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Abstract.

The mechanism of aneurysm rupture is still not fully understood. The rupture risk of the intervention may

increase during endovascular occlusions of cerebral aneurysms due to a localized load in the parent vessel close

to the neck, a common day-to-day situation. As a first attempt on the road towards developing a plausible anal-

ysis capable of dealing with many cases in a statistical sense, we describe the deformation kinematics using a

geometrically nonlinear thin shell model under Kirchhoff-Love’s assumptions in conjunction with a simplistic

Kirchhoff-St. Venant’s hyperelastic material model. Though it cannot assess the artery’s complexity, this more

straightforward yet not trivial approach enable us to statistically study the application of a concentrated load in

many locations, which mimics the action of an instrument during the endovascular treatment. We performed nu-

merical simulations on 34 cases from the AneuriskWeb Database. We present preliminary results considering a

smoothly varying thickness between the parent vessel and the aneurysm dome, focusing in the mesh construction

process and loading.

Keywords: Intracranial aneurysms, Cerebral artery biomechanics, Computational mechanics, Mesh surface pro-

cessing

1 Introduction

At present, when an unruptured intracranial aneurysm (UIA) is diagnosed, the most common response is its

treatment. However, endovascular treatments and microsurgical interventions show a non-negligible morbidity

(5%-7%) and mortality (1%-2%) risk [1]. Indeed, UIAs are relatively common, with an estimated prevalence of

up to 6% [2, 3], and given that many of them never break (only 1/3 in a life-long follow-up cohort [1]), physicians

frequently find themselves in the dichotomy of treating or not [4]. Particularly, in addition to hemodynamic,

quemo-mechanical, and morphological factors associated to the rupture risk of saccular aneurysms [5–8], the

risk increases during endovascular intervention due to the external force applied by the instruments used by the

professionals near the aneurysm neck, creating stress concentration on the aneurysm dome. The study of this issue

is challenging due to the need of modeling the arterial wall’s biomechanics, which offers a complex multi-layered

structure of composite materials, each one with different mechanical behavior [9, 10]. Furthermore, the aneurysm

wall exhibits several variations in its structure and mechanical behavior [11–14]. Therefore, the wall is more fragile

due to these structural changes at the aneurysm dome and the transition region (on the aneurysm neck).

It is possible to find impressive technical improvements in modeling the biomechanics of blood vessels. For

example, by considering incompressible nonlinear material models such as Mooney-Rivlin solid, multi-layered

materials, or even incorporating fiber orientations [15, 16]. Unfortunately, these works consider either simple
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theoretical geometries (dome = sphere, vessel = cylinder) or a few number of cases. Furthermore, the lack of a

systematic study in a statistically relevant population is noteworthy either due to the model’s high resource demand

or the impossibility of specifying the overall set of parameters to perform patient-specific simulations or both. On

the road towards developing a plausible analysis capable of dealing with many cases in a statistical sense, we

describe the deformation kinematics using a geometrically non-linear thin shell model under Kirchhoff-Love’s

assumptions in conjunction with a simpler Kirchhoff-St. Venant’s hyperelastic material model. Though these

assumptions cannot assess the artery’s complexity, they allow us to study the application of a localized load in

many locations and on a myriad of aneurysm cases (further details in Section 2.1). Also, as a proof of concept, we

consider a larger thickness in the artery relative to the aneurysm dome as well as different Young modulus in both

regions to mimic the nonuniformity of the real problem.

The present work is organized as follows. Section 2 describes the database used for this study and a brief

description of the nonlinear thin shell model, the applied force model, the numerical implementation and the

consideration of varying thickness. Section 3 explains the treatment of the geometrical models acquired from the

database to obtain the needed meshes for the simulation. In Section 4 we analyze the results of experiments across

four selected cases. Finally, we collect some conclusions in Section 5.

2 Matherials and Methods

Section 2.1 describes the AneuriskWeb database used to retrieve the aneurysm geometrical models. Section

2.2 presents a brief description of the geometrical nonlinear thin shell model within the Kirchhoff-Love theory

(stretching and bending). Section 2.3 details the modeling of the localized load, and 2.4 gives information about

the numerical implementation and the thickness value as function of the geodesic distance to the neck.

2.1 AneuriskWeb Database

The consulted database is a compilation of medical images and aneurysms data retrieved from the Aneurisk

project between 2005 and 2008, funded by SIEMENS Medical Solutions in collaboration with several medical

institutions, and carried out in the Laboratory for Modeling and Scientific Computing (MOX), Department of

Mathematics at Politecnico di Milano [17]. The database contains 103 geometrical models (triangular meshes)

of intracranial aneurysms of 99 different patients, retrieved from 3D rotational angiograms (23 available in the

database) with an isotropic spacial resolution of 0.3 mm (256 x 256 x 256) and segmentated through a semi-

automated process validated by an expert. These cases also include the ostium (polygon describing the neck),

the parent vessel’s centerlines and some geometrical parameters of the aneurysms such as location, classification

(lateral or terminal), and rupture status (Figure 1). We examined the 46 cases located in the Internal Carotid

Artery (ICA) and discarded those presenting fusiform aneurysms or saccular aneurysms with two or more domes,

resulting in 40 final subjects.

Figure 1. Left: Characteristics of the database, corresponding to the Internal Carotid Artery (ICA) cases. Type:

L = lateral, T = terminal. State: R = ruptured, U = unruptured. Right: Geometrical model describing the lumen,

centerlines, and the polygon describing the neck (ostium).
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2.2 Geometrically non-linear thin shells elastic model

In this section, we concisely describe the mechanics of thin shells, based on a geometrically exact formu-

lation [18]. We restrict our attention to the Kirchhoff–Love theory of shells, i.e. we neglect the shearing and

stretching deformation normal to the shell mid-surface. In this theory, the shell director remains normal to the

mid-surface during the deformation, see [19] and references therein.

We assume that this body can be described by the pair (ϕ,t), where the mapping ϕ defines the middle surface

Ω of the shell, and t is a field of unitary vectors (director field). We assume a varying thickness h, and also that the

change in shell thickness after the deformation is negligible. The subscript 0 indicates quantities in the reference

configuration; for example, ϕ0 parameterize the reference middle surface.We follow the usual convention for Latin

and Greek indices (i.e. i = 1, 2, 3; α = 1, 2), a comma denotes partial differentiation, subscripts refer to covariant

components, and superscripts denote contravariant components.

Then, the thin shell body S is given by

S =

{

Φ ∈ R3| Φ = ϕ(ξα) + ξ t(ξα), −
h(ξα)

2
≤ ξ ≤

h(ξα)

2
, (ξ1, ξ2) ∈ A

}

, (1)

where A ⊂ R
2 is the parametric space for the middle surface. Hence, we view a configuration Φ as a mapping

from a parametric domain A × [−h/2, h/2] into R3. The parametric domain is described by the coordinates

{ξ1, ξ2, ξ3} (where we identify ξ = ξ3), whose corresponding dual basis is {Ei}.

The area element of the deformed middle surface can be computed as dΩ = j̄dξ1ξ2, where j̄ = ‖ϕ,1×ϕ,2‖,

and the unit normal is t = (ϕ,1×ϕ,2)/j̄. The membrane strain tensor is defined as εαβ = 1

2
(ϕ,α ·ϕ,β−ϕ0,α ·ϕ0,β)

which measures changes in the in-plane metric tensor. The bending strain tensor, measuring changes in the second

fundamental form, is given by ραβ = ϕ,α · t,β −ϕ0,α · t0,β . Also, strain is expressed in terms of the kinematics of

the middle surface. For an elastic lamina the potential energy is expressed exclusively in terms of the kinematics

of the middle surface, that is the mapping ϕ, and is written in the parametric space as

Πtot[ϕ] = Πint[ϕ]−Πext[ϕ] =

∫

A

W (ε,ρ) j̄0dA +

∫

A

q · (ϕ−ϕ0) j̄0dA , (2)

where W is the strain energy density per surface unit, and q is the external body load per unit area. Here we

consider an isotropic Kirchhoff-St. Venant model as the elastic material model.

2.3 Localized force

The effect of a localized force is modeled by a Plateau function, which decays as a function of the geodesic

distance on the middle surface reference configuration to the application point. This function is given as

q̂(r) =
Ĉ

2πσ2

exp

[

−
1

4

( r

σ

)4
]

1 + exp

[

−
1

4

( r

σ

)4
] , (3)

where r is the radial distance on a circular infinite region, σ is a given parameter that controls the function width

and Ĉ is a constant computed such that the integral of q̂(r) equals one.

2.4 Numerical implementation

For the calculation of the total energy, it is required to obtain the second order derivatives for the defor-

mations of the shell ϕ, needing an approximation with C1 continuity in order to use a straightforward Galerkin

discretization approach. Due to this we use subdivision surfaces finite elements [20], to approximate ϕ. A La-

grangian approach was followed, with the same space of basis functions for both the deformed and the reference

configurations. Being ϕ0 the mapping of the reference configuration

ϕ0h(ξ
1, ξ2) =

N
∑

a=1

Ba(ξ
1, ξ2)ϕ0a, (4)

where Ba(ξ
1, ξ2) are subdivision surfaces basic functions, N the number of nodes in the mesh, and ϕ0a the

position in the tridimensional space of the a-th control point defining the middle surface of the undeformed shell.

It is noteworthy that it is possible to make use of a prescribed shell thickness, discretized as follows
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hh(ξ
1, ξ2) =

N
∑

a=1

Ba(ξ
1, ξ2)ha, (5)

where ha are predefined values of the shell thickness at the reference nodes. It is known that in the aneurysm

neck, the thickness decreases dramatically. Still, this transition hasn’t been defined with certainty [14, 21]. We can

assume that the thickness of the shell varies according to the arctangent of the geodesic distance on the aneurysm

from the node to the neck curve. The function used to assign a thickness value for each node is

ha = (h̄v − h̄d)
1

π

(

tan−1
dGa

w
+

π

2

)

+ h̄d, (6)

where h̄v and h̄d are the values of the thickness in the blood vessel and the dome (reported values), w is the width

of the transition zone, and dGa the value of the geodesic distance between the a-th node and the curve defining the

aneurysm neck. This geodesic distance is calculated by the CGAL library [22]. We provide further information

about it in Section 3.

When using the load function given by Equation (3) for a curved surface the distance r is replaced by the

geodesic distance dG, while the load is q = Q q̂(dG) t0, where Q is the load value (100 mmHg), whereas σ = 0.25
mm, emulating the diameter of a microcatheter of 1.5 Fr (0.5 mm), and Ĉ is computed such that the integral of

q̂(dG) on the middle surface Ω0 equals one. The total energy function is expressed in terms of the nodal variables

ϕa, a = 1, 2, . . . , N , which is minimized with respect to the degrees of freedom given by the deformation using

the Newton-Raphson method, combined with a linear search method [19]. This is repeated until the convergence

criterion is reached, then the next load site is selected and the whole process is repeated.

3 Surfaces mesh treatment

Our study focuses on the region surrounding the aneurysm neck. As shown in Figure 1, models acquired

from the database included a mesh describing the blood vessel tree containing the aneurysm and poor mesh quality

in regions with high curvature. Therefore, to perform efficient numerical simulations, a pre-process was needed to

obtain the final meshes, as described in Figure 2, left. From 40 initial cases, 34 final meshes were obtained, as 6

cases presented issues at some step of the process. For this purpose, we developed a C++ computational framework

that enables us to combine VTK (Visualization Toolkit, [23]) and CGAL libraries for mesh processing.

3.1 Aneurysm isolation

As a first step, we isolated each aneurysm dome from its parent vessel by cutting at a certain distance from the

neck, discarding the rest of the artery. The procedure is carried out in a semi-automated fashion by an application

developed in C++ and using the VTK library, such that the user defines the distance as a multiple of the vessel’s

inner diameter on each side of the neck (Figure 2, center). According to the database classification, the algorithm

inputs are the geometrical model, the neck polygon, the centerlines, the selected distance (as a multiple of the

diameter), and a variable indicating if the aneurysm is terminal or lateral. Then, for each model, it picks reference

points on each centerline, measures the inner diameter of each vessel at the neck area, and moves along the parent

vessel, performing the clip at the desired distance.

We perform the cut by defining a cylinder oriented perpendicularly to the centerline in the selected point.

After the clip the arterial tree is discarded, keeping only the connected component associated with the model neck.

In this work, we set up the isolation at a distance of 2.5 times the vessel diameter, based on analyzing the problem’s

behavior to different lengths. Higher values (>3 times the diameter) presented more stability but caused a flexion

effect on the model and an excessive dome movement. This isolation algorithm successfully performed ∼89%

of the overall cuts, while the rest had to be executed manually by a trained user. Each manual isolation required

between 10-20 minutes per case depending on the model complexity, while the automated isolation spent 3-4

seconds.

After the isolation we applied a remeshing step [22], maintaining the original element edge size of 0.25 mm.

Due to the impact of the neck in steps 4 and 5, (Figure 2, left), we refined the neck area through the isotropic

remeshing algorithm from CGAL’s “Polygon Mesh Processing” library [22]. We apply a final iteration of the

Loop’s subdivision surface scheme, see Figure 2, right, generating edges of 0.0625 mm in length for the refined

region around the neck and 0.125 mm for the rest of the model.
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Figure 2. Left: Mesh processing steps. Center: Example of an isolated model (C0005). Right: Example of a

remeshed model, with refined neck (C0034).

3.2 Geodesic distance

We developed an algorithm that finds the geodesic position of each node to the ostium and assigns a “tag”

to it, to distinguish between dome and artery nodes. In this step, we also used algorithms described in the section

Triangulated Surface Mesh Shortest Paths of the CGAL library [22]. This library computes geodesic paths on a

triangulated surface mesh. We calculated the geodesic distance between each node and the neck curve (Figure 3,

left) and assigned it a positive sign if the node was located on the aneurysm or a negative if it was located on the

dome (Figure 3, right). The final step consisted on the definition of a region surrounding the artery in the neck

area. This loading zone (or “vest”) was defined at a distance of 1 time the vessel’s inner diameter, similarly to

the isolation step but only applied to artery nodes (Figure 3, right). In this region we considered a distribution of

loading points (Figure 3, right), each of which are used to simulate the effect of a tool pressing in that position

during endovascular occlusion intervention. These load sites were selected so as the minimum distance between

them is 0.5 mm, keeping the density as regular as possible. The applied load corresponds to the function described

in Section 2.

  

Figure 3. Case C0034. Left: geodesic distance to the neck curve field. Right: detail of the load sites. Each one

of them has a radius r of 0.25 mm (for visualization) and are located at a minimum distance (dG) of 0.5 mm from

each other. Load sites are limited to a vest region around the neck, defined with the same algorithm that performs

the isolation, at a distance of one inscripted diameter from the neck curve.

4 Experiments and results

We conducted experiments with the long-term objective of determining which areas of an aneurysm have

a higher sensitivity to localized loads and could lead to rupture. Thus, we focus on the amount of deformation

as an interesting first case of study. A particular case of large deformation is the presence of buckling effects,
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i.e. strong deformations associated with small increases in load. For this, we established which biomechanical

variables are involved in large perturbations of an aneurysm when pressure is applied. For each loading point

(Figure 3), an independent experiment was carried out. For the final state of the deformed mesh, a number of

biomechanical observables were measured at specific points inside the mesh triangles (Gauss points) specifying

a complete biomechanical model. The observables included displacement magnitudes, differences between the

Gaussian curvature at the reference and the deformed configurations of the Gauss points, total energy, membrane

energy, bending energy, among others. Figure 4 shows dimensionless relations between different physical variables

for all loading sites belonging to four selected ICA cases (C0090, C0034, C0014, and C0042), colored by manually

identifying the final state for presence (blue) or absence (orange) of buckling effects. Remarkably, the loading sites

group in two quite distinct clusters with some overlap, suggesting that this visualization method is an efficient tool

to capture specific aneurysm areas that lead to large deformations and are likely to be associated with ruptured

states.

Figure 4. Top left: representation of dimensionless biomechanical atributes for all load sites of four selected

ICA cases, colored by manual inspection of presence (blue) or absence (orange) of buckling effects. Remaining

panels: pairwise atributes projections. For the considered combinations the loading sites group in two clusters with

minimum overlap, as it can be seen in the projections. max.u = max displacement of nodes, lsite.u = displacement

of the load site, max|d.kg| = max difference of gaussian curvature between reference and deformed configurations.

5 Conclusions and future directions

This work presents preliminary results of a thin shell model considering a smoothly varying thickness between

the parent vessel and the aneurysm dome. We developed a semi-automated process to isolate and remesh the

aneurysm dome and its neighboring connected parent vessels, allowing us to treat a large number of cases, saving

time and resources. The algorithm allows the isolation of any type of aneurysm, as every measure considered

for the process is relative to the dimensions of each case. Also, we show that the computational analysis of

the biomechanics of intracranial aneurysms can help to determine non-trivial areas of interest for selecting case

studies given wall thickness and concentration load location. In future work we plan to modify the isolation

algorithm to raise its success rate, and expand the use of the database to other problems and situations, studying

aneurysm biomechanics considering more complex materials such as a Mooney-Rivlin solid (ongoing work), an

anisotropic multilayered structure or including other studies of interest, such as crack phase-field modeling of

aneurysm rupture [24], heading towards a better rupture risk assesment.
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