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Abstract: State estimation in power systems is classically based on the weighted least squares method. Recently, different
extensions of Kalman filters have been proposed. Among them, the ‘unscented’ Kalman filter (UKF) improves the results
of weighted least squares methods, when there are small changes in the system, as it considers the history of the state.
The novel algorithm presented in this work combines the best of both approaches. To perform this task a new index is
defined to allow the algorithm to choose in real time, and for each iteration, between a static or a dynamic estimator.
This combination allows overcoming the anomalies observed when the UKF faces abrupt variations of the system state
and also the lack of observability that weighted least squares could present. The proposed methodology was tested
with three test cases outperforming the previously mentioned algorithms.
1 Introduction

In power systems, it is crucial to maintain the operation level inside
the normal condition range. This means that there is no overload,
voltage levels are inside their respective ranges and the load
balance is met. These levels are monitored and controlled at each
operation centre, through an energy management system (EMS).
The EMS provides a set of algorithms (power flow, contingency
analysis and optimal power flow among other) that support the
operation of the system. The input data for these algorithms may
be the power, the voltage or the phase angles in the buses of the
electrical network. A supervisory control and data acquisition
(SCADA) system is used to obtain these values at some previously
selected points since measuring at all the points is usually not
feasible. The value in the non-measured points must be estimated
using the redundancy given by the Ohm/Kirchhoff equations (see
[1] for the original paper). This is made by the state estimator that
also filters the measurement and transmission errors. Most EMS
operation centres in the world base the estimation on the weighted
least squares (WLS) method (see [2, 3]). WLS is a static state
estimator which obtains results from the current data measured
regardless recent historical information except for some
pseudo-measures. See [4, 5] for a detailed survey of power system
state estimation methods.

Recent literature [6] proposes using a new method called
unscented Kalman filter (UKF) to estimate the system state. UKF
is a dynamic state estimator which allows estimating the current
state of the system and predicting the value of the state vector at
the next time step.

In [6], the authors show that UKF improves the results of WLS
when there are slight changes in the system load and provides a
useful estimate even in the case of lack of observability of the
system. However, UKF rarely outperforms WLS in every case [7]
and takes some time to recover a good estimation level when the
operating conditions change abruptly. Considering the advantages
and disadvantages that WLS and UKF methods have, this paper
presents a hybrid method that combining UKF and WLS is able to
exploit the advantages of both methods. This hybrid method
maintains the robustness of the WLS and incorporates state
predictability through UKF.

More precisely, WLS is able to compute the most probable state
vector given the observed measurements. However, if some
measurements are corrupted and should be discarded, the WLS
could lose its meaning due to a so called ‘lack of observability’,
being the redundancy data not enough to compute a solution. In
such case, some heuristic actions are taken, for instance, the use of
historical data or heuristic rules to compute the missing measures
(now called ‘pseudo-measures’).

On the other hand, even in the presence of bad data, UKF always
gives a result, that can be far from the real state. The quality of
the estimation will depend on both the current observation and the
previous observations. Given a slight variation of the state, the
estimation will gain in precision over the time; however, when a
larger variation appears, the computed estimation will have a
considerable error that will diminish in time while no other large
variation appears.

In this work, we propose a combination of UKF and WLS to take
profit of their advantages. Specifically, both methods are computed
at each time and the best estimation is chosen. When WLS lacks
observability, the UKF solution can be used to give the missing
pseudo-measurements. When UKF is not accurate because of the
large variations of the system, the WLS solution is provided. For
the practical implementation of the hybrid method, the algorithm
should decide, in an unsupervised way, which method is the best
solution without the knowledge of the true state. For this purpose,
an index and a threshold are defined to choose between WLS and
UKF in real time. Numerical experiments where the real state of
the system is known in advance show that this hybrid
methodology outperforms both previously mentioned methods.

The first part of this work consists of an introduction to WLS and
UKF methods. Then, the proposed hybrid method is presented
showing in detail how WLS and UKF are combined. Finally, the
results of two theoretical examples and a real case in a section of
the 132 kV transport network in Argentina are analysed.
2 State estimation

The state of a system is defined by variables that provide a complete
representation of the internal condition or status of the system at a
given time [8]. In power systems, those variables are voltage
magnitudes and phase angles at the buses. Solving the state
estimation problem consists in acquiring the most probable state
from given SCADA measurements. These measurements include
voltages, power flows, power injections and/or current angles
provided by conventional remote terminal units (see [9]).

Power system state estimators use the set of available
measurements to estimate the system state. Considering a set of
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measurements and their locations, the network observability analysis
will determine if a unique estimation can be found for the system
state [2]. Meter failures or telecommunication errors may
occasionally lead to cases where the state of the entire system
cannot be estimated because of the lack of measurements. Should
the system be not observable, then additional pseudo-measures
may have to be placed in particular locations. In this work, an
on-line observability analysis is executed after a set of
measurements is received at the last SCADA scan. A detailed
explanation of the observability analysis algorithm is presented in
Section 3.

Another essential function of a state estimator is to detect
measurement errors to identify and eliminate them whenever
possible. Several reasons may generate errors in measurements.
Random errors usually exist in measurements because of the
accuracy of the meter and the data communication devices. If there
exists sufficient redundancy among measurements, such errors are
expected to be filtered by the state estimator, and the nature of the
filtering action will depend on the specific method of estimation
employed. Before state estimation, obvious bad data can be
detected and eliminated. These measurements may include
negative voltage magnitudes, measurements with several orders of
magnitude larger or smaller than expected values, or large
differences between incoming and leaving currents at a connection
node within a substation. A deeper analysis of this algorithm is
presented in Section 3.

2.1 Static state estimators

The standard practice in today’s industry is for operators to work on
an assumption of steady-state operations using an approach based on
a static, or memoryless network model (see [2]) to estimate the state
of the network. Most EMS operation centres in the world base the
estimation on WLS (see [10]) owing to its simplicity and fast
convergence properties.

2.1.1Weighted least squares: As it was stated above, WLS is a
static state estimator, which obtains results from the current
measured data without considering recent historical information.
Even though the accuracy of static estimators is within acceptable
limits under fully observable conditions, they do not allow
predicting the future operation point of the system. Let x [ Rn is
the state vector, whose n components represent the values to
estimate and z [ Rm is the observation vector, the problem is to
estimate x from the measurement equation z = h(x) + ε, where h
represents the relation between state variables and measurements
(through Ohm and Kirchoff laws) and ε is the measurement error
vector whose distribution parameters are known, generally
uncorrelated, of mean 0 and given standard deviation (σi)i=1, …, m.
The WLS state estimation method requires solving the following
optimisation problem

min J (x) := 1

2
rtW r (1)

r = z − h(x) (2)

where W denotes a diagonal matrix whose components are 1/s2
ii,

being s2
ii the variance of the ith measurement. The variable r is the

residual between the actual measure z and the value computed by
h(x), where x is the state vector.

As the measurements can have important deviations from real
values, it is important to include a bad data detection procedure in
a state estimation method. There are several mathematical methods
to detect presence of bad data [11, 12]. Considering its simplicity,
in this work this task is performed by the χ2-test [13, 14]. This
method can only detect existence of bad data, and cannot identify
which is/are the faulty measurement/s.

To perform the χ2-test after the WLS computation, the
measurement residuals are processed considering their statistical
properties. Being the errors normally distributed with 0 mean and
variance σi the weighted norm of the residual, J(x), is distributed
2

like χ2 and for a confidence level α (usually 0.05) the state values
are accepted if

J (x) . x2m−n,a (3)

where m–n denotes the degrees of freedom (number of
measurements minus the number of state variables).

Whenever this condition is not fulfilled, it is assumed that there are
wrong measurements and those are sought considering the ones with
the largest normalised residual test (see [14, 15]). WLS is run again
once all suspect measurements are eliminated.

The system is said unobservable when the observation equations
are not enough to determine the system state. There have been
several proposals to recover observability, for example, replacing
erroneous data with historical data or considering other constraints
involving the so called pseudo measurements [2]. This paper
proposes using the predictions obtained by the UKF as is
explained in Section 3.

2.2 Dynamic state estimators

Methods which use previous measurements in addition to the current
measurements are referred to as dynamic state estimation, since they
estimate the network state variables using models that include
dynamic state variables for the network and its components.
2.2.1 Unscented Kalman filter: The Kalman filter allows
estimating the state of a linear dynamic system with linear
observation based on the observed measurements (see [16]).
Regarding power system state estimation, the observation is not
linear and even there is no equation for the dynamics. A practical
way to obtain a dynamic equation for the evolution, is to assume a
quasi-steady-state behaviour of the system, monitored in time steps
of a few minutes. Following [6], a good approximation can be
given by a linear discrete-time transition of states

xk+1 = Fkxk + gk + qk (4)

where xk is a vector of unknown state variables (voltages and angles
in the bus), Fk and gk compose the state transition matrix that define
the evolution of the system. The vector qk is the modelling error at
time k. The values for Fk and gk in (4) are obtained through a Holt
method (see below).

The observation obtained through measurement of active and
reactive power and voltage is represented by

yk = h xk
( )+ rk (5)

where yk is the observation at time k, rk is the observation error and h
is a function relating the state variables with the measured values.
The explicit formula for h can be found in [2].

As noted before, (5) is not linear since it corresponds to the
relation between active or reactive power with voltage and phase
angle. This non-linearity precludes the utilisation of the standard
Kalman filter, and the extended variant (extended Kalman filter –
EKF) of the method should be used instead [17, 18]. In fact, the
problem with non-linearity is that the covariance matrix of the
observation is not easily deduced from the covariance of the state
variable. In the linear case, if y =Hx then cov(y) =Hcov(x)HT.
EKF performs a linearisation around the current point.

Another possibility is to employ the so called ‘unscented Kalman
filter’. Recently, in [6], it was demonstrated how UKF improves the
results obtained by EKF. UKF is a combination of the Kalman filter
and an unscented transformation [19]. In UKF, a set of points (called
sigma points) is chosen in such a way that their mean and covariance
match the current state statistics. The function h is applied to each
sigma point, and the mean and covariance of the transformed
sigma points are used to approximate the mean and covariance of
the vector measurements y. More precisely, UKF consists in:
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Fig. 2 UK values for 6-bus test system

Fig. 1 Hybrid method
† Compute sigma points
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where L is the number of system state variables, W (m)
0 = l/(L+ l),

W (c)
0 = l/(L+ l)+ 1− a2 + b

( )
, W (m)

i = W (c)
i = 1/{2(L+ l)},

l = α2(L + κ)− L and g = ��������
(L+ l)

√
. The parameter α determines

the spread of the sigma points around xk and usually takes a value
in (10–4, 1). The parameter β is used to incorporate the knowledge
of the distribution of xk, κ is usually 0. All these parameters were
obtained from [20]. In turn, xk is defined as the vector of state
variables with voltage magnitudes and angles in different buses, Q
is the variance associated with the system error and R is the
measurement error covariance matrix.

2.2.2 Holt method: In the case of power systems, the matrix Fk

and gk in the dynamic model (7), are not known because they
represent structural changes and variable data input. Considering
this fact, Valverde and Terzija [6] proposed that Fk and gk should
be predicted by the Holt method [21]. This method is a linear
exponential smoothing technique which is defined as

Fk = ak 1+ bk

( )
I (18)

gk = 1+ bk

( )
1− ak

( )
x−k − bkak−1 + 1− bk

( )
bk−1 (19)

where I is the identity matrix, αk and βk are parameters with values
between 0 and 1, x−k is the prediction of the state vector at the
previous time and the vectors ak and bk are obtained at time k by

ak = akxk + 1− ak

( )
x−k (20)

bk = bk ak − ak−1

( )+ 1− bk

( )
bk−1 (21)
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Therefore this method adapts the parameters Fk and gk of the
previous linear approximation, with each new set of measurements.
2.2.3 Bad data and anomalies: The UKF method proposed in
[6] is very sensitive to the presence of bad data in the measurements
and to major changes in the network (connection or disconnection of
power generators and loads). These changes in the network may
cause differences between the estimated result and the actual state
of the system. In the last case, the results are stated as anomalous.

Distinguishing between bad data and anomalies (caused by
sudden state changes) is necessary to define the action which
minimises the effect of the anomaly, once detected. In [6], a
method which analyses the asymmetry of the distribution is
performed, and in the case of anomalies detection it is not possible
3



Table 1 U and ε average value for each 120 times

Test case WLS UKF Hybrid

ε U ε U ε U

6-bus 0.0123 0.4012 0.0233 0.3841 0.0121 0.3238
14-bus (A) 0.0374 0.5646 0.0500 0.4978 0.0363 0.4242
14-bus (B) 0.0344 0.5689 0.0476 0.5381 0.0339 0.4608
to overcome. An example of this situation can be seen in Fig. 2 when
at time 101 a power generator is removed.
3 Hybrid method

The method presented in this work combines the better of both,
dynamic and static approaches. The objectives of this combination
are to obtain the most probable state of the system, detect bad data
and overcome the anomalies that appear in the UKF method and
the lack of observability that WLS could present. The anomalies
generated by the UKF could take place when it faces abrupt
variations of the system or in the initialisation phase [6]. To
perform this task a new decision index is defined to allow the
algorithm to choose in real time and for each iteration between a
WLS or UKF.

The hybrid method flowchart is presented in Fig. 1.
When the algorithm starts and before running the WLS, it is

verified that the data read from the SCADA is enough for
observability (A). Solving the observability problem is equivalent
to test whether the set of equations solved for the state variables
have a non-trivial solution or not. The power system is observed if
the Jacobian matrix of the system (H) is full rank [22].

To achieve observability, a fast method for multiple measurement
placement presented in [23] is used. This method performs a
sequence of operations discovering in which position of the system
a minimal set of pseudo measurements should be added. After
generating this pseudo measurement set and placed it in the
positions previously discovered the system will be rendered
observable.

Pseudo measurements are created applying active and reactive
power equations [24] based on system state variables (phase angle
and voltage) computed in the prediction step of the UKF method
(see Section 2.2.1). The process of pseudo measurements creation
and placement is represented in Fig. 1 by box (B).

After achieving observability, the WLS method (C) detailed in
Section 2.1.1 is executed. When WLS is finished, gross errors in
the measurements must be detected and removed, in such case the
observability test and the WLS method must be re-run. To detect
Fig. 3 Graph of the evolution of the indices Δk (left) and χ2 (right) for the 6-bus
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gross errors (D) the χ2-test mentioned in Section 2.1.1 is used and
then, errors are removed (E) according to the largest normalised
residual test (see [15]).

Considering that the bad data test was successful, the WLS results
are fed into the UKF method (F) detailed in Section 2.1.1. At the end
of the UKF correction step, there are two possible states: one is the
output of WLS and the other is the output of UKF (the WLS
corrected by the UKF method).

To determine which one of those values is the best approximation
is not straightforward because the true state value is not known.
Generally UKF is expected to improve WLS results except when
major changes affect the smooth evolution of the system. When
there is a change, the accumulated dynamic history of the system
degrades considerably the result of UKF, even if it is fed with
WLS results. Hence, it is crucial to detect when that occurs in
order to select the WLS solution as the best one. To detect such
changes, two tests are performed: the first one verifies that the
UKF result passes the WLS-χ2 test. The second one is based on
the following index

Dk = dk − dk−1

( )2
(22)

where

dk = y−k − h xk+1

( )[ ]t
W y−k − h xk+1

( )[ ]( )
/m (23)

The value δk represents the difference between the predicted value y
−
k

and the corrected value h(xk+1) generated by UKF, taking into
account the weight of each measurement represented by W
(obtained as in 1) and divided by the measurement number m. Δk

is the variation of δk with respect to the previous time.
When there is no important change in the state, it is observed that

the value of δk stays close to 0, but when a change suddenly appears
this value increases. As it is not known the possible range of the
changes, Δk, a squared successive difference of δk, is considered.
Obviously a change also affects the value of Δk and to decide
when an important change occurred, μk, the average of the
previous (successful) values of Δk is used.

The occurrence of an important change is declared when the
WLS-χ2 test and the following test are passed

Dk . gmk (24)

where γ is a constant greater than 1 that reflects the confidence given
to the UKF method. The value of μk is computed by the average of
the previous Δk, that have met the above two conditions: pass the
WLS-χ2 test and (24).
test system

IET Gener. Transm. Distrib., pp. 1–8
& The Institution of Engineering and Technology 2015



Fig. 4 Uk values for 14-bus (A) test system Fig. 6 Uk values for 14-bus (B) test system
4 Results

To analyse the performance of the proposed hybrid method, two
academic test cases of different size and a real case were
considered. The academic cases are the 6-buses test system
presented in the book [24] and the IEEE 14-buses test system [25].
The IEEE 14-buses test case was perturbed in two different ways
creating two test cases called IEEE 14-buses (A) and IEEE
14-buses (B), respectively. The real case is based on a section of
the Argentinean National Interconnected System. A detailed
description of the real case is presented in Section 4.1.

In the academic cases, the network simulation was performed
using the PowerWorld Simulator [26]. Data exported from this
commercial software are voltage magnitudes, angles and power
injections for each bus, and power flows for each line. Voltage
magnitudes, power injections and power flows are perturbed with
an additive Gaussian error to use them as measurements.

To test the designed index, the testing scenario was complexified
taking out of service some components of the system. In the 6-bus
case, the generator connected to bus 3 is removed at time 101. In
the 14-bus (A) case the generator connected to bus 2 is
Fig. 5 Graph of the evolution of the indices Δδ (left) and χ2 (right) for the 14-b
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disconnected at the same time, while, in case (B), it is
disconnected and connected at several times (31, 51, 71, 91 and
111). Considering the 6-bus and IEEE 14-bus (A) test cases, for
the first 100 time steps an additive Gaussian error (with σ2 = 0.001
for voltage measurements and σ2 = 0.02 for power measurements)
was added to each measurement. In 101 time step, a generator was
removed and in the following 20 time steps the measures were
calculated as was previously mentioned. The parameter values
considered in all the test cases were: for the Holt method αk = 0.7,
βk = 0.8 and a confidence index γ = 3.

The obtained results were analysed using performance indices
taken from [27–29], the first one is the mean absolute estimation
error at each time, computed by

1k = 1/n
∑n
i=1

xk,i − xtk,i
∣∣ ∣∣ (25)

where xk,i is the value estimated and xtk,i is the true value of state
variables. The second one is a relative estimation error based on
us (A) test system
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Fig. 7 Voltage magnitudes for bus 3 of the 14-bus (B) test system
the current and the estimated observations, computed by

Uk =
∑n

i=1 h xk,i
( )− ytk,i

∣∣ ∣∣
∑n

i=1 yk,i − ytk,i

∣∣∣
∣∣∣

(26)

this last index compares the estimated measured values h(xk,i) against
true values ytk,i and measured values yk,i.

The average value for εk and Uk are also introduced as ε and U,
respectively, and these values are shown in the following table for
120 time steps.

Table 1 shows that the hybrid method improves the results
obtained for UKF and WLS methods. Indeed, the values of ε and
U are lowest.

In Fig. 2, a comparison of the Uk values obtained with UKF, WLS
and the hybrid method for the 6-buses test system is presented. To
show the hybrid algorithm behaviour, three different phases were
defined in this picture. In each of those phases, the hybrid method
considers different criteria to choose between WLS results (see
Fig. 1 – box C) and WLS +UKF results (see Fig. 1 – box F).

In phase 1, the algorithm chooses the WLS result because, as it is
shown in Fig. 3, the UKF-χ2 test value is above its threshold. This
situation occurs because the Holt method (U-UKF) does not have
enough previous data to predict the dynamic behaviour of the
Fig. 8 Angle values for bus 6 of the 14-bus (B) test system

6

model. Therefore, the UKF method obtains worse results than the
WLS, and consequently the hybrid method uses the WLS results
generated during these steps.

As is shown in Fig. 2, in phase 2 the hybrid method chooses UKF
result, because the UKF-χ2 test value (see Fig. 3) and the index Δk 22
values (see Fig. 3) are below their threshold. This phase represents
the steps when the Holt method has accumulated sufficient
historical data and the UKF begins to perform better than the WLS.

Phase 3 represents the time when the generator was taken out of
service (just after step 101). This system change makes the UKF
method give an anomalous result, which is detected by the hybrid
method that decides to select the result of the WLS. In order to
detect this anomalous behaviour the proposed method analyses the
value of the index Δk presented in Fig. 3. As it was shown, during
this period (time step 101) Δk > 3μ, that is, it surpasses for more
than γ = 3 times the threshold μ.

Fig. 4 shows the results of the application of the hybrid method for
the 14-bus (A) test system. The index used by the algorithm to select
among the UKF and WLS results is shown in Fig. 5.

Fig. 6 depicts the index and threshold values for the 14-bus (B)
test case considering that the power generator was continuously
connected and disconnected from the corresponding bus. As it was
shown the algorithm continuously detect the UKF anomalies and
switch to WLS results whenever is necessary.
IET Gener. Transm. Distrib., pp. 1–8
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Fig. 9 Index against threshold comparison for the real case
Figs. 7 and 8 show the results of the three methods for state
variables estimation and the real value. For the sake of simplicity,
two state variables were selected, the voltage magnitude for bus 3
in Fig. 7 and the angle for bus 6 in Fig. 8. As it is depicted in
both figures, during 120 time steps the hybrid method outperforms
WLS and UKF.
4.1 Real case

The proposed algorithm was also applied to a section of the
Argentinean National Interconnected System. This network is
located in the Upper Valley zone and includes the provinces of
Neuquén and Río Negro. This medium-sized power network has
thermal and hydraulic generation units. The network modelled
considers the 132 kV voltage level areas and lower voltage buses
and lines, that reach the generators and demands. This system has
87 buses, 23 thermal and 6 hydraulic units. The one-line diagram
is presented in [30].

The SCADA implemented in this system reports 52 voltage
measurements and 64 power flow measurements (32 active and 32
reactive). σ2 was defined as 0.0004 for voltage measurements and
0.008 for power measurements. Also a confidence index γ = 3 was
considered for this example. The method was applied during 24 h
considering 15 min intervals. In Fig. 9, a comparison between Δk

index 22 and the threshold μ is presented.
It is noted that in the first 15 observed steps (3 h and 45 min) the

calculated index Δk is larger than γμ. Considering this fact, the
proposed method selects result values from the WLS method
during these steps. Since the fourth hour (step 16) the index Δk

reduces its values to acceptable levels Fig. 9 shows a detailed
view of the index Δk where the anomalous behaviour because of
the start of a generator (close to step 75) should be observed.
5 Conclusions

In the power system industry, the problem of state estimation is
solved using WLS and more recently UKF method. When there
are slight changes in the system, UKF improves the results of
WLS and provides a useful estimate even in the case of
unobservability. However, when load/generation levels change
abruptly, UKF needs some time to give a good estimation.
IET Gener. Transm. Distrib., pp. 1–8
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The hybrid method proposed here is able to exploit the advantages
of both methods, maintaining the robustness of WLS and
incorporates state predictability through UKF. An index and a
threshold that evolves dynamically allows the method to decide for
the best result among UKF and WLS methods.

Specifically, both methods are computed at each time and the best
estimation is chosen. When WLS lacks observability, the UKF
solution can be used to give the missing pseudo-measurements.
When UKF is not accurate because of large variations of the
system, the WLS solution is provided. For the practical
implementation of the hybrid method, the algorithm should decide,
in an unsupervised way, which method is the best solution without
the knowledge of the true state. For this purpose, an index and a
threshold that evolve dynamically, are defined to choose between
WLS and UKF in real time. Numerical experiments where the real
state of the system is known in advance show that this hybrid
methodology outperforms both previously mentioned methods.

Tests were performed on three academic systems where the
knowledge of the true value of the state variables allows to
compute the real error and to analyse the performance and
behaviour of the method. The method was also applied to a real
case which corresponds to a section of the Argentinean National
Interconnected System to show its performance in a medium-sized
real network. These numerical results confirm the improvement of
the proposed method over the use of UKF or WLS alone.
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