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Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams
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An optical vortex is an inhomogeneous light beam having a phase singularity at its axis, where the intensity
of the electric and/or magnetic field may vanish. Already well studied are the paraxial beams, which may carry
well-defined values of spin (polarization σ ) and orbital angular momenta; the orbital angular momentum per
photon is given by the topological charge � times the Planck constant. Here we study the light hole–to–conduction
band transitions in a semiconductor quantum dot induced by a highly focused beam originating from a � = 1
paraxial optical vortex. We find that at normal incidence the pulse will produce two distinct types of electron-hole
pairs, depending on the relative signs of σ and �. When sgn(σ ) = sgn(�), the pulse will create electron-hole pairs
with band+spin and envelope angular momenta both equal to 1. In contrast, for sgn(σ ) �= sgn(�), the electron-hole
pairs will have neither band+spin nor envelope angular momenta. A tightly focused optical-vortex beam thus
makes possible the creation of pairs that cannot be produced with plane waves at normal incidence. With the
addition of co-propagating plane waves or switching techniques to change the charge � both the band+spin
and the envelope angular momenta of the pair wave function can be precisely controlled. We discuss possible
applications in the field of spintronics that open up.
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I. INTRODUCTION

Quantum dots (QDs) are artificial systems that confine
electrons and/or holes in all directions, yielding a discrete
spectrum of energy levels. A variety of QDs have been
fabricated and studied, such as laterally confined QDs in
a two-dimensional electron gas, colloidal semiconductor
nanocrystals, and semiconductor self-assembled QDs, to name
only few. Due to their semiconductor nature, self-assembled
QDs have electron energy levels grouped into valence (with
heavy- and light-hole subbands) and conduction bands. In
most cases, the uppermost energy levels in the valence band
are of heavy-hole (HH) type. The energy difference between
bands makes it possible to excite electrons from the valence
to the conduction band by optical or near-optical fields, and
the selection rules of the optical transitions can be used to
control the spin states of the generated electron-hole pairs. For
this reason, applications to spintronics typically focus on the
fast control of the spin state of carriers or nearby impurities by
short-pulse excitation of electronic states in ensembles of QDs,
and more recently in single QDs [1–4]. The studies mostly
consider excitation from HH states, since decaying is reduced
by the lack of lower energy levels. The recent literature shows
an increasing interest in light-hole (LH) state excitation and
manipulation [5–7]. A strong advantage of LHs over HHs is
that, with their spin projections ±1/2, spin flips with, e.g., an
impurity spin can occur [6]. However, the fast-decay channel
leading to the lower HH levels makes it difficult to use LHs
in proposals designed for the former. Recently Huo et al.
[8] demonstrated energy inversion between hole subbands in
stressed GaAs QDs. Their successful experiment widens the
applicability of LHs to spintronics.

Strongly varying electromagnetic fields attract the attention
of researchers in diverse areas such as optics, atomic and
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molecular physics, and information technology [9]. A promi-
nent example is that of optical-vortex fields, characterized by
a phase singularity where the intensity of the electric and/or
magnetic field may vanish. Instances of beams with optical
vortices are the radially/azimuthally polarized beams and
twisted-light (TL) Bessel and Laguerre-Gaussian beams. It has
been shown that a paraxial optical vortex carries orbital angular
momentum (AM) equal to ��, where � is the topological
charge. However, when such a beam is tightly focused, orbital
and spin AM are not well separated [10] and the beam becomes
a superposition of modes with different topological charge
[11]. In solid-state systems, it has been shown that paraxial
beams of TL bring about new effects such as circular photon-
drag effect in bulk [12] and nanostructures [13,14], new optical
transitions in quantum dots [15], excitation of new exciton
states [16–18], and excitation of intersubband transitions
at normal incidence in quantum wells [19]. A number of
authors have called attention to a special set of nonparaxial
optical-vortex fields. They have shown that the values � = 1,2
(to be understood as the value of the corresponding paraxial
original beam) present especially interesting features [20–23].
For instance, close to the phase singularity and for circular
polarization σ = −1 (polarization vector x̂ − iŷ) and � = 2
the magnetic interaction overcomes the electric interaction
[21,23,24]. Or for the set {� = +1,σ = −1} a nonvanishing
longitudinal component of the electromagnetic field exists
even at the phase singularity.

In this article we study the excitation of LHs in semiconduc-
tor QDs by pulses of highly focused beams of optical vortices
with emphasis on the value � = 1. We show that by only
changing the polarization state of the light, electron-hole (e-h)
pair states with and without band+spin and envelope AM can
be addressed at normal incidence. Moreover, in conjunction
with a co-propagating field with topological charge � = 0, all
states formed out of envelope s and p shells can be controlled.
Compared to proposals using two orthogonally propagating

1098-0121/2014/90(11)/115401(9) 115401-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.115401


G. F. QUINTEIRO AND T. KUHN PHYSICAL REVIEW B 90, 115401 (2014)

pulses of plane waves, our normal-incidence configuration
may significantly improve the experimental realization of LH
state control in a single QD.

The article is organized as follows. Sections II and III
introduce the material system and electromagnetic fields,
respectively. The optical transitions are discussed in Sec. IV.
Possible applications to spintronics are given in Sec. V.
Section VI discusses some issues related to sample structures
and experimental realizations of our proposed schemes. The
article ends with the conclusions in Sec. VII.

II. MATERIAL SYSTEM

We will study the interaction of optical-vortex light with
a single semiconductor self-assembled QD. In self-assembled
QDs electron and hole states are confined on a nanometer
scale. For small QDs the energy spectrum is a collection of
discrete states grouped in two valence (LH and HH) bands
and one conduction band. The valence bands are characterized
by a total angular momentum j = 3/2. In the HH band the
z components are given by mj = ±3/2 while in the LH
bands they are mj = ±1/2. Here we neglect possible band
mixing effects caused by strain distributions or the Luttinger
Hamiltonian. In the conduction band the quantum numbers
are j = s = 1/2 and ms = ±1/2. Conduction and valence
bands are separated by a band-gap energy Eg in the few eV
range; thus, interband transitions may be produced by optical
or near-optical excitation.

In general, the uppermost energy levels in the valence band
are of HH type; however, an inversion between LH and HH
bands is possible by applying stress to the sample [8]. The
inversion of energy levels is advantageous in proposals using
LH excitations, since it slows the decay of the states.

QDs can be fabricated out of different materials. Typical
ones are InAs/GaAs or CdTe/ZnTe QDs, but others may prove
to be more suitable in certain situations. In particular, QDs
made of GaN/AlN [25,26] have a large Eg and therefore are
excited at shorter wavelength. We will later discuss the possible
advantage of these QDs.

We choose the z axis of our cylindrical coordinate system
collinear to the QD’s growth direction; the QD has the shape
of a disk with radius r0 � 10 nm and height z0 � 0.1r0 and is
centered at r = 0. The complete wave function for carriers in
the valence and conduction bands is

ψ(r) = φ(r,ϕ)Z(z)ui(r), (1)

where the envelope functions are Z(z), φisn(r,ϕ) =
Risn(r/�c)(2π )−1/2einϕ , with n being the angular quantum
number. Risn(r/�c) is the radial component of the wave
function with confinement length �c—not to be confused with
the topological charge—and radial quantum number s. The
detailed functional form of Risn(r/�c) depends on the con-
finement potential, which could be, e.g., square or parabolic
(for the latter see Ref. [15] noticing a change in sign). The
Bloch-periodic parts of electron states in the LH band are [27]

|3/2, + 1/2〉 = − 1√
6

[( |px〉 + i |py〉)↓ − 2 |pz〉↑],

|3/2, − 1/2〉 = 1√
6

[( |px〉 − i |py〉)↑ + 2 |pz〉↓]; (2)

alternatively we will refer to these states as u±(r). The s-like
conduction-band states are written us(r) = 〈r |s〉ξ , where ξ is
the spin.

In what follows, we will distinguish among different
contributions to the angular momentum of carriers. For the
sake of clarity we explicitly state them. Carriers have the band
AM of their energy band: in the case of the p-like valence band
this is equal to 1, while for the s-type conduction band this is
equal to 0. In addition, electrons have spin AM equal to 1/2.
These two comprise the Bloch periodic-part or band+spin AM
[Eq. (2)]. Finally, there is an envelope AM �n corresponding
to the envelope part of the wave function.

III. OPTICAL-VORTEX FIELD

To be specific in what follows we use TL Bessel beams
[12], which are one class of optical-vortex fields. However,
much of our findings can be applied to other optical-vortex
beams, as we explicitly discuss at the end of this section.

We study a monochromatic field of TL with wavelength
λ � 500 nm and circular polarization σ = ±1 (polarization
vector x̂ + iσ ŷ) propagating along the QD growth axis
(i.e., impinging the sample at normal incidence). We use a
nonparaxial expression for the vector potential [12]:

Ax(r,t) = F�(r) cos[(ωt − qzz) − �ϕ],

Ay(r,t) = σF�(r) sin[(ωt − qzz) − �ϕ], (3)

Az(r,t) = −σ
qr

qz

F�+σ (r) sin[(ωt − qzz) − (� + σ )ϕ].

With F�(r) being a Bessel function, the vector potential
satisfies the Coulomb gauge condition and the vectorial
Helmholtz equation. Close to the phase singularity one can
approximate F�(r) � ξA0(qrr)|�|/|�|!, with ξ = 1 [(−1)�] for
positive (negative) �. In the paraxial limit (qr/qz 	 1) Az is
negligible; then � is the topological charge and the beam carries
a single value of orbital AM. However, for a nonparaxial beam
σ and � mix, and while {Ax,Ay} retain their value � for the
topological charge, Az has a charge equal to � + σ . In what
follows we will assume � = +1, but one can naturally choose
� = −1, since the important distinction is that of the relative
signs of σ and �. Furthermore the beam is assumed to be highly
focused such that qr/qz � 1, where

√
q2

r + q2
z = 2π/λ, and

qr � 10−2 nm−1 is a measure of the beam waist.
Elsewhere [23] we have shown that a convenient mathe-

matical representation of TL close to the phase singularity
(located at r = 0) is obtained by the so-called TL-gauge. This
gauge transformation casts the Hamiltonian into an all-electric
dipolar-like Hamiltonian when sgn(�) = sgn(σ ). For light with
sgn(�) �= sgn(σ ), magnetic terms appear that should not be a
priori neglected. Magnetic terms indeed overcome electric
terms, for particular values of � [21,23,24]. However, for
{� = +1,σ = −1}, the parameters chosen for the QD and
beam, and the fact that we treat LH excitations, all magnetic
contributions are negligible (see the Appendix) and we can
indeed use the TL-gauge Hamiltonian also in this case. The
direct consequence is that we can restrict our analysis to just
electric interactions for both polarizations.

For light with topological charge � = +1 and polariza-
tion σ = −1 [using E = −∂tA and Eq. (3) with F�(r) �
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A0(qrr)�/�!],

Ex(r,t) = E0

2
(qrr) sin(ωt − qzz − ϕ),

Ey(r,t) = E0

2
(qrr) cos(ωt − qzz − ϕ), (4)

Ez(r,t) = −E0
qr

qz

cos(ωt − qzz),

with E0 = ωA0. The dominant term is the z component,
because the others are a factor (qrr) < 0.1 smaller. The
Hamiltonian reads

H = 1

2m
p2 + V (r) − qzEz(r,t), (5)

where q is the electron charge, and, since magnetic terms
can be neglected, the canonical momentum p is equal to the
mechanical momentum.

For light with topological charge � = +1 and polarization
σ = +1,

Ex(r,t) = E0

2
(qrr) sin(ωt − qzz − ϕ),

Ey(r,t) = −E0

2
(qrr) cos(ωt − qzz − ϕ), (6)

Ez(r,t) = E0

8
(qrr)2 cos(ωt − qzz − 2ϕ),

the in-plane components of the electric field dominate the
interaction, with the Hamiltonian

H = p2

2m
+ V (r) − 1

2
qr⊥ · E(r,t), (7)

where r⊥ = xx̂ + yŷ. The extra factor 1/2 is a result of the TL
gauge and is related to the vanishing of the field at the phase
singularity [23].

An interaction Hamiltonian such as HI = −qzEz(r,t)
contains operators acting on the envelope and the periodic
part of the wave function. This is clearly seen by writing
r = R + rc, where rc designates points within a crystal unit
cell and R designates different unit cells in the whole crystal.
The change of variable leads to HI = −q(R + rc) · E(R + rc).
Since the electric field varies little within the unit cell we can
disregard rc in the argument of the electric field. The same
cannot be done for the rest and indeed each term gives rise
to different processes. Interband transitions are described by
H inter

I = −qrc · E(R), while intraband transitions by H intra
I =

−qR · E(R). We study in this article interband transitions.
To conclude the section, we briefly comment on the similar

behavior exhibited by other optical-vortex fields. The focusing
of a paraxial optical vortex by a lens has been shown to
produce a conversion between orbital and spin AM [11], as
it was commented after Eq. (3). Other authors have studied the
specific case of focusing of an incoming Laguerre-Gaussian
mode of TL with � = 1 in experiments [22] and theory [20,21].
These works are in agreement with our nonparaxial electric
field expressions Eqs. (4) and (6). In particular, they found that
for σ = −1 only the z component of the electric field survives
at the phase singularity, while for σ = 1 all components vanish.
Calculations also show that the r dependence of the field
components is as in Eq. (4) for both polarization states of the

light and small qrr . In addition, radially/azimuthally polarized
beams, which are superpositions of � = ±1 [28], exhibit
similar features. For example, for focused radially polarized
beams there is a nonvanishing z component of the electric field
at the phase singularity [29,30]. Besides, Biss et al. [31] have
shown that radially/azimuthally polarized beams retain their
spatial profile when focused through a dielectric interface,
such as those of semiconductor heterostructures. This implies
that the experimental control of the light hole in a QD can
be realized by focusing either Bessel or Laguerre-Gaussian
TL modes. Also, focused radially polarized beams can be
used for the partial control of light holes, as proposed with
{� = +1,σ = −1} TL below.

IV. LIGHT-HOLE TRANSITIONS INDUCED
BY AN OPTICAL VORTEX

Unlike HHs, LHs are characterized by an admixture of
different spin and band AM contributions, as seen in Eq. (2),
that gives rise to richer optical transitions. The transitions
create e-h pairs. For strong confinement potential in QDs
[32] the Coulomb interaction, which accounts for exciton
complexes, can be treated perturbatively [33]. Since we only
consider small QDs, we describe optical transitions without the
Coulomb interaction—new features related to the interaction
of TL and excitons in bulk were studied in Refs. [16–18].

When a light beam with in-plane fields impinges on the QD,
an e-h pair is created, due to the first term in the decomposition
of |3/2, ± 1/2〉 in Eq. (2). The pair thus produced has an AM
projection equal to ±1, due to the combination of conduction-
band electron and LH band+spin AM. Moreover, if the light
carries no orbital AM (� = 0), the transition is the one shown
in Fig. 1 by the solid (black) line. In contrast, twisted light can
transfer its orbital AM to the pair, by promoting an electron
from an s-like envelope state in the valence band to a p-like
envelope state in the conduction band as exemplified by the
dashed (blue) line with � = +1.

The second term in the decomposition of hole states in
Eq. (2) can only be addressed by a longitudinal z component
(parallel to the QD’s growth axis) of the electric field. The

FIG. 1. (Color online) Transitions induced by light having
� = 0,1 on an electron initially in the |3/2, −1/2〉 LH band. The
z component of light with {� = +1,σ = −1} produces an e-LH pair
with AM = 0 [dotted (red)]. The in-plane component of light with
σ = +1 produces an e-LH pair with AM = 1 whose envelope AM is
n = 0 for � = 0 [solid (black)] and n = 1 for � = +1 [dashed (blue)].
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resulting state is an e-h pair with AM = 0; see the dotted
(red) lines in Fig. 1. Pairs with AM = 0 can be excited by
plane-wave light propagating along the x-y plane [6], although
the corresponding experimental setup is usually cumbersome
or even not possible.

In the next sections we will show that twisted light can
produce both types of e-h pairs. This is done by calculating
the transition matrix elements, which are essential to analyze
excitation processes using for example Fermi’s golden rule.

A. Electron–light hole pairs with no band+spin
angular momentum

The excitation of an e-h pair with AM = 0 can be accom-
plished by twisted light having {� = +1,σ = −1}, thanks to its
strong z-component electric field [see Eq. (4)]. We evaluate the
matrix elements for the transition between LH and conduction
bands. Under the assumption of nearly resonance excitation the
rotating-wave approximation is used and the matrix element
for the absorption of a photon, with HI = −qzcEz(Z,t), is

〈ψc| HI |ψLH 〉 � q
E0

2

qr

qz

e−i(ωt−qzZ)

×〈us | zc |u±〉δs ′sδn′n, (8)

where both LHs are equally excited. Note that for a QD
smaller than the beam waist Ez depends neither on r nor
on ϕ. Moreover, since the QD is assumed quasi-2D, to
a good approximation the exp(iqzZ) can be pulled out
of the matrix element. The consequence is that no new
selection rules exist, as signalled by the delta functions in
the envelope wave function quantum numbers. According to
Eq. (2) 〈us | zc |u±〉 = 2/

√
6zcv with zcv = 〈s| zc |pz〉 � 1 nm

[27,34]. Since the second term in the LH decomposition has
entered the calculation and the spin is not modified by the
light-matter interaction, we see that the excitation produces
a hole |3/2, +1/2〉 ( |3/2, −1/2〉) with a conduction-band
electron with spin down (up); we remind the reader that
holes have opposite quantum numbers to electrons. Then,
the excitation obviously produces pairs of AM = 0. This is
schematically represented in Fig. 1 by a dotted (red) line
for the transition that promotes an electron from the state
|3/2, −1/2〉.

B. Electron–light hole pairs with angular momentum

In Sec. IV A we have seen that the z component of the
EM field of a TL beam having {� = +1,σ = −1} does not
vanish at the phase singularity. This is a desirable feature,
for it ensures a large fluency at the QD, and short exposure
times would result in full transitions. However, we notice
that this set of parameters renders a z component of the
field with no angular dependence [see Eq. (4)]. The features
of nonvanishing amplitude at r = 0 and lack of angular
dependence coexist, in the case of the magnetic field, in another
set of values {� = +2,σ = −1} as one observes by inspection
of the EM-field expressions deduced in other works [20–23].
Thus, fields having a finite amplitude at r = 0 that would yield
large fluency would not transfer orbital angular momentum to
the material system. In contrast, the in-plane components of
Eqs. (4) and (6) with vanishing amplitude at r = 0 can indeed

transfer orbital AM [to account for transitions induced by the
in-plane field Eq. (4), one must add to the Hamiltonian Eq. (5)
a new term proportional to qr⊥ · E].

It is our aim in this section to show that TL can be used to
address the remaining e-h pair states. By this we mean that e-h
pairs having band+spin AM = 1 can be created. Moreover, by
the use of � �= 0 e-h pairs with envelope AM are produced. One
could consider the antiparallel AM fields of Sec. IV A, but the
excitation is dominated by the z component. We thus turn to
the study of a beam having {� = +1,σ = +1}, in which case
the z component can be disregarded; other possible values of �

could be considered, and would produce transitions to other n

states, but the amplitude of the electric field close to the origin
of coordinates diminishes with increasing orbital AM [15].

Following the discussion in Sec. IV A we calculate the
matrix elements corresponding to the absorption of a photon
in the rotating-wave approximation from the interaction
Hamiltonian (−1/2)qr⊥ · E [Eq. (7)]

〈ψcs ′n′ | HI |ψLHsn〉 = −i
qE0xvc

4
√

6
e−i(ωt−qzZ)

×〈s ′n′| (qrR)eiϕ |sn〉δLH,−1/2, (9)

where we used the separation of the matrix element into
Bloch-periodic and envelope parts, and the decomposition of
LHs in p-like orbitals Eq. (2). As in Eq. (8) xvc � 1 nm. Since
we have considered only the case where the polarization of
the field is σ = 1, there is actually one possible transition,
the one originating from |3/2, −1/2〉 as signalled by the
delta function. Using Eq. (1) the envelope-function matrix
element is

〈s ′n′| (qrR)eiϕ |sn〉 = δn+1,n′

∫ ∞

0
dR (qrR

2)

×R∗
is ′n+1(R)Risn(R). (10)

Of main interest is the transition from {s = 0,n} to {s = 0,

(n + 1)}. For a parabolic confinement potential with radial
Laguerre-Gaussian wave functions, the integral has the ana-
lytical solution (

√
2π )−1qr�c

√
n + 1. The product qr�c makes

explicit the importance of a well-focused beam. Twisted light
can be effectively focused using an objective, so reducing
the beam waist such that qr � qz [20]. In this case the
transition with n = 0 (uppermost valence-band state) yields
〈01| (qrR)eiϕ |00〉 � 3×10−2. As already discussed, the van-
ishing of the field at r = 0 reduces the probability amplitude
[15] making necessary the use of longer and/or more intense
pulses to complete a transition.

A different strategy to reduce the exposure time and
intensity of the field is to use semiconductor systems with
larger Eg . For example, QDs based on GaN/AlN are excited
at qz � 300 nm−1, so improving the factor qr�c. They confine
both electrons and holes and can be modeled by Eq. (1) with
Bessel radial wave functions.

V. SPINTRONIC APPLICATIONS

In this section we will show how a single-beam configu-
ration setup using one or multiple pulses of an optical-vortex
field at normal incidence can be used to improve previous
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proposals using LH exciton dynamics in single QDs, or can be
used in new ways.

A. Controlling magnetic impurities

In the past years several groups have been successful in
placing a single magnetic ion, such as Mn or Co, in a single QD
of either II–VI or III–V material [35–37]. The spin of such a
magnetic impurity interacts with the electrons and holes in the
QD; this interaction is usually well described by Heisenberg-
type couplings between the various spins involved [38,39].
This interaction gives rise to a characteristic splitting of the
exciton line of the QD into a multiplet of lines, the details being
strongly dependent on both the QD material and the impurity
atom [35–39].

The spin degree of freedom of a Mn impurity in a II–VI
QD has has been proposed for applications in the field of
spintronics or quantum information processing due to its long
lifetime [40]. For this purpose it is necessary to selectively
prepare the Mn spin in any of its six possible orientations.
Various schemes have been proposed to achieve this task by
coherent manipulation of excitons [6,41,42]. These schemes
are based on combined spin flips of electron and Mn spin or
hole and Mn spin. In the case of HH excitons, only electron
spin flips are possible because a Heisenberg-type Hamiltonian
cannot produce transitions from a state with mj = +3/2 to
mj = −3/2 or vice versa. In contrast, in the case of LH
excitons both types of spin flips are possible, which makes
this type of exciton particularly attractive to achieve the Mn
spin preparation.

The basic idea behind the Mn spin switching schemes is
the following: By optical excitation with a given polarization
an exciton with a certain AM is created. Then, a correlated
dynamics of the Mn and the exciton spin system starts and
at a suitable later time when the exciton is in a state with
a different AM, this exciton is removed again by a light
pulse with the respective polarization. Restricting oneself to
circularly polarized plane-wave beams, only Mn spin flips by
multiples of two are possible, because only excitons with AM
±1 can be created or removed. However, by adding linearly
polarized light with polarization along the z direction also
LH excitons with AM 0 can be created or removed and thus
the Mn spin can be driven into all of its six eigenstates [6].
Using only plane-wave light, this scheme however requires
the application of light pulses propagating in normal incidence
direction and in an in-plane direction. From a practical point
of view, such a double-beam setup is cumbersome, because
it requires light propagating in the QD plane and therefore
typically cleaving of the sample is needed. We propose here the
use of a single normal-incidence beam having either the values
{� = 0,σ = ±1} to address LH excitons with AM ±1, or
{� = ±1,σ = ∓1} to address excitons with AM 0. Switching
between one and the other value of light’s orbital AM can be
achieved by the use of two collinear beams (a plane-wave one
and the other of TL) or by switching the topological charge of
a single beam [43].

In addition, twisted light offers a way to control the relative
strength of the interaction between carriers and impurities.
This interaction is typically well described by a contact inter-
action and its strength is therefore proportional to the modulus

square of the wave function of the involved carrier at the
impurity position [44]. Electrons and holes are usually excited
by plane waves, producing electron-hole pairs where both
carriers have the same orbital AM; e.g., n = 0 in the s shell
or n = 1 in the p shell. Thus, both carriers have their largest
spatial probability either close to the QD center (s-shell states)
or away from the center (p-shell states). Regardless of the
impurity position—which varies from sample to sample due
to fabrication uncontrollable parameters—the ratio between
the electron-impurity and the hole-impurity interaction will be
essentially the same in all samples.

Consider instead the excitation by TL with {� = +1,

σ = +1} as depicted by dashed (blue) line in Fig. 1. The
electron and hole are created in the envelope p (n = 1) and
s (n = 0) states, respectively. Likewise, by tuning the light
frequency to the appropriate transition, an electron-hole pair
with electron in the envelope s (n = 0) and hole in the envelope
p (n = 1) state can be created. Thus, for an impurity placed
at the center, in the former case the interaction with the hole
will be strongly dominant while in the latter case the electron-
impurity interaction will dominate. Conversely, if the impurity
is at some distance from the QD center, in the first case the
electron and in the second case the hole will interact stronger.
Magnetic fields can be used to further tune the transition
frequency and therefore select which carrier (electron or hole)
is excited into an orbital state with n �= 0 [15].

One can even imagine the use of superposition of twisted
light beams having different � to further narrow the localization
region of carriers. Consider for example the simultane-
ous excitation with an {� = +1,σ = +1} and an (� = −1,

σ = +1) beam. If the laser frequency is tuned to the transition
between the valence-band state n = 0 and the conduction-band
state n = 1, the in-plane components of both fields will
be responsible for the interaction. Then, an electron in a
superposition state of envelope n = +1 and n = −1 with spin
up will be generated. By introducing a relative phase between
the two beams, the spatial orientation of the electron’s wave
function can be rotated, thus allowing to better control the
interaction strengths with an impurity located away from the
QD center.

B. Controlling the spin of an excess electron

Let us now consider the control of the spin of an excess
electron in a charged QD by employing the z component of
the TL field. Pazy et al. [7,45] have suggested the use of a
combination of two pulses traveling in orthogonal directions
to achieve such a spin flip. As was previously mentioned,
this idea faces implementation problems. For example, a
realistic quantum computing proposal based on semiconductor
technology would use a 2D array of a large number of charged
QDs [3], where each excess electron realizes a qubit, and the
spin-flip implements a Pauli-X gate. For this proposal, the use
of light beams propagating in the plane of the array seems
difficult or even impossible. However, as in other situations
[19], the z component of the optical vortex can prove very
handy by producing the spin flip at normal incidence.

Relying on recent experiments [46], we propose the use
of optical-vortex pulses P�,σ in the tens of femtoseconds
range. Note that the pulse duration is mainly limited by
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FIG. 2. (Color online) Control of an excess electron in a charged
QD, states and possible transitions. Single arrows indicate the spin
of electrons in the conduction band; double arrows and zero indicate
the AM projection of LHs in the valence band.

the spectral selectivity required for a specific sample. A
sequence of normal-incidence π pulses, {P1,−1 → P0,1 →
P0,−1} (first pulse left), excites the charged QD at normal
incidence. The relevant states are the single-electron states
{|1〉 = |↑,0〉, |2〉 = |↓,0〉} and the charged exciton (trion)
states {|3〉 = |↑↓,⇑〉, |4〉 = |↑↓,⇓〉}, where the arrows ↑,↓
refer to the electron spin and ⇑,⇓ and zero to the LH AM.
Figure 2 shows a graphical representation of the states and
possible transitions. Such a pulse sequence can easily be seen
to produce spin inversion of the excess electron. For ultrashort
excitation, the whole evolution of the system can be broken
into intervals of free evolution and pulse excitation [47]. We
will denote by U�,σ the evolution operator for a certain time
interval in which an optical-vortex pulse P�,σ with pulse area
π is present. Let us assume that the initial state of the system
is |1〉. Applying to it the aforementioned sequence of pulses,
we get the final state

|ψf 〉 = U0,−1U0,1U1,−1 |1〉
= U0,−1U0,1 |3〉 = U0,−1 |2〉 = |2〉, (11)

disregarding the global phase arising from free evolution. On
the other hand, starting with the initial state |2〉, we get

|ψf 〉 = U0,−1U0,1U1,−1 |2〉
= U0,−1U0,1 |4〉 = U0,−1 |4〉 = |1〉. (12)

Thus, in both cases we obtain an inversion of the electron
spin. We note that if the initial state is known, two pulses
are sufficient, as in the first case the third pulse has no
action on the state and in the second case this holds for the
second pulse. The three-pulse sequence, however, works in
both cases and it also works for an arbitrary superposition
of the two electron spin states, as we see by a numerical
simulation of the density matrix ρ(t) using the master-equation
formalism within the 4-level system. Figure 3 shows the
evolution starting from a pure superposition state |�〉〈�|
with |�〉 = a1 |1〉 + a2 |2〉. A full spin inversion, equivalent
to a Pauli-X gate, is completed in less than a picosecond using
moderate laser powers (E0 � 109 V/m). It is worth noting that
there was no need to include decay and dephasing processes.
While the excitation and deexcitation of e-h pairs takes place
in our protocol in less than a ps, the e-h recombination
and dephasing times are in the hundreds of ps [48,49]. In
addition, the spin dephasing time of conduction-band electron
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FIG. 3. (Color online) Evolution of the density matrix from
an initial pure state with a2

1 = 0.8 and a2
2 = 0.2. The sequence

of ultrashort π pulses {P1,−1,P0,1,P0,−1} is applied at times
t = 0.1,0.3,0.5 ps, respectively; each Gaussian pulse lasts for
τp = 50 fs.

is in the nano- to microsecond range [3,5,50]. However, some
other factors are detrimental to the fidelity of the operation,
for instance the detuning of the laser and deviations of the
pulse area from the correct value π . This sensitivity to pulse
parameters might be overcome by employing the technique of
adiabatic rapid passage using chirped pulses [51–53].

Due to the short operation time, one could even relax the
requirement of energy inversion between light and heavy hole
bands, and so the present proposal would be compatible with
QDs where the HH is the lowest hole state.

VI. EXCITATION OF SINGLE AND MULTIPLE
QUANTUM DOTS

In order to support future experimental testing of the above
ideas, we briefly comment on the topic of positioning of the
beam and the selective excitation and measurement of systems
with a single QD as well as an extension to samples with
multiple QDs. For the interaction of QDs with an optical
vortex this is a delicate issue, as was discussed in Ref. [54].
To analyze the situation, we have to distinguish between two
modes of excitation, namely the one using the z component
of the light field and the other aiming at a transfer of orbital
angular momentum.

The z component of the electric field in the case of a
beam with {� = +1,σ = −1} has its maximum at the beam
center located at r = 0 and varies smoothly and slowly in the
neighborhood of this point [the correction to the constant field
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in r = 0 is of order (qrr)2]. Thus, there is no need to precisely
center the beam axis on top of a given QD. Furthermore, this
insensitivity with respect to the exact positioning may even
be employed to extend our scheme to a selective excitation of
different QDs in a sample consisting of an ensemble of QDs.
In such samples, there are usually several QDs in the area
illuminated by the light beam (with a radius of a fraction of a
micrometer). Since these QDs are essentially never identical
they can be selectively addressed in the spectral range, in
much the same way as is usually done for excitation by
nonvortex light. Typical densities of QDs on samples grown
for single-QD spectroscopy are in the range of 109–1010 cm−2

[55,56], which means that there are on average a few up to a
few tens of QDs in the range of the beam; all of them will have
slightly different geometries and therefore different excitation
frequencies [55]. In addition, by growing QDs on a patterned
substrate, QDs with different spectral features can even be
positioned in a controlled way allowing for selective single-dot
excitation [57,58]. Also, vertically stacked QDs have been
fabricated [59] which can be selectively addressed as long as
the barrier width is sufficiently large such that they behave like
individual dots [60].

On the other hand, we have elsewhere shown that the
selective transfer of orbital angular momentum to the wave
function of carriers requires that the symmetry axes of QD
and beam coincide [54]. Then, the positioning of the beam or
sample must be accurate on the order of a fraction of the QD
size, which can be achieved by the use of current-technology
techniques and equipment, e.g., high-precision positioning
stages. QDs that are displaced from the beam axis would also
be excited—if they were located close to the maximum of
the field profile the excitation might even be much stronger—
however, they would not present a clear selection rule for the
transfer of OAM. Therefore, when applying this scheme to an
ensemble of laterally displaced QDs, a precise positioning on
top of a single QD is necessary and by selecting the appropriate
frequency only this QD should be excited. To excite another
QD at a different position a new positioning of the beam
would be required. However, vertically stacked QD are usually
well aligned among themselves. This implies that in this case
a single multicolor beam with suitably adjusted frequencies
might address multiple QDs still preserving the selection rule
for the OAM.

VII. CONCLUSIONS

We have theoretically studied the excitation of light holes in
small quantum dots by highly focused optical-vortex beams.
To this end we employed the twisted-light gauge which casts
the interaction Hamiltonian in terms of electric fields, and
can account for the simultaneous action of all three spatial
components that typically appear in tightly focused beams.

It was shown that a single optical-vortex beam at normal
incidence can create all possible microscopic states of electron-
hole pairs in the quantum dot, and we gave explicit expressions
for the corresponding transition matrix elements.

Then, we applied our results to present proposals in
spintronics, namely the manipulation of the spin of a magnetic
impurity or of an excess electron in quantum dots, and
demonstrated that those proposals can be improved by using
optical-vortex fields. We also suggested a new possible way to

address states of magnetic impurities, based on the transfer of
orbital angular momentum to the envelope function of carriers
in the quantum dot.

Finally we discussed the important issue of beam position-
ing and selective excitation and measurement of single- and
multiple-QD systems. The discussion is meant to support and
facilitate future experimental testing of the ideas presented in
the article.
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APPENDIX: NEGLECTING MAGNETIC TERMS

In Ref. [23] we have shown that a gauge transformation of
the type

χ (r,t) = − 1

|�| + 1
r⊥ · A(r,t)

− 1

|� + σ | + 1
zAz(r,t) (A1)

leads to a convenient representation of the interaction Hamil-
tonian. For light having sgn(σ ) = sgn(�), the Hamiltonian
is given solely in terms of electric fields, while for sgn(σ )
�= sgn(�), the vector potential after performing the gauge
transformation is not necessarily negligible. Therefore, in the
latter case magnetic contributions, i.e., contributions resulting
from the remaining p · A coupling, should in principle be taken
into account.

We will next show that, for {� = +1,σ = −1} with the
chosen parameters for QD and beam, the magnetic terms are
in fact negligible when one considers LH to conduction-band
transitions. The gauge transformation applied to Eq. (3)
produces a new scalar potential

U ′(r,t) = − 1
2 r⊥ · E(r,t) − zEz(r,t) (A2)

and a new vector potential

A′
ϕ = A0

2
(qrr) sin(�),

A′
z = A0

qr

qz

(qzz) cos(�) − A0

4

qz

qr

(qrr)2 sin(�), (A3)

with � = ωt − qzz. In Sec. III we have seen that the dominant
component of the electric field is Ez [see Eq. (4)]. Therefore,
we are interested in comparing the magnetic interactions
corresponding to Eq. (A3) with the z-component part of the
electric interaction.

As an example, we provide details on the relative strength
of magnetic and electric interactions arising from the z

components. We calculate the ratio of interband matrix
element 〈q(pz/m)A′

z〉 to 〈qzEz〉. In the former A′
z acts on

the envelope part of the wave function, while pz acts on
the Bloch-periodic part; thus, one can split the matrix ele-
ment into 〈uc| q(pz/m) |uv〉〈φfZf | A′

z |φiZi〉. Furthermore,
one can apply the well-known relationship 〈uc| pz |uv〉 =
−imωcv〈uc| z |uv〉. On the other hand, Ez can be pulled out of
its matrix element, since it does not depend on coordinates. We
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note that the magnetic and electric terms may connect different
initial and final states, and they should all be compared. Let us
next consider each term from A′

z separately:

〈q(pz/m)A′
z1〉

〈qzEz〉 = ωcv

〈φfZf | A′
z1 |φiZi〉

Ez

= qr

qz

ωcv

ω
〈φiZf | (qzz) |φiZi〉. (A4)

The operator z forces initial and final states to be of opposite
parity. Since the QD is quasi-2D, the next z subband has a much
larger energy, and thus is well detuned from the transitions
considered in the present paper. Moreover, the matrix element
is proportional to (qzz) 	 1. Thus, it is safe to neglect the first
term of A′

z. Next, we look at the second term

〈q(pz/m)A′
z2〉

〈qzEz〉 = ωcv

〈φfZf | A′
z2 |φiZi〉

Ez

= 1

4

qz

qr

ωcv

ω
〈φfZi | (qrr)2 |φiZi〉. (A5)

Since the |φZ〉 are not eigenstates of the operator r , we can
only argue that the ratio is proportional to (qrr)2 	 1, and
thus is also negligible. In conclusion, we see that the magnetic
field interaction is much smaller than the electric interaction
considered in the article.

Similar arguments can be given for (q/m)pϕAϕ and
(−1/2)d⊥ · E. As a result, the Hamiltonian reads

H = 1

2m
p2 + V (r) − dzEz(r,t). (A6)

If instead of LH-CB transitions, HH-CB transitions are
studied, the interaction terms arising from the in-plane compo-
nents of A and E must be compared. According to Eq. (4) and
Eq. (A3) these are proportional to (qrr); therefore, the ratio
of the magnetic to electric interactions is a constant, and one
cannot disregard magnetic effects.
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