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h i g h l i g h t s

• Energy transfer in systems subject to different sources of nonequilibrium is studied.
• Single and multiple resonant phenomena depending on the frequency regimes are found.
• A crossover between a mechanical resonance and a thermodynamical one is reported.
• A ‘‘red shift’’ resonance that is size dependent is shown.
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a b s t r a c t

We analyze the energy transport in a one dimensional chain composed by two Frenkel–
Kontorova (FK) segments connected together by a time modulated coupling. The ends are
immersed in two thermal reservoirs with oscillating temperatures. We observe a single
and multiresonant heat transport depending on the regimes considered, with a crossover
between a mechanical resonance and a thermodynamical resonance. The dynamical tun-
ing between these two regimes requires the synergetic presence of both time dependent
sources of nonequilibrium. In the single resonant regime we analyze a ‘‘red shifted’’ reso-
nant frequency that is dependent on the size of the system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During last years a fast development of the emerging field of phononicswas achieved,where themanipulation and control
of phonons (heat transfer) at the nanoscale andmolecular level has become a fundamental topic due to its technological and
practical implications [1]. The problem of phonon transport, that is a thermal nonequilibrium problem, is less understood
than that of electron transport. In addition to electrons and photons, phonons carry heat and information. However,
comparing with electron and photons, phonons are more difficult to control. So, an important and relevant issue is to
understand further the mechanisms for heat transfer assisted by phonon and its generation in nano and micro devices
and how it affects their structural stability. In this sense, it becomes essential to studymechanisms that dissipate or redirect
heat efficiently, or under what operating conditions a given device can act as a good conductor or insulator.

It is known that two necessary conditions are fundamental for the emergence of thermal current: symmetry breaking
and nonequilibrium sources. These two conditions in nonlinear lattices produce abnormal thermal transport phenomena,
such as thermal rectification and negative differential thermal resistances.
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Fig. 1. Model system composed by two one-dimensional chains coupled by a modulated interaction in time and coupled to two heat baths Langevin at
their ends.

Several models and mechanisms have been proposed to control or manipulate the heat at the nanoscale. One way is to
tune the structural asymmetry or the degree of anharmonicity [2–11]. It has been demonstrated that the nonlinearity can
be utilized to design novel nanoscale solid-state thermal devices such as thermal diodes [12–16], thermal transistors [17],
thermal logic gates [18] and thermal memories [19,20].

Othermechanismsmay require an external appliedwork on the system tuning or controlling heat dynamically. In Ref. [14]
it was proposed a heat ratchet to direct heat flux from one bath to another in a nonlinear lattice, which periodically adjusts
two baths temperatures while the average remains equal, or brownian heat motors to shuttle heat across the system [21].
We can alsomention heat pumpswhich directs heat against thermal bias in nanomechanical systems [22], or phonon pumps
induced at the molecular levels by an external force or with a mechanical switch on–off or a modulation of the coupling be-
tween different parts of the system [23–26]. Experimentally this can be done inmolecular junctions or inmolecular systems,
for example, varying the distance among them. It was also demonstrate theoretically that mechanical actions as stretching
(or compressing) a wire, can tuned the phononic band structure in such a way that multiple phononic channels are opened
one by one. In this way and as in the electronic case, it is found amultiple-step quantized phononic thermal conductance [3].

The distinctive and unique transport properties of low-dimensional system has posted great challenge to find
mechanisms to manipulate heat transfer in meso and nanoscopic phonon systems. Therefore, it is highly desirable any
attempt towards a thorough understanding of the heat transport in general one-dimensional nonlinear lattice systems. In
this paper we extend these studies to analyze the synergetic effect of heat transfer through one dimensional systems when
are present simultaneously two time dependent mechanical and thermodynamical sources of nonequilibrium.

2. The model

We consider a one dimensional array of atoms, harmonically and bidirectionally coupled. The chain is divided in two
segments (L, R)with different coupling intensities KL and KR between elements and coupled together also harmonicallywith
a coupling constant Kint . The system is subject to an on-site potential (Frenkel–Kontorova (FK) chains) as it is shown in Fig. 1.

The Hamiltonian of the system can be written as: H = HL + Hint + HR where HL/R is the Hamiltonian to the left (L)/right
(R) segments respectively and Hint represents the interaction between the two segments.

HL/R =

N
i=1

P2
i

2mi
+

1
2
KL/R(Xi+1 − Xi)

2
−

Vo

4π2
cos(2πXi) (1)

with N the total number of atoms.
If each segment has N/2 elements, the interaction Hamiltonian can be written as:

Hint =
1
2
Kint(t)(XN/2+1 − XN/2)

2 (2)

with mi the mass of the ith atom, Xi = qi − ia denotes the displacement from the equilibrium position ia, where a is the
periodicity of the on-site potential (corresponding to a commensurate state), and Pi is the momentum.

KL/R are the elastics constants in each segments and V0 is the depth of the on-site potential. The fixed ends of the L/R
segments are in contact with two thermal baths which are simulated through Langevin type reservoirs with zero mean and
variance ⟨ξi(t), ξk(t ′)⟩ = 2γKBTiδ(t − t ′)δi,j, where γ is the strength of the coupling between the system and the baths, and
Ti, i = L/R, is the temperature of each bath. The system is driven out of equilibrium by two different mechanisms:

(a) Modulation of the coupling between segments: Kint(t) = K0(1 + sin(ωK t)).
(b) Modulation of the temperature of the reservoirs: TL,R(t) = T0,i(1 + ∆sgn(sin(ωtempt))), i = L, R with T0,i the reference

temperature of each reservoir.

The integration of the equations of motion is performed with a 2nd-order stochastic Runge–Kutta algorithm, for
sufficiently long time (of order of 109–1010 integration steps) to guarantee that the system reaches a stationary state. We
apply fixed boundary conditions and for the numerical simulations we use dimensionless parameters: spring constants Ki
in units of KR, moments in units [a(mkR)1/2], frequencies in units [(KR/m)1/2] and temperatures in [a2KR/kB]. For a typical
atom and a typical situation these units corresponds to frequencies ∼1013 s−1 and temperatures ∼103, 104 K. Thus the
nondimensional temperatures 0.01–0.1 correspond to temperatures of the order 100–1000K. On the other hand, frequencies
are assumed to be smaller than the inverse of typical electron–phonon relaxation times ∼0.1 ps (dephasing time), in order
to consider only the relevant time scales of phonon scattering processes.
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From the continuity equation, the energy current that flows to and from a particle should cancel each other when the
system reaches the steady state, since there are not temporal variations of the mean local density of energy. The local time-
dependent heat current is calculated as:

Ji(t) = KiẊi(t)[Xi(t) − Xi−1(t)]. (3)

We define the net heat current in each segment J̄L,R averaging over an integer number of periods after a transient time as:

JL/R =
1
τ

 τ

0
J̄i(t) dt. (4)

In the steady state JL,R are independent of the site in each segments. In the same way, the effective local temperature is
defined as:

Teff (i) =
1
τ

 τ

0
Ẋi(t)2 dt. (5)

On the other hand, conservation of total power implies that the power P invested by external agents into the system is
dissipated into the reservoirs, therefore:

P = Ẇ = Q̇R + Q̇L = JR + JL (6)

where Q̇L and Q̇R are the rates of heat absorbed for the reservoir L and R respectively (defined positive when heat flows into
the reservoir), and Ẇ is the rate of work done in the contact.

3. Results

We study the effect of two sources of nonequilibrium in the system. As a first step, we control the coupling between
segments through a time dependentmodulation of the intensity. Then,we incorporate a timemodulation of the temperature
of the reservoirs and we analyze the cooperative effect of both drivings on the heat transport.

3.1. Single resonant transport

In order to study the response of the system to the modulation of the contact, we depict in Fig. 2 the current through the
L and R segments as a function of ωK . We observe different regimes, corresponding to regions I, II, III and IV in Fig. 2. We
choose arbitrary and without loss of generality TL > TR because discussion does not change qualitatively.

In region I, JR = −JL > 0, heat transport is mainly dominated by the gradient of temperature (heat current is defined
positive when heat flows into the bath). The averaged net power released to the system is zero and the heat flows from hot
to cold. Thus, when ωK is very low (adiabatic driving limit), the system reduces to two coupled segments with a coupling
constant K0/2.

In region II the heat still flows from hot to cold but with different absolute values in each segment because of a net
contribution due to the power released to the system, that according to Eq. (6) means JR − |JL| = P > 0, with JL < 0.

The separatrix between region II and III corresponds to a frequency for which the heat current in the left segment is zero.
This is the onset of regime III where a current inversion in the L segment occurs. The energy transport is mainly dominated
by the power released in the contact region and dissipated into both reservoirs. Energy currents take different absolute
values in both segments due to asymmetry. There is a frequency for which the power released to the system (JR + JL), always
positive, achieves a maximum value as it is expected for a resonant behavior and depends on the eigenfrequency spectral
distribution of the system. This phenomenon is found to be robust for different temperatures and direction of the gradients.
Moreover, it is found even in the absence of thermal bias (TR,0 = TL,0, not shown here), indicating that this is mainly a
‘‘pumped energy’’ regime dominated by a phonon pump contribution to the heat current due to a work done on the system.

The temperature profile exhibits a discontinuity at the interface (see Fig. 3), except in region III. For region I and II a
negative-value slope temperature profile in L segment indicates a heat flow from L reservoir as it is shown in Fig. 2. The
crossover to region III occurs for a zero-value slope, thus indicating that a current reversal occurs.

In region IV the contribution due to the gradient of temperature is again the dominant one and the power released is
almost zero. The current here corresponds to a regimewith a coupling intensity oscillating very fast (ωK → ∞), converging
to a time average constant value K0.

In order to have a qualitative insight of the underlying physical mechanism of the observed rectification and inversion
phenomena, we show in Fig. 4 the phonon spectrum (K0 ≪ KL, KR) of the interface particles at the left and right side
of the contact for different driving frequencies ωK regimes. The spectrum is presented for an arbitrary direction of the
temperature gradient (TL > TR) because the phonon bands behavior do not change significantly when the temperature
gradient is reversed.

The match or mismatch of the spectrum of the two particles controls the energy (phononic) current through the contact
and along the device. As the power supply (∼ω2

K ) at the interface affects the kinetic energy of the particles, it is expected
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Fig. 2. Heat flux vs ωK . JL (black square) is the energy current through the left segment and JR (red circle) in the right segment. JR + JL (up blue triangle) is
the power released into the system. Regions I–IV are discussed in the text. Parameters (in dimensionless units): V0 = 5, γ = 0.5, ∆ = 0.5, KL = 2KR =

1, K0 = 0.05, ωtemp = 10−4, T0,L = 0.15, T0,R = 0.05,N = 30.

Fig. 3. The effective temperature profiles for four selected ωK values of Fig. 2.

Fig. 4. Single-particle frequency spectrum of the particles to the left (L, solid line) and right (R, dashed line) of the interface. From top to bottom:
ωK = 0.005, 0.1, 0.8. Parameters as in Fig. 2.
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Fig. 5. Left (a): J/N vs ωK for different N . Red line corresponds to N = 50, blue line to N = 76, green line to N = 160 and black one to N = 256. Inset:
J/N vs ωK for different ωtemp = 10−2, 10−4 and N = 30, 50. Right (b): Optimal ωK ,max vs N . ωtemp = 5 · 10−4 . (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

that ωK will play a relevant role on the behavior on the phonon bands shifts as that produced by thermal excitations on the
phonon bands of the standard FK model. For ωK in regions I–II (Fig. 2) the non-linear on-site potential plays a fundamental
role confining the particles near their equilibrium positions, the valleys, thus a low-frequency band-gap is opened (Fig. 4(a)).
By linearizing the FK equations of motion one can easily obtain the phonon band,

√
V0 < ω <

√
V0 + 4ki [27]. Transition

from region II to III is a crossover where the height of the non linear on-site potential is of the order of the local thermal
energy of the particles (due to injected energy) so the low frequency part of the phonon bands starts to be populated. ForωK
in region III the particles have large enough kinetic energies to overcome the wells of the potential and the low frequency
part of the spectrum becomes more important (Fig. 4(b)) in the phonon bands of the L and R segments. In Fig. 4(c) the on-
site potential becomes negligible, the FK model degenerates to a harmonic one with 0 < ω < 2

√
ki phonon bands with

mainly noninteracting phonons. The interfaceworks as a scatter point for high frequency phonons but not for low frequency
ones. These soft modes (including zero-mode) have bigger mean free path thus playing a fundamental role in the energy
conduction.

Heat transport is mediated mainly by low frequency acoustic phonons. The role of the on-site potential is to produce a
shift in the minimum cutoff frequency from zero to V0. Due to the driving, this minimum cutoff can also be decreased, so
more low frequency phonons are involved in the transport process increasing the heat current. In this way we can control
and tune the heat transfer dynamically, overlapping the phonon bands in the low part of the spectrum. We also find that
this behavior of the phonon bands is robust against changes in the directions of temperature gradients.

Another interesting feature to investigate is the size system effect on the energy transport, which becomes relevant from
a practical point of view, in order to control heat in different scale systems. We find that the resonance behavior is robust
for all values of N , that is not a size effect. In Fig. 5(a) we show the heat current normalized to the length of the chain for
the L segment as a function of ωK for different values of N . We define ωK ,max as the optimal driving frequency for which J
is maximum. We observe that the position of the peaks shifts to lower frequencies when N increases. In Fig. 5(b) we plot
ωK ,max as a function of the size N for the L segment. This ‘‘red shift’’ effect is veiled when the size increase. This means that
in practice we can obtain lower optimum driving frequencies by enlarging the system. The heat conduction in the FK lattice
follows Fourier’s law when the system size is large enough. That is the response time τ that characterized the time scale for
the energy to diffuse along the system is proportional toN2. However in our caseωK ,max does not follow that proportionality.
On the other hand, for small N, ωK ,max is neither proportional to N−1 as should be expect for a pure ballistic transport of
phonons. So, in the resonant regime typical time scales are not proportional to N1 or N2 (not purely ballistic or diffusive)
due to the presence of driving and nonlinearity.

3.1.1. Multiple resonant transport
As a second step, we analyze the energy transport when two independent time dependent sources of nonequilibrium are

driving the system. We introduce a periodic time modulation of the temperature of both reservoirs with frequency ωtemp,
for a fixed temperature bias: TL,R(t) = T0,i(1 + ∆sgn(sin(ωtempt))) i = L, R

In Fig. 6 we plot the current JR vs ωtemp for the case TL > TR (this election is arbitrary and do not affect the analysis).
When ωK goes to zero (so Kint ≈ cte) and in the adiabatic limit (ωtemp → 0), the ends of the chain feel the constant

temperatures TL,0 and TR,0. On the other side, in the fast-oscillating limit ωtemp → ∞, the baths are driven so fast that the
two ends of the chains cannot respond accordingly, thus the system only feels the time average temperatures TL,0 and TR,0. In
both cases |JR| = |JL|. As longωtemp is increased from zero, the heat current shows a decreasing behavior. However, beyond a
critical value (ωtemp ≈ 0.01 in Fig. 6) the current becomesωtemp independent. This can be understood from the discontinuity
in the effective local temperature Teff (i) profile at the interface, shown in Fig. 7. For slow coupling modulation of the baths,
the temperature gradient in the right segment is greater, so the heat current. When ωtemp is increased the temperature
gradient gets smaller and the heat current decreases, tending to a limit temperature profile. This indicates a regime where
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Fig. 6. JR vs ωtemp for ωK = 0.8, 0.1, 10−4 .

Fig. 7. Local effective temperature Teff (i) vs site number for ωtemp = 10−4, 10−3 and 5 · 10−1 and ωK = 10−4 . Parameters as in Fig. 2.

the current is almost ωtemp independent with a value mainly determined by the low frequency coupling modulation ωK
(Fig. 6). Otherwise, in the left segment the temperature gradient is almost zero, thus it acts mainly as an insulator.

On the other hand, for values ofωK in the resonant region III of Fig. 2(a) we observe a qualitatively change in JR (as JL also)
curves when ωtemp changes (see Fig. 6). A multiresonance response appears but depending on ωtemp. In Fig. 8(a) we show
the curves for ωK = 0.4, 0.8. The values of JR are ‘‘confined’’ in between two envelopes. In Fig. 8(b) we plot the maximum
‘‘distance’’ (∆Jmax) between the upper and lower envelopes as a function of ωK observing that this magnitude presents a
single resonant response.

Let us examine the reason for the appearance of multiresonant peaks. The presence of multiple peaks is related to
the eigenfrequency structure of the on-site harmonic system, becoming more dense as N increases. As it is shown if
Fig. 9 the positions of the peaks for the harmonic and FK models seem to be close, but not identical, suggesting a similar
resonant mechanism [24]. However, the current is smaller in the FK system because of phonon scattering processes due to
anharmonicity.

When ωK moves away from ωK ,max the on-site potential becomes more relevant. The multiresonance response is still
found, but with upper and lower envelopes getting closer, as it is depicts in Fig. 8(a). Thus the role of the non linear on-site
potential is to smooth the multiresonant peaks. The mechanism for a single peak should be still explained by the fact that
the external frequency due to driving is resonant with a characteristic frequency of the system, but with an upper envelope
tending to the lower one. In this way we can observe the lower envelope with a single resonant peak as in Fig. 2.

In Ref. [24] it was found a multiresonance behavior due to the action of an external driving. However, here we present a
richer and complex feature of this phenomenon, that emerges when two time dependent sources of nonequilibrium act in
a synergetic way on the system. From Figs. 2 and 8(a) we observe a multiresonant response that requires not only a driving
of Kint , but also a modulation of the temperature of the reservoirs.

The above discussion reveals clearly the presence of two distinct regimes depending on the two relevant frequencies,
and a crossover between them: a ‘‘thermal’’ transport regime dominated by the temperature gradient and one dominated
by the power released into the system by the mechanical driving. See Fig. 9.
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a b

Fig. 8. Left (a): JR vs ωtemp for two ωK values in the single resonant regime. Dotted lines indicate the approximate upper and lower envelope curves.
Right (b): Distance between envelopes vs ωK .

Fig. 9. Comparison of the harmonic case and the FK case in a randomly selected frequency region. Heat current vs driven frequencyωK forωtemp = 5 ·10−4

and TL,0 = TR,0 .

4. Concluding remarks

In summary, we studied the heat transfer along a one dimensional system formed by two FK segments in contact and
with their ends coupled to thermal reservoirs with modulated temperatures. The coupling between segments is also time
modulated and provides a source of energy (work) delivered into the system. We mainly focused our analysis in the heat
transfer along the system for a broad range of the two involved frequencies and the most characteristic regimes. Keeping
fixed the average temperatures of the thermal baths, we found a range of coupling frequencies forwhich the systempresents
a single resonance response for the heat flux. For slow and fast coupling modulations this phenomenon vanishes and the
heat current takes smaller values than in the resonant regime. We also showed that there exists a robust current reversal in
one of the segments.

On the other hand, when both time dependent nonequilibrium sources act simultaneously, we found two different
responses as a function ofωtemp. One corresponding to a resonant regimewith the presence ofmultiple peaks for frequencies
related to the eigenfrequencies of the system that are bounded by the number of oscillators. This regime is found in the
window where the system presents a ‘‘pumped energy’’ regime for ωK . The curves are bounded by envelopes getting closer
as long the frequency moves away from the optimal ωK . The other regime corresponds to a non resonant response where
the heat current takes a constant value as long as the frequency of the temperature modulation increases.

We also found a ‘‘red shift’’ for the single resonant frequency ωK ,max which is a size effect. In Ref. [28] it was found that a
characteristic frequency is red shifted varying the system sizewhen the temperature of the thermal baths is timemodulated.
On the other hand, it was shown in Ref. [26] that when the temperature of the reservoirs are kept constant, but an external
driving is applied, the characteristic resonant frequency is not size dependent. However, our results suggest that this effect
depends on the mechanical and the thermodynamical dynamical contributions acting altogether. As it is expected, when
the mechanical driving is present but without temperature there is not a heat current (trivial case not shown here). With
temperature and for a fixed ωK , we also find a frequency shift that depends on ωtemp and N , as it is show in the inset of 5(a).
However a detailed analysis of how this cooperative effect depends on the size of the system deserves further investigation
in a future work.
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The nondimensional parameters used here correspond to typical values that can be realized experimentally. Thus the
comprehension of this cooperative resonant phenomena will allow to achieve a better mechanical and thermodynamical
control of the energy transport in order to design devices whose features help to improve the energy transfer in low
dimensional systems.
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