also to weave new
functionalities without the need of modifying the
applications core. In (Urbieta et al., 2017) we
relied on IFML for designing server-side artifacts,
and Web Object Ambient (WOA) modeling pages
enhancements. Regarding the former, WebRatio
(WebRatio, 2017) is the official tool for IFML which
aids engineers to design and generates the running
application meeting the designs. While the WOA tool
is a Chrome plugin providing a natural ambient for
extending the Web. The combination of tools results
in a hybrid web-desktop environment. The experience
feels awkward to the engineers as they must jump
from one realm (Web) to other (desktop) and the
other way around when developing an augmentation.
The usage of Desktop-based tools like Webratio
introduces additional effort than a Web-based one

because it requires local resources to run the platform,
and time to install the tool. Finally, IFML presents
the benefit of modeling broad domain spaces but it
also leaks the specificity for certain domain specific
problems. This results in investing time to learn
language elements that hardly ever will be used to
develop an extension.

In this work we present a Web CASE tool to model
server-side behavior for Web augmentation (Urbieta
et al., 2017). This tool complements the current
WOA tool providing a full web-based experience
for designing and running Web augmentations that
requires client and server-side components. The
tooling will provide the following functionalities:
• Conceptual model design: Definition of the

Entities and Relations diagram (domain model).

• Creation of the Database and tables derived from
the Entity-Relationship conceptual model where
entities are mapped to tables and relations to
foreign keys (in the cases of relations one to one or
one to many) or intermediate tables (in the cases
of relations many to many).

• Navigation model. A domain specific design
model to describe who Web augmentation are
browsed as well as the actions that the user can
perform. It is inspired in mature Web modeling
languages such as IFML or OOHDM (Rossi et al.,
2008) so the augmentation navigation is specified
using Node/Link (frontend).

• The server-side component generation that allows
rendering the navigation model by creating the
pages with the elements contained in them: Lists,
Forms and Scripts that will be described later in
this article. The links between the pages will be
rendered as hyperlinks between them.

• API REST generation that exposes endpoints
dynamically created based on the navigation
model. This will also let developers, with
basic experience in JavaScript and API
REST developments, create their own custom
endpoints and thus send and consume server-side
information from the client-side.
As described in the previous points, once the

diagrams are obtained, it will be possible to create
the database derived from the conceptual model, and
create and render the modeled pages with their links
and detailed functionalities for each one.

The main contributions of this work are: (1)
a web based Model-driven platform for modeling
augmentation (2) comprehensive examples . The
paper is organized as follows. Section 2 describes
the background. Then, the Section 3 introduces
the related works. Section 4 is an overview of

the approach. Section 5 shows a comprehensive
example. And Section 6 concludes and talks about
future works.

2 BACKGROUND

As we mentioned before, Web augmentation is
actually used by the users crowd. Besides of
Web browser stores, where thousands of extensions
for adapting existing Web content may be found,
there are some of these tools supported by
communities where end-users and other stakeholders
with programming skills interact in the creation,
sharing and improvement of artifacts. For instance, in
the userstyles community (http://userstyles.org) users
share artifacts that augment Web sites by adding
further CSS designs that may change any aspect
of Web sites content presentation. Similarly, in
repositories behind userscripts communities (such as
greasyfork - https://greasyfork.org/) artifacts written
in JavaScript may be found. In these cases beyond
simple content presentation (such as the achieved
with userstyles), Web sites may be augmented with
new functionalities, given the power of JavaScript.
In these communities, in spite of the artifact kind,
there is a dependency between users with and without
programming skills. Then, some research works
proposed End-User Development (EUD) approaches
to let users specify their own augmentation artifacts,
these are discussed in the related work section.

In most mature Web design approaches (Rossi
et al., 2008) , such as UWE, WebML, UWA,
Hera, OOWS or OOHDM, a Web application is
designed with an iterative process comprising at least
conceptual and navigational modeling. According to
the state-of-the-art of model-driven Web engineering
techniques (Aragón et al., 2013), these methods
produce an implementation-independent model that
can be later mapped to different run time platforms.
For the sake of clarity, we will concentrate on the
conceptual, navigational and interface models as they
are rather similar in different design approaches.

3 RELATED WORKS

3.1 Web application augmentation

End-User Development (EUD) was explored in the
field of Web Augmentation in order to let users
without advanced programming skills to specify their
own augmentation artifacts (Dı́az and Arellano, 2012;

Bosetti et al., 2017). In previous work we presented
some WOA (Web Object Ambient) tool that allows
users to recreate an object model of Web sites on the
client-side (Firmenich et al., 2016b), however, since
we are focused on supporting complex augmentation
applications that could not be work just on the
client-side, at the same time that with some modeling
skills, they can create the back-end counter-part
of these augmentations. This generic back-end
support will empower augmentation artifacts, given
that further features could be contemplated such
as more complex business logic, storage, social
aspects. Although several aspects about augmentation
have been addressed through modeling activities,
such as requirement specification (Firmenich et al.,
2016a), these usually aim to model the presentation
layer, something that is not enough to represent the
back-end logic of the application. In this sense, this
paper propose an integration between our tool for
extracting a model object from existing Web pages
(Firmenich et al., 2016b) with an application that
is modeled using existing Web modeling languages.
Web Augmentation could be considered a foreign
client-side application mechanism, i.e. adapting
existing and third-party Web sites on the client-side.
However, Client-Side adaptation could be also be
considered as a core concern during application
design. An interesting approach that considers this
aspect was presented before (Ceri et al., 2004),
focusing the use of this mechanism in an e-learning
system. Although this work also proposes a modeling
layer for the client-side adaptation layer, it is not
used from the augmentation point of view, but that
is defined by application owners, and one more time,
this could be part of what end-users would like to
change.

3.2 Separation of concern in MDWE

Several existing Model-Driven Web Engineering
(MDWE) allows to seamlessly compose Web
applications’ concerns such as our previous work to
tackle Volatile Functionalities in Web Applications
(Urbieta et al., 2012; Frajberg et al., 2016).
Additionally, other approaches support evolutive
requirements such as WebComposition Process
Model (Gaedke and Gräf, 2001), Distributed Concern
Delivery (Cerny et al., 2015) or, more general
principles, such as refactoring (Fowler et al., 1999)
and patterns (Gamma et al., 1995). However, all of
these approaches are focused to compose concerns
at server-side only when the developer has access to
the core application which is not the case of Web
augmentation’s purpose.

4 OUR APPROACH IN A
NUTSHELL

Our approach is based on the idea that even
the simplest functionality (e.g., a new community
comment feature) should be considered as a first-class
functionality and, as such, designed accordingly. At
the same time, their design and implementation have
to be taken separated from the host site (from now on
core application) and as much as possible decoupled
from that of core and stable functionalities which
the augmentations can not be introduced because
the augmenter analyst is not part of the Application
Webmaster team. We decouple the augmentation
from core application by introducing a design layer
(called Augmentation Layer), which comprises a
conceptual model, a navigational model, and an
interface model.

Building on the above ideas, our approach can
be summarized with the following design guidelines,
which are shown schematically in Figure 1:

1. We decouple the augmentation from core
application by introducing a design layer (called
Augmentation Layer), which comprises a
conceptual model, a navigational model, and an
interface model.

2. We capture the basic conceptual model by tagging
data in host application pages using (Firmenich
et al., 2016b). The lack of access to the
host application’s underlying models requires the
perceivable conceptual model extraction. In
this process, data elements in the page are
tagged and grouped into an entity definition
by an Augmentation analyst in such a way a
simplified conceptual model is obtained. The
augmentation analyst is a skilled end-user with
advance knowledge of Web Application who
has the goal to improve the core application.
In further steps, the model instantiation in
a particular user session will be used for
giving contextual information to the augmentation
engine by providing model instances information
when triggering the augmentation.

3. Augmentation requirements are modeled using
Web engineering notations (e.g., use cases, user
interaction diagrams, etc.) and separately mapped
onto the following models using the heuristics
defined by the design approach (See for example
(Popovici et al., 2002)). Notice that, as shown
in Figure 1, augmentation requirements are not
integrated into the core requirements model,
therefore leaving their integration to further
design activities. New behaviors, i.e. those

which belong to the Augmentation layer, are
modeled as first-class objects in the Augmentation
conceptual model. It defines all the objects and
behavior corresponding to the new requirements.
Nodes and links belonging to the augmentation
navigational model may or may not have links
to the core navigational model. The core
navigational model is also oblivious to the
augmentation navigational classes, i.e., there are
no links or other references from the core to the
augmentation layer. We design (and implement)
the interfaces corresponding to each concern
(core and augmentation) separately; the interface
design of the core classes are oblivious with
respect to the interface of augmentation concerns.

4. Core and augmentation interfaces are woven by
executing an integration specification, which is
realized using DOM transformations. Again, the
idea of model weaving is generic and therefore the
same result can be obtained using other technical
solution.

Once the augmentation requirements are modeled in
Step 3, the augmentation of another site will be quite
straightforward requiring to find and map the virtual
classes (Step 2) and to specify how to wave the
augmentation UI artifacts (Step 4).

We next explain how these principles have been
put into practice in the OOHDM approach.

5 Instrumenting Web augmentations

In this section, we present how to design a
Web augmentation comprising the client-side and
server-side behavior. As an example, we will use
a Web augmentation that improves a website in the
domain of agriculture that sells different types of
seeds.

5.1 Core application Conceptual Model
extraction (Step 2)

Our approach is based on the creation of objects
that are specified by abstracting Web pages contents
(Firmenich et al., 2016a).

In order to do it, we developed a visual
programming tool that allows users to select a DOM
element from which the abstraction process starts. For
this DOM element, the user must define which is
the conceptual class, which are the properties of that
class and also to select from which children DOM
elements are the values for these properties taken
from. This process is shown in Figure 2, our tool adds

Figure 1: Approach schema

the necessary controls that let users creating objects,
no matter what Web resource has been loaded in the
browser.

Figure 2: Concept definition

The first step is enabling the DOM selection (Step
1). By clicking this option, every DOM element
is highlighted on a mouse-over event, so the user
can appreciate what is the current target element to
collect. Then, as shown in step 2, he can access
via a context menu to the options for extracting an
element in the current DOM. Once the DOM element
is selected, a UI form is opened at the sidebar, which
lets the user selecting a name for the concept, a
semantic tag, etc. Concerning the different instances
that could be extracted from a single Class, a combo is
filled with different XPaths applicable to the selected
element and allows to unequivocally reference it or
to reference a set of similar elements instead. Then,
the user may choose one or more elements, according
to his needs. Then to select one of the possible
selectors in the DOM, so, e.g. he can choose multiple
DOM elements by changing the selector. Properties
can be added in the same way; the only difference
is the addition of a combo for linking such property
to an existing concept. The result of this process is

the definition of a set of classes specifications which
allow obtaining one or multiple instances according to
the selector the user has chosen during the authoring
process: if it refers to a single element in the DOM
or several of them. In the Figure 3 the extraction of
the conceptual model is presented which highlights
a specific part of the DOM containing information
about an instance of the class Product. Such class
will be augmented allowing to record comments of
the users of the site which will require to add a
new relationship between Product and a new class
Comment. Once finished the abstraction process, users
may see the collected classes and instances viewer
panel, from where the user may also export the
specifications in JSON format. Further aspects of the
abstraction of Web contents as domain object may be
found in previous work (Firmenich et al., 2016b).

5.2 Modelling the Augmentation Layer
using WeModelAug

The WeModelAug tool was designed with the specific
objective of providing server-side support for Web
Augmentations, i.e. development of conceptual and
navigation diagrams. Prior to this tool, developers of
enhancements used WebRatio (WebRatio, 2017) that
presented several difficulties: it is a desktop tool that
requires local resources and software requirements
to run (a specific version of Java); it is a
general-purpose solution that takes time to learn by
software engineers. Finally it is a proprietary solution
that does not allow to access the source code and thus
it is not possible to customize the transformations.

To counteract these difficulties, WeModelAug was
designed over the Web platform. That is to said, the

Figure 3: Identifying objects in Web pages required for an augmentation

WOA tool is built on top of the web browser and the
server-side component designer is a Web app. So the
Web Augmentation can be completely designed using
a browser. This avoids the need for setting up locally
the tools. On the other hand, it presents other benefits:
it is inspired on IFML and UML, so it is easy to
learn and start using by software engineers; it is also
accompanied by a simple and user-friendly interface;
it is open source so any developer can clone the
repository4 and create their version of WeModelAug.

To tackle the augmentation design, the web
augmentation platform is divided into two sections:
conceptual modeling to specify the entities
manipulated by the augmentation server-side,
and navigational or navigation modeling. In Figure 4
the metamodel for the augmentation specification is
shown.

5.3 Business domain modelling

The tool assists in designing Entity-Relationship
diagram that describes the business domain. If we
recall our example, we have extracted the classes
Product and Comment shown in the Figure 5.
The tool implements the Object-Relational Mapping
(ORM) feature so that the instances of the model are
persisted transparently.

An entity attribute has a type (numeric, text, date
and other types allowed by the underlying Database).
The attribute flag unique determines that there cannot
be two records with the same value in this attribute,
and, if it is marked as required, a new class instance
must provide value to such field. Otherwise, the

4https://github.com/francomahl/sswmfa

instance will not be persisted prompting an error
message.

In addition to the entities specification, it is
possible to model, if necessary, the relations between
entities. The relations between two entities can be one
to one (1..1 - 1..1), one to many (1..1 - 1..*), or many
to many (1..* - 1..*). In case of being optional, it is
represented with a 0 instead of 1.

Once the conceptual diagram is finished, the
creation of the corresponding database is allowed,
where each entity will be mapped to a table and its
attributes will be fields in that table. In addition, the
relationships between entities will be represented as
foreign keys between the tables or, in the case of many
to many relationships, as an intermediate table. In
our example the tables Product and Comment will be
created where the Comment table will have a foreign
key of Product.

5.4 Navigation modelling

Once finished the conceptual model design and
having specified the entities with their attributes and
relations, it is possible to model the navigation of
the Web application using pages and Links, the
hyperlinks between them.

The pages are individual elements (nodes)
containing other elements. A page can contain three
different types of elements: forms, lists and scripts,
in addition to the links to other pages.

5.4.1 Forms

The Forms must be related to an (only one) entity in
the conceptual diagram and are used to create or edit

Figure 4: Metamodel for server-side artifacts

Figure 5: Entity-Relatinship diagram

records that are persisted in the database.
The record creation forms are explicitly shown

in the diagram within a page, whereas the record
editing forms are created as a result of the ability
to edit records in lists, as described in the following
section. For example, we modeled in Figure 6 a node
Page Comments that contains a comment form and a
node Page Product with a product form. .

When using the relationship of the form element
with the entity Comment of the conceptual model, the
attributes of the entity will be automatically listed,
allowing you to choose those that will be included as
form fields.

Once the page Comments is rendered, you will
get a page with the form Add comment that will be
used to create new comments to be shown in the
augmented site; the form fields will be the attributes
specified in the model. The same will happen with the
page Products that contains the Form Add product.
Please note that the fields marked as required in
the conceptual model will always be included in the
form, otherwise the insertion or update of records
in the database will fail. The required fields will
have a special style in the view. In the example they
appear with a * after the name and they will have the
validation in the browser that provides HTML5.

5.4.2 Lists

Like forms, lists should relate to one, and only one,
entity of the conceptual diagram by checking the
attributes that will be shown as fields in the list. In
our example you can see in the Figure 6 that the
node Page Comments and Products have, besides
the forms, two elements list Comments and Products
respectively. These elements will be shown as lists
containing the objects stored in the database when
rendered. Products will show the products selected
from the site as products to be augmented.

A List element must be placed within a page and
has the following functionalities over the records of
the related entity:

• List the records in HTML list form

• Delete records (optional). A button is shown for
each record in the list that calls the backend by
removing it from the database.

• Edit records (optional). This functionality is
provided through a link for each record that
redirects to a page that contains a record editing
form with the current values preloaded in the form
fields. This allows you to edit them and save
the changes. Additionally when links are clicked,
they trigger an action in the backend that updates
the record in the database.

• Show record detail (optional). Enabling this
feature displays a link for each record that
redirects to a detail page listing all record fields
with their values. This can be used if only some
fields are shown in the list and the rest of the
record information is available in the detail page.

For the example we modeled a page that contains
a form (creation) of comments and a list of the
comments created, when rendering this page we
obtain the form for insertions and the list modeled.

5.4.3 Scripts

The tool will provide the possibility of inserting
a Script type element containing JavaScript code
which, when rendering the model, will be executed
when accessing the page that contains it.

5.4.4 Links

In the diagram, the pages (nodes) can be linked to
each other with links (addressed links) specifying the
source and destination pages. A link from one page
to another is rendered as a link or hyperlink on the
source page.

5.5 Rendering

Rendering is the last step in server-side web
augmentation modeling. What is shown in Figure 6
will be rendered into HTML content. You can see
in the Figure 7 the node page Comments rendered
to HTML content showing the Form and the List
with comments of the product to augment. Then,
going back to the augmented site you can see that the
comments are in the product.

Figure 6: Navigation model

Once the navigation has been modelled, the web
pages can be rendered with the elements described
in the previous section. The rendering process
transforms models into HTML code of the pages.
Having rendered the navigation model, it will be
possible to navigate through the pages and interact
with the database by creating (persisting), listing,
editing and deleting records.

6 Technical discussion

At the time of devising a tool to assist Web
augmentation design, it was thought as a web-based
solution to abstract the developers from the operating
system and achieve better portability of the artifacts.

The language chosen to develop WeModelAug
was JavaScript with the framework NodeJS5 and
ORM Sequelize6. The library chosen for the
development of the diagrams was GoJS7.

JavaScript was chosen as the development
language because it has several frameworks and a
very large community of developers around the world
and a very large documentation.

About the ORM we know that the database must
be dynamically created and modified at runtime, so
it must be possible to destroy it and generate it
again quickly and securely. Moreover. it must
also be able to support various database engines
such as Mysql, Sqlite or PostgreSQL. Sequelize
was the ORM chosen for its simplicity, its easy
integration into a NodeJS project, dynamic query
generation, and for the possibility of generating the
Data Definition Language sentences to destroy and
generate a database on the fly.

For modeling, there are several open source
JavaScript libraries that can be used to make
Entity-Relationship and Navigation diagrams .

GoJS is a JavaScript library that allows you
to develop interactive diagrams and complex
visualizations across different Web browsers and
platforms. This library offers many functionalities
for user interaction such as drag-and-drop, copy and
paste, on-site text editing, tooltips, templates, data
related models, palettes, preview, event handlers, the
ability to represent diagrams in JSON format, among
others.

GoJs is a pure JavaScript library, so users can
interact with it without the need for the application
to connect to a server or install additional plugins to
the browser. It runs completely in the web browser
and renders HTML5 Canvas or SVG images without
the need for server-side requirements.

The fact that this library does not require a
back-end and is easy to implement in any framework
(even without one) made it the one chosen to develop
WeModelAug.

Finally, it was decided to include Docker
Compose8 to achieve a higher level of abstraction
for developers. Docker provides the possibility to

5https://nodejs.org/es/
6http://docs.sequelizejs.com/
7https://gojs.net/latest/index.html
8https://docs.docker.com/compose/

Figure 7: Site augmented

run the WeModelAug code locally or in the cloud
without the need to have the corresponding versions
of JavaScript, Node, and other necessary packages
since the required installations are done in a Docker
container and the tool code runs there.

Once the development of WeModelAug was
completed the code was uploaded to GitHub9 with
instructions on how to create the environment locally
and how to run the application.

7 CONCLUSIONS

In this work we have presented a web-based
platform supporting approach for designing Web
Augmentation coping with client-side and server-side
behaviors. The augmentations are modeled using
a custom domain-specific language designed to
abstract Web augmentations. We used as a
comprehensive example instantiated illustrate the
approach instantiation and how the tool support the
study case. We plan to perform an assessment of the
language usability.

9https://github.com/francomahl/sswmfa

REFERENCES

Aragón, G., Escalona, M. J., Lang, M., and Hilera, J. R.
(2013). An analysis of model-driven web engineering
methodologies.

Bosetti, G., Firmenich, S., Gordillo, S. E., Rossi, G., and
Winckler, M. (2017). An End User Development
Approach for Mobile Web Augmentation. Mobile
Information Systems, 2017:1–28.

Ceri, S., Dolog, P., Matera, M., and Nejdl, W. (2004).
Model-Driven Design of Web Applications with
Client-Side Adaptation. In Koch, N., Fraternali,
P., and Wirsing, M., editors, Web Engineering: 4th
International Conference, ICWE 2004, Munich,
Germany, July 26-30, 2004. Proceedings, pages
201–214. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Cerny, T., Macik, M., Donahoo, M. J., and Janousek,
J. (2015). On distributed concern delivery in user
interface design. Computer Science and Information
Systems, 12(2):655–681.

Dı́az, O. and Arellano, C. (2012). Sticklet: An End-User
Client-Side Augmentation-Based Mashup Tool. In
Web Engineering - 12th International Conference,
{ICWE} 2012, Berlin, Germany, July 23-27, 2012.
Proceedings, pages 465–468.

Dı́az, O., Arellano, C., and Iturrioz, J. (2010). Interfaces for
Scripting: Making Greasemonkey Scripts Resilient
to Website Upgrades. In Web Engineering, 10th
International Conference, {ICWE} 2010, Vienna,
Austria, July 5-9, 2010. Proceedings, pages 233–247.

Diigo (2017). Diigo, https://www.diigo.com/. Last
accessed November 27, 2019.

Firmenich, D., Firmenich, S., Rivero, J. M., Antonelli,
L., and Rossi, G. (2016a). CrowdMock: an
approach for defining and evolving web augmentation
requirements. Requirements Engineering, pages 1–29.

Firmenich, S., Bosetti, G. A., Rossi, G., Winckler, M., and
Barbieri, T. (2016b). Abstracting and Structuring Web
Contents for Supporting Personal Web Experiences.
In Web Engineering - 16th International Conference,
{ICWE} 2016, Lugano, Switzerland, June 6-9, 2016.
Proceedings, pages 77–95.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts,
D. (1999). Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional, Boston,
MA, USA.

Frajberg, D., Urbieta, M., Rossi, G., and Schwinger,
W. (2016). Volatile Functionality in Action:
Methods, Techniques and Assessment. In Bozzon,
A., Cudre-Maroux, P., and Pautasso, C., editors,
Web Engineering: 16th International Conference,
ICWE 2016, Lugano, Switzerland, June 6-9, 2016.
Proceedings, pages 59–76. Springer International
Publishing, Cham.

Gaedke, M. and Gräf, G. (2001). Development
and Evolution of Web-Applications Using
the WebComposition Process Model. In Web
Engineering, volume 2016, pages 58–76.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Garrido, A., Firmenich, S., Rossi, G., Grigera, J.,
Medina-Medina, N., and Harari, I. (2013).
Personalized Web Accessibility using Client-Side
Refactoring. {IEEE} Internet Computing,
17(4):58–66.

Popovici, A., Gross, T., and Alonso, G. (2002). Dynamic
Weaving for Aspect-oriented Programming. In
Proceedings of the 1st International Conference on
Aspect-oriented Software Development, AOSD ’02,
pages 141–147, New York, NY, USA. ACM.

Rossi, G., Pastor, ., Schwabe, D., and Olsina, L. (2008).
Web Engineering: Modelling and Implementing Web
Applications, volume 12. Springer-Verlag London.

Urbieta, M., Firmenich, S., Maglione, P., Rossi, G., and
Olivero, M. A. (2017). A Model-driven Approach
for Empowering Advance Web Augmentation - From
Client-side to Server-side Support. In APMDWE.
INSTICC, ScitePress.

Urbieta, M., Rossi, G., Distante, D., and Ginzburg, J.
(2012). Modeling, Deploying, and Controlling
Volatile Functionalities in Web Applications.
International Journal of Software Engineering and
Knowledge Engineering, 22:129–155.

WebRatio (2017). WebRatio Platform, http:
//www.webratio.com/site/content/en/
web-application-development. Last accessed
November 27, 2019.

https://www.diigo.com/
http://www.webratio.com/site/content/en/web-application-development
http://www.webratio.com/site/content/en/web-application-development
http://www.webratio.com/site/content/en/web-application-development

