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Abstract. We consider an interferometer of edge states of a two-dimensional topological
insulator with an antidot. We analyze the mechanisms leading to an effective tunneling with
spin flip between different helical states.

1. Introduction
Recent experiments in quantum wells of the two-dimensional topological insulator HgTe
demonstrated a dissipationless charge transport through its helical edge states (HES) [1, 2, 3].
Due to the time reversal symmetry that holds in this material, the edge states come in Kramer’s
pairs [4, 5, 6], through which the electrons move with a defined spin associated with the direction
of propagation [7].

The nature of the electron propagation in HES along with the topological protection against
backscattering, make these materials very appealing to be employed for spintronics and quantum
computation [8, 9]. This motivates the study of configurations of helical interferometers in
setups including voltages and constrictions akin to those fabricated with quantum Hall edge
states [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. So far, most of the studies were based on scattering
at quantum point contacts connecting two HES [10, 11, 12, 13, 14, 16, 17, 19], while the effect
of a wide tunnelling contact was also recently analyzed [15, 18]. Quite generally, the (local)
time-reversal invariance only allows for the direct scattering between edge states situated at
different sides of the sample, while the direct (back) scattering within the same Kramer’s pair is
forbidden even in the presence of a constriction. Therefore, the scattering at the point contact is
characterized by two parameters, one describing a spin-preserving tunneling and one describing
a spin-flip tunneling between two Kramer’s pairs. However it is still unclear whether these effects
are present in real setups. For this reason, in a previous work we have proposed a simple test
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Figure 1. (Color online) Sketch of the helical edge states of a topological insulator with an
antidot in the center. The pair of edge states in contact to the voltages V1, . . . , V4 define the
terminals l = 1, . . . , 4.

based on the measurement of noise, as a concrete procedure to check the presence or absence of
spin-flip tunneling between HES at the quantum point contact [19].

In interferometers fabricated with edge states of a two dimensional electron gas in the
quantum Hall regime, the effects introduced by antidots in the bulk of the bar have been widely
studied [20]. Antidots in quantum Hall systems are generated by applying a negative voltage
on a surface gate, which generates an artificial repulsive impurity and a center for many-body
interactions in local contact to the edge states. A similar type of structure can be also generated
in a topological insulator, as sketched in Fig.(1). The aim of this work is to analyze the effect
of an antidot in generating backscattering in a Kramer’s pair of helical edge states as well as
providing channels for inter-pair tunneling processes.

2. Model and theoretical framework
We model the topological insulator (TI) as a bar with infinite length sketched in Fig. 1. Each
longitudinal edge of the TI hosts a Kramer’s pair of HES with a given helicity. This is described
by a Hamiltonian of one-dimensional (1D) free electrons with a definite spin and momentum.
The TI is assumed to have an antidot inserted in the center of the bar, which hybridizes with
the upper and lower edge states by means of spin-preserving tunneling processes. The electron
levels of the dot also correspond to a pair of HES circulating around the small region of the
sample where the surface gate is applied. For simplicity we model it by a single spin-degenerate
level with a Coulomb repulsion energy for double occupancy. We also consider a local spin-flip
process at the dot, representing a possible local tunneling within the pair induced by the surface
voltage. Thus, the electrons propagating through a given edge channel of the TI could tunnel
into the dot and tunnel again into another edge channel, with a different helicity. The full
Hamiltonian reads H = H0 +Hd +Ht. The Hamiltonian for the HESs is

H0 = −ih̄vF
∑

σ=↑,↓

∫
dx[: Ψ†

R,σ(x)∂xΨR,σ(x) : − : Ψ†
L,σ(x)∂xΨL,σ(x) :], (1)

where σ stands for the spin opposite to σ. We have assumed that a Kramer’s pair of right-
moving(R) with ↑ spin electron states and left-moving (L) with ↓ spin ones lie along the top
edge of the bar, while another pair L, ↑ and R, ↓ lie on the bottom, as shown in Fig 1. The Fermi
velocity vF is assumed to be the same for the two pairs and : O : denotes normal ordering.
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The antidot (impurity) is described by the following Hamiltonian

Hd =
∑

σ=↑,↓

[
ε0d

†
σdσ +

U

2
nσnσ +Rd†σdσ

]
, (2)

with ε0 is the single energy level, nσ = d†σdσ and U represents the Coulomb interaction. We also
consider a spin-flip scattering process inside the dot represented by the last term of Eq.(2) [21].
Finally the tunneling between the quantum dot located at x0 and the HESs is,

Ht =
∑

α=R,L

∑
σ=↑,↓

∫
dxΓ(x)[Ψ†

α,σ(x)dσ +H.c.], (3)

where Γ(x) =
√
aγδ(x− x0) and a is a characteristic length of the coupling region between the

antidot and the HESs.
The current operator for electrons flowing into the terminal l reads Î l(x) =

evF
[
ρ̂l+(x) − ρ̂l−(x)

]
, where ρ̂l+(x) is the density operator for particles incoming (outgoing)

l+ (l−) the terminal l. The associated indices α, σ, with α = L,R and σ =↑, ↓, depend on the
terminal under consideration. For example, for l = 3, the l+ indices are R, ↑. The mean value
of this current can be evaluated by recourse to the non-equilibrium Green’s function formalism
presented in Ref. [19], by introducing suitable generalizations to treat the Coulomb interaction
U at the dot. We find for small bias voltage difference V at the terminals [22],

I l(x) = I l0 − I lsp − I lsf − I lb. (4)

The first term, I l0 = e
h̄

∫+∞
−∞

dω
2π [fασ(ω)− fασ(ω)] is the perfect ballistic current induced in the

terminal l in the absence of the tunneling to the dot. The other terms account for the contact
between the HESs and the dot and tend to decrease of the current I l with respect to the ballistic
limit. We can distinguish different contributions, which describe, respectively, the tunneling to
the wires in the opposite side of the bar preserving the spin (sp) and flipping the spin (sf). In
addition, there is a backscattering contribution I lb which represents an effective resistance in the
wire l. Explicitly, these terms read

I lsp =
e

h̄

∫ +∞

−∞

dω

2π
Tσσ(ω) [fασ(ω)− fασ(ω)] , I lsf =

e

h̄

∫ +∞

−∞

dω

2π
Tσσ(ω) [fασ(ω)− fασ(ω)] ,

I lb =
e

h̄

∫ +∞

−∞

dω

2π
Tσσ(ω) [fασ(ω)− fασ(ω)] , (5)

being
Tσσ′(ω) = (

√
aγ)4|g0rασ(ω, x, x0)|2|Gr

σ,σ′(ω)|2 (6)

In the above expressions, g0,rασ(x, x
′, ω) = − i

vF h̄Θ(sα(x− x′)) exp
[
i ω
vF h̄(x− x′)

]
, with sα =

+1(−1) if α = R(L), are the retarded Green’s functions of the isolated helical state, while
Gr

σ,σ′(ω) is the Fourier transform of the retarded Green’s function of the interacting dot in

contact to the helical states Gr
σ,σ′(t− t′) = −iΘ(t− t′)〈{dσ(t), d†σ′(t′)}〉.

3. Results
The retarded Green’s function of the interacting quantum dot is calculated exactly in the non-
interacting limit U = 0 and with quantum Monte Carlo by following the procedure of Refs. [23]
in the symmetric Anderson model for finite U . In the latter case, the corresponding density of
states ρσ(ω) = −2Im[Gr

σσ(ω)] is obtained by analytic continuation from the Matsubara to the
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Figure 2. (Color online) a) The density of states ρσ (ρ↓ = ρ↑) in the dot for three different
values of spin-flip: R = 0 (black solid line),0.018 (red dashed line) and 0.18 (blue dashed-dotted
line). ε0 = −U/2, T = 0.0025, U = 4 and

√
aγ = 0.5. b) Transmission coefficient Tσσ(0) as

functions of the amplitude of the spin-flip parameter R for U = 0 (black solid line) and for
U = 4 (black open circles) and Tσσ(0) as functions of R for U = 0 (red dashed line) and for
U = 4 (red open squares) .

real frequency axis and typical results are shown in Fig. 2a. We see that for these parameters
the Kondo peak at ω = 0 is clearly distinguished for R = 0. The effect of R is to introduce strong
spin fluctuations at the dot, which conspire against the constitution of the Kondo resonance.
For this reason, the peak melts down for increasing R.

In order to study the effect of the different interactions at the dot on the transport properties
of the interferometer wires, we analyze the transmission functions at the Fermi level of the wires,
assumed at ω = 0. Results are shown in Fig. 2b. The energy of the bare level is assumed to
be ε0 = −U/2, in order to have the impurity at half filling and the resonance aligned with the
Fermi energy. We see that in the non-interacting case (U = 0), the transmission Tσ,σ(0) = 1 for
R = 0 and decreases as this parameter increases. Instead, the transmission with spin flip shows
the opposite behavior. It vanishes at R = 0 and increases with this parameter. We see that
for R = 0 the behavior is the same for U = 0 and for U = 4. This is because for this value of
the Coulomb interaction the dot is in the Kondo regime (see Fig. 2a) and the Kondo resonance
opens a perfect transmission channel with Tσ,σ(0) = 1 and Tσ,σ(0) = 0. For R 6= 0 the behavior
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is, however, clearly different for both values of U . In the non-interacting case, for increasing
R, the spin preserving transmission decreases as the spin-flip one increases. This is also the
case for U = 4 and small values of R, where the Coulomb interaction seems to enhance the
spin fluctuations induced by R, in comparison to the non-interacting case. However, for large
enough R, the Kondo resonance decreases and tends to disappear, which means a vanishing
small spin preserving transmission and a spin-flip transmission which is much smaller than the
non-interacting one.

4. Summary and Conclusions
We have studied scattering effects of an antidot coupled to helical edge states of a topological
insulator. We have considered a local spin-flip mechanism as well as a Coulomb interaction. We
have shown that these two interactions generate relevant effects in the transmission functions
that define the electron transport through the helical edge states. These processes open new
possibilities in the manipulation of electron currents in topological insulator interferometers,
which may be useful for generating controlled orbital entanglement similar to the one proposed
in Ref. [24].
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