Cluster Comput
DOI 10.1007/s10586-015-0501-5

@ CrossMark

Monte Carlo simulations of settlement dynamics in GPUs

Emmanuel N. Millan! - Silvana B. Goiran? - Maria Fabiana Piccoli® -
Carlos Garcia Garino? - Julieta N. Aranibar? - Eduardo M. Bringa’®

Received: 20 February 2015 / Revised: 7 October 2015 / Accepted: 9 October 2015

© Springer Science+Business Media New York 2015

Abstract Recently, a Monte Carlo model was proposed in
order to simulate settlement dynamics in drylands, including
several environmental factors, and it was implemented as a
serial CPU code. In this work we present a parallel implemen-
tation of that code using graphics processing units (GPU) and
NVIDIA CUDA. The code was tested with two experiments,
a Baseline case and a Realistic case. We take advantage of
the GPU architecture to obtain significant speedups: ~8x
to ~20x with the Baseline case in a NVIDIA Tesla C2050
versus a Phenom 1055T CPU. The Realistic case obtained
~80x of speedup in the same hardware. The GPU perfor-
mance of the code will allow the inclusion of additional
factors affecting settlements and large grid sizes for detailed
environmental degradation models.
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1 Introduction

Land use in arid and semiarid areas is conditioned by water
limitations and vegetation characteristics. If water is not
available for the development of irrigated agriculture, live-
stock production is one of the main economic activities
in drylands, which sustains a third of the world popula-
tion and 78 % of livestock worldwide [1,6]. This activity is
experiencing changes related to climatic change and human
activities. Population and economic growth, urbanization,
and consumption patterns are shaping livestock produc-
tion, with impacts on societies and environments, such as
greenhouse gas emissions, nutrient cycles, land demands
and degradation, and protein supply [11]. The challenge in
order to produce sustainably depends on how we understand
and managed the livestock sector and natural resources. In
the Monte desert (Argentina), groundwater coupled ecosys-
tems are used for subsistence livestock production developed
in scattered settlements, which allows the coexistence of
areas with high cover vegetation and rural communities [8].
Nonetheless, water access and improved infrastructure may
increase population density and grazing pressures, with a
higher risk of ecosystem degradation. An understanding of
the feedbacks between natural resources and livestock set-
tlements at present is crucial to estimate futures effects of
environmental and socio-economic changes in the region.
Different factors may affect the establishment of livestock
settlements in arid environments. The hypothesis in which
we based the modeling approach is that the availability of
resources such as water, forest resources and access routes
drive the establishment of settlements. We developed a Monte
Carlo (MC) simulation to model the settlement dynamics
in drylands (SeDD). This model includes six environmental
drivers of settlements: surface and groundwater availabil-
ity, vegetation type, existing settlements, access route, and
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old river beds [14]. The model places settlements in areas
where the environmental factors are suitable for these to
thrive. In order to take into account social factors, our
model includes a stochastic factor, a percentage of the set-
tlements are placed at random, even in unfavorable regions.
The model gradually reduces the suitability around estab-
lished settlements, simulating vegetation degradation by the
activity of the settlements. Due to the stochastic nature of
the code, hundreds of simulations are needed in order to
compute the required average behavior. In addition, because
the probabilities associated with certain environmental fac-
tors are unknown, a parameter sweep is needed in order to
find values that match field results. For instance, in Millan
et al. [14], a parameter sweep was performed with a total of
~11 million independent simulations (~1.8s each simula-
tion), resulting in 12 days of execution time in a mini-cluster
with three AMD FX-8350 microprocessors (84 GHz cores),
where each CPU core executed one set of input parameters
independently of the other CPU cores. This computational
cost precludes the inclusion of additional environmental fac-
tors and increased resolution of the input maps (increasing
the size of the simulated lattice), which would lead to more
accurate results.

One possible way to obtain a faster performance for the
MC SeDD code would be to port the code for parallel execu-
tion. Initially we perform some tests using OpenMP which is
fast to implement. It resulted in a low efficiency as the num-
ber of CPU cores was increased: running in 6 CPU cores
(AMD Phenom 1055T) would result in a 67 % efficiency,
and running in 16 CPU cores (AMD Opteron 6272) would
give an efficiency of 15.4 % for a lattice size of 2048 x 2048
cells. Other alternatives were to port from a serial environ-
ment to a distributed memory cluster using MPI, or to port
to a hybrid CPU-GPU system. We decided to use GPUs
only since other MC codes have been already implemented
in GPUs obtaining excellent speed-ups. For instance, a 2D
Ising MC model was developed with Multi-GPU acceleration
by Block et al. [3], with 35 x acceleration versus an optimized
serial CPU implementation. As another example of MC in a
2D lattice, the g-state Potts model developed by Ferrero et
al. [7] obtained 155 x of speedup versus an optimized serial
CPU code.

This work is organized as follows. In Sect. 2 we give a
description of SeDD model and code, with details of the
most time consuming functions. Next, we introduce the
GPU implementation. In Sect. 3 we describe the hardware
infrastructure in which the simulations are executed, and dis-
cuss the results obtained for two types of experiments, the
Baseline case and the Realistic case. Finally, in Sect. 4 the
conclusions are reported.
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2 Material and methods

A complete description of the SeDD model and code struc-
ture is detailed in Millan et al. [14], and the source code
is available at http://goo.gl/rOyzf]. In the next subsec-
tion we give a short description of the model and source
code.

2.1 Settlement dynamics model

The settlement dynamics in drylands (SeDD) model was
developed to test which environmental factors drive the deci-
sion to establish new livestock settlements. Simulations of
Settlement Dynamics have been implemented using Agents
[13] and Multi-Agents [4] models in the past. Our SeDD
model is based on the Monte Carlo model [2,5], which con-
siders a 2D lattice with N x N cells. The suitability of a
given cell in a 2D lattice to be settled is modeled based on
the partial probabilities associated to each of the environmen-
tal factors. We assume that the inhabitants of the simulated
area have knowledge of the environmental factors and where
would be convenient to establish a new settlement. The model
chooses in each time step the cell with the highest probability
in the lattice, and if it is greater than a defined probabil-
ity (given as an input parameter) the settlement is placed in
the lattice. The model can also establish settlements at ran-
dom. This stochastic component is included to account for
social factors that may influence the placement of settlements
and that are not included in the environmental factors in the
model.

The simulation is composed of 4 stages: Input, Setup,
Evolve and Output. The behavior of the model is represented
by the following steps:

1. Input stage read the input parameters and map files for
each environmental factor.

2. Setup stage for every cell in the lattice, calculate the min-
imum distances between that cell and roads, rivers and
closest settlements.

3. Evolve stage
Start evolution while Step < TotalSteps.

(a) Decrease vegetation around all settlements.

(b) Calculate the total probability for each cell in the lat-
tice.

(c) Select highest probability (Pmax), if more than one
cell in the lattice has the same highest probability,
choose one of them randomly.

(d) If Pmax > Pset (Pset being a predefined proba-
bility threshold), establish the settlement, otherwise,
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choose arandom cell in the lattice and a random prob-
ability (Pran), compare with a predefined random
probability threshold (Pthresh) and establish settle-
ment if Pran > Pthresh.

(e) If anew settlement was established, it is necessary to
recalculate the distance to the closest settlement for
each cell.

(f) Output stage write state of the simulation to output
file.

(g) Increase Step and repeat steps from (a) to (g).

4. Output stage if Step = TotalSteps, write output maps
to disk and finish.

In Eq. (1) it can be seen how the total probability of each
cell in the lattice as stated in Evolve Stage (b) is computed,
with k being any given cell of the N x N lattice:

PAIll[k] = PVeglk] x PRoad[k] % PSettl[k] *
PWater[k] x PRiver[k] x Ppaleolk] (1)

In the next subsections we explain the implementation of
the model for serial CPU execution and a parallel imple-
mentation for GPU. Both implementations follow the stages
explained here but execute certain functions in serial in the
CPU or in parallel in the GPU.

2.2 Serial implementation

The serial implementation follows the steps described in the
previous subsection. The simulation is performed with a lat-
tice size of N x N during ¢ time steps. In the Input stage
the following tasks are included: each environmental factor
is read from a file stored in the disk and placed in RAM
memory in an array of N x N size, and the input parameters
needed to execute the simulation are read from the command
line or from an input file. Each cell in the lattice could have
a settlement, some vegetation, or belong to a river, road, etc.

Next, the simulation performs the Setup stage, two impor-
tant  functions are included in this  stage:
calculate_min_distances() and set_probabilities(). The first
one calculates for each cell in the lattice the minimum
distances to the closest road cell, river cell and settle-
ment, storing it in an array for each of the three factors.
Then, a probability is assigned to each cell in the lattice
(set_probabilities() function). This probability is computed
with the minimum distance to the environmental factors and
a predefined weight (given as input) for different ranges of
distances between the cell and roads, rivers, settlements, old
river beds and groundwater depth.

The evolution of the system (Evolve stage) starts by
decreasing the vegetation around each settlement up to a
defined distance (reduce_vegetation() function). Then the

function calculate_PAll_BMC() computes the total proba-
bility for each cell in the lattice as a result of multiply-
ing the probabilities of all the environmental factors. The
select_kmax_BMC() function searches for the highest prob-
ability (variable Pmax) in the lattice, if more than one cell
has the same highest probability, one of them is selected ran-
domly. The chosen probability (Pmax) is then compared with
an input parameter (Pset), which functions as a threshold in
order to limit the number of settlements placed by high prob-
ability (function put_settlement_BMC()). If Pmax > Pset
then the settlement is placed in the lattice. If a settlement was
not placed by the high probability option (Pmax > Pset), a
random cell is selected from the lattice, then a random prob-
ability (variable Pran) is generated and compared with a
predefined threshold probability, Pthresh, which was given
as an input parameter. If Pran > Pthresh, then a settle-
ment is placed in that selected cell. As aresult, Pset controls
settlement placing based on environmental variables, while
Pthresh gives random settlement placing possibly due to
other variables not taken into account in this model, like cer-
tain social factors. Modifying Pset and Pthresh will result
in significant changes in the number and distribution of set-
tlements.

When a new settlement is established and before a new
time step is started, a recalculation of distances and proba-
bilities between cells and settlements is performed by the
recalc_min_distances() function in order to increase the
probabilities around newly installed settlements. Before the
time step is finished, a part of the Output stage is performed,
every n steps (n defined by an input parameter) an output
function saves to disk the state of the system. Then, if the
time step is less than the Total Steps variable, the Evolve
stage is started again. Finally, the Output stage is executed,
the output files that are written to disk include: the state of
the vegetation and the settlements placed in the lattice.

We profiled the Baseline case (details of this experimen-
tal case are given in Sect. 3.3) with a lattice of size N x N
with N = 4096 during 1000 steps with the gprof utility
[9]. Three functions account for ~96 % of the total execu-
tion time. The calculation of the total probability for each
lattice cell takes 44 % of the execution time (function cal-
culate_PAll_BMC() from the Evolve stage). The calculation
from the setup stage of minimum distances between each lat-
tice cell and the road and settlements takes ~39 % (function
calculate_min_distances()). The third function that recalcu-
lates the distance to the closest settlement for each cell of the
lattice, which is executed each time a new settlement is estab-
lished in the Evolve stage, takes ~13 % of the total run time
(function recalc_pdist_settlements()). These three functions
are good candidates to port to the GPU because of their par-
allel nature, the calculations needed to compute the state for
each cell at each time step are independent of the calculation
of their neighbors.
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We do not need double precision to store the probabilities
of the environmental factors. We use single precision vari-
ables (float data type), with the benefit of saving RAM and
Global memory and reducing CPU and GPU compute time.
In the next section we discuss the parallel implementation of
the SeDD code in GPUs.

2.3 Parallel implementation using GPUs

With the profiler results obtained in Sect. 2.2, we identified
three functions that consume most of the simulation time. The
calculations in each of the cells of the lattice for the functions
calculate_PAll_BMC() and recalc_pdist_settlements(), both
from the Evolve stage, and calculate_min_distances() from
the Setup stage, are independent from calculations of their
neighbors and can be mapped to the thread model provided
by GPUs [15]. In order to minimize the amount of data to
be copied to/from the Host memory from/to the GPU Global
memory, we ported the entire simulation to the GPU, even
the functions that were not time consuming in the CPU. Here
we discuss the most relevant functions, and also the CUDA
kernels that use the reduction technique [10] to avoid serial-
ization of operations in the GPU.

The function calculate_PAll_BMC() in the CPU ser-
ial implementation sequentially multiplies the probability
of each environmental factor for each of the cells in
the lattice, and stores the result in an array. The com-
puted total probability for each cell is independent of
their neighbors, given that the information of distance to
nearby settlements was already acquired by each individ-
ual thread. Therefore, each thread executed in the GPU
can compute a lattice cell probability independently from
other threads, without any inter thread communication. This
function is implemented in the GPU with a single ker-
nel called cuda_kernel_calculate_PAll_BMC(). Each thread
reads from Global Memory the environmental factors, mul-
tiplies their probabilities and stores back in Global Memory
the result. The use of Shared memory would not increase
performance due to the fact that each value is read (from
Global memory) and used only once. One of the advantages
of using Shared memory is low latency compared with the
latency of global memory, although Fermi and post-Fermi
architectures cache accesses to global memory in L1 and L2
caches. Another advantage of Shared memory is coalesced
access, although in GPUs with CC 2.0 or higher the impact
on throughput with uncoalesced access to global memory is
reduced due to the existence of caches [16].

The second function, recalc_pdist_settlements(), is called
after a new settlement is placed in the lattice. This function
updates, if needed, the minimum distance and probabil-
ity from each cell to the new established settlement. The
ported code to the GPU is composed of two CUDA ker-
nels: cuda_kernel_recalc_min_distances() and cuda_kernel
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_recalc_pdist_settlements(). In the first kernel, each thread
computes the distance to the newly placed settlement, if
it is smaller than the stored distance (calculated from
the setup stage or a call to this kernel from a previous
step), is updated in Global memory. The second kernel,
cuda_kernel_recalc_pdist_settlements(), updates the settle-
ments probabilities of each cell according to the updated min-
imum distances. As in the kernel cuda_kernel
calculate_PAIll_BMC(), there is no need to use Shared mem-
ory for these two kernels, each value read from Global
memory is not reused or shared between the threads.

We ported to one CUDA kernel the function calcu-
late_min_distances(), from the Setup stage. Each thread
calculates and stores in Global memory the minimum dis-
tance to the closest road cell, settlement, river cell and old
river bed cell.

We use the reduction technique with shared memory
to search for the highest probability in the lattice [10] in
the CUDA kernel cuda_kernel_reduce_PAll_BMC() and an
atomic operation (atomicMaxf()) to reduce to a single value
of probability. This kernel creates a shared memory array and
each thread copies the total probability PAll corresponding to
the associated cell of each thread, previously calculated in the
cuda_kernel_calculate_PAIll_BMC(). Next, it does a reduc-
tion finding the highest probability in the block and stores
that probability in an array in Global memory. This process
is repeated until a single value is obtained (variable Pmax).

If more than one cell has the same highest probability
(Pmax), one of the cells is selected randomly. This is achieved
by CUDA kernel cuda_kernel_count_kmax_BMC() using
the atomicAdd operation to count the number of cells with the
same highest probability. Then the cuda_kernel_build_list
_kmax_BMC() is in charge of creating an array with the coor-
dinates of all cells in the lattice with the same Pmax, and
one of those coordinates is selected randomly with a random
number generated in the CPU. There is no need to generate
this number in the GPU, since this is at most a single random
number for the whole lattice per step. We use the standard
rand() function included in the glibc library with the current
time (in nanoseconds) as a seed for each execution of the
model.

Other works have tested GPU execution of different codes
with various thread block sizes [12, 18] and have found per-
formance differences between them. For this reason, our
code supports different block sizes for the thread block, and
we tested the following dimensions: 64, 128, 192, 256, 512
and 1024 threads per block. In the Sect. 3.3 we discuss the
obtained results.

We note that as an alternative to the implementation pre-
sented here, the use of libraries such as Thrust (http://thrust.
github.io/) can help to decrease programming time and can
offer a high performance solution to common parallel prob-
lems. Due to how the serial code implementation was coded,
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it was required additional work to port the data structures to
make them compatible with Thrust, therefore was decided to
maintain the original code and to only write the necessary
CUDA kernels to perform certain tasks in parallel.

3 Results and discussion

We executed two numerical experiments, the Baseline case
(in Sect. 3.3) and the Realistic case (in Sect. 3.4). All the
results shown in this section are an average of 10 simulations.
In this section we first describe the numerical experiments,
the hardware and software infrastructure, and then execute
the experiments and discuss the obtained results.

3.1 Numerical experiments

We developed two types of numerical experiments in order
to test performance: a Baseline case and a Realistic case.
The Baseline case is used to test the correct functioning of
the code and to be able to execute different lattice sizes with-
out requiring the construction of new input maps for each
environmental factor for the selected size.

In general, maps used in the simulation are generated
using geographic information system (GIS) tools. However,
the Baseline case uses only three types of factors which
do not require GIS input maps to establish settlements: a
road along the lattice diagonal, one type of vegetation that is
decreased at each time step around settlements due to live-
stock grazing, and the distances amongst settlements. The
Baseline case enables us to perform benchmarks with differ-
ent lattice sizes and with an artificial set of input factors. We
executed the Baseline case with four lattice sizes N x N, with
N = 512,1024, 2048, 4096. These selected sizes would
allow us to see how the code scales up to lattice sizes which
could be finer than current map resolutions.

The second numerical experiment, the Realistic case,
includes all factors and uses the real maps for the selected
region, with a fixed lattice size. This set-up includes the fol-
lowing factors: water access through rivers and groundwater,
five types of vegetation, access to paved roads and old river
beds, and finally the distances amongst settlements. The sim-
ulation starts with the settlements that were present in the
year 1928, and places settlements according to the aptitude
levels present in each lattice cell. The Realistic case experi-
ment enables us to understand the feedbacks between natural
resources and livestock settlements, which is crucial to esti-
mate future effects of environmental and socio-economic
changes in the region. In our previous work [14], we exe-
cuted the Realistic case with a lattice size of 150 x 150 cells,
with a cell representing 750 x 750 meters, with a total area
of 112.5 x 112.5 kilometers. Here we are able to increase the
size of the lattice to 1250 x 1250 and with a cell representing

90 x 90 meters for the same region, increasing considerably
the resolution of the lattice, which allows us to obtain more
accurate results.

3.2 Hardware and software infrastructure

The simulations were executed in two hardware environ-
ments with the following characteristics:

— Workstation Phenom (denoted as “Phenom”): 2.8 GHz
AMD Phenom II 1055T (released in 2010) 6 cores with
12 GB DDR3 of RAM memory. NVIDIA Tesla c2050
GPU (Fermi architecture, released in 2011), with 448
CUDA cores working at 1.15 GHz, and 3 GB memory.
Slackware Linux 14.1 64 bit operating system with kernel
3.10.5, CUDA 6.5 and GCC 4.8.1.

— Two nodes of a Cluster at the Universidad Nacional de
Cordoba (denoted as ‘“Mendieta”) with the same CPU
and two different GPUs: two Intel Xeon E5-2680 v2 (Ivy
Bridge microarchitecture, released in 2013) with 10 cores
each running at 2.8 GHz and 64 GiB DDR3 at 1600 MHz.
One node has a NVIDIA Tesla M2090 GPU (Fermi archi-
tecture, released in 2011) with 6 GiB of GDDRS memory
and the second node has one NVIDIA Tesla K20Xm GPU
(Kepler architecture, released in 2012) with 6 GiB of
GDDR5 memory. With Linux CentOS 6.5, kernel 2.6.32-
504 and GCC 4.8.2.

We use the GNU gprof [9] software profiler in order to
analyze the serial implementation of the code to identify the
most time consuming functions. The GPU implementation
was analyzed with the NVIDIA Visual Profiler 6.5 [17], a
tool which provides a complete interface to profile CUDA
applications, included with the CUDA development kit. All
codes are compiled with -O3 compiler optimizations and use
CUDA 6.5 with NVIDIA driver version 340.29.

3.3 Baseline case

We executed the Baseline case with four lattice sizes N x N
(with N = 512, 1024, 2048, 4096), during 1000 steps in two
GPUs, the Tesla C2050 (Phenom workstation) and the Tesla
k20x (Mendieta cluster node). The GPU execution was tested
with 3 block sizes (128, 256 and 512), and the results can be
seenin Fig. 1. In the Phenom workstation, the GPU execution
with blocksize = 128 is between a ~6 and ~15 % faster
than with a block size of 256 or 512 for all N sizes (Table
1). The speedups from GPU with block size 128 versus the
CPU serial code in the Phenom Workstation go from 7.8 x
for N = 512 to 23.6x for N = 4096. The Intel Xeon CPU
present in the Mendieta cluster is ~3 times faster than the
AMD Phenom for the Baseline case simulation. The GPU
execution with blocksize = 128 is also faster than the block
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Table 1 Percentage of performance improvement or decline comparing a blocksize of 128 compared with the blocksizes 256 and 512, for different
linear lattice sizes (N), considering the Baseline case in the Tesla c2050 and Tesla k20x GPUs

N Tesla c2050

Tesla k20x

128 versus 256

128 versus 512

128 versus 256 128 versus 512

512 6.6 8.7
1024 8.5 10.3
2048 7.2 8.7
4096 15.1 12.4

—-13.3 —-14.4
15.1 9.2
7.4 14.4
11.6 16.5

Table 2 Baseline case simulation with N = 4096

Stage CPU GPU Speedup
Input 1.15 2.12 0.54
Setup 1235 5.67 217.8
Evolve 874.04 28.75 30.4
Output 57.83 59.22 0.97
Total 2168.02 95.76 22.64

Input, setup, evolve and Output time are shown. The reported time is
in seconds with the average of 10 simulations executed in the Phenom
Workstation. The GPU case is executed with a block size of 128

sizes 256 and 512, between a ~7 and a ~16 %, except for
N = 512, where the block size 128 is slower than 256 and
512 block sizes, ~13 and ~14 % slower, respectively (Table
1). The speedups obtained in the k20x GPU versus the Xeon
CPU in the Mendieta cluster go from 2.5x for N = 512 to
8.8x for N = 4096 (with block size 128). The wallclock
time scales linearly with the lattice size, it should behave
as N2, and that is indeed what we find for the GPU, with a
slightly worse scaling for the CPUs.

In Table 2 it can be seen the execution time and speedup for
each stage of the simulation running in the Phenom CPU and
the Tesla c2050 GPU (with block size 128), with N = 4096
during 1000 steps. The Input stage uses almost twice the
time in the GPU than on CPU, an expected behavior consid-
ering the time required to perform memory allocation and
transfer of the input arrays to the GPU. The Setup stage is
where most of the speedup is obtained, particularly the cal-
culate_min_distances() function, with ~217x of speedup.
The Evolve stage obtains a ~30x speedup. And the Output
time is slightly greater in the GPU simulation due to the need
to copy the output arrays from the GPU to the CPU before
writing the output files to disk. The time required to complete
each of the phases of the simulation are also shown in Fig. 2
for different lattice sizes (N x N with N = 512, 1024, 2048
and 4096), in the Phenom workstation with a GPU block size
of 128. In this figure it can be seen the improvement in per-
formance for the Setup and Evolve phases between CPU and
GPU simulations.
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From the results obtained in Fig. 1 and Table 1, it can be
seen that there is a difference in runtime when the block size is
varied. For this reason we decided to perform a more in depth
analysis of our code for a greater number of block sizes (64,
128,192,256, 512 and 1024) for two lattice sizes (N = 1024
and 2048). In Fig. 3 it can be seen the wallclock time normal-
ized with the total lattice cells for the different block sizes.
The best performance is obtained for blocksize = 128 for
the two lattice sizes. Using the NVIDIA Visual Profiler we
obtained the occupancy of each SM for a single CUDA kernel
(cuda_kernel_calculate_PAll_BMC()). The values of occu-
pancy for the blocksizes = (64, 128, 192, 256, 512) are the
following: 32, 62, 88, 88, and 87 % respectively. We obtained
the best performance with an occupancy of 62 %, which is not
the highest occupancy. This fact could be explained follow-
ing the study by Ryoo et al. [18]: a small block size allows
many thread blocks. Too many thread blocks would even-
tually lead to inefficient memory access, and the optimum
block size is around 128 [12,18] for our type of simula-
tion, and it is not necessarily the best block size for all the
kernels executed in the simulation. In our code, this small
block size results in more warps available to execute in each
SM, which would hide the stalling effects of global memory
latency or blocking operations by having enough independent
warps available to execute in the SMs. The most time con-
suming functions in our code have Global memory access
and are memory bound, for example, each thread of the
cuda_kernel_calculate_PAll_BMC() kernel for the Baseline
case has to access nine variables located in Global memory
and perform two multiplications. Lowering the number of
threads decreases the number of available warps ready to be
executed and gives more blocks, in the case of the C2050
GPU, eight blocks can be executed per SM, with 128 threads
per block there are 12 blocks per SM to be executed. The
NVIDIA Profiler reports that for 256 threads per block the
stall reason is “pipeline busy: the compute resources required
by the instruction are not yet available”. Even though the
occupancy is at 88 % which is higher than for 128 threads
per block at 62 % occupancy, the lower occupancy results
in better performance as it can be seen in Figs. 1 and 3
when blocksize = 128. When the number of threads per
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Fig. 2 Wallclock time (in seconds) for the Baseline case executed for different lattice sizes, divided into different contributions: Input, Setup,

Evolve and Output time. a c2050 GPU, and b Phenom 1055t CPU

block decreases to 64 (Fig. 3), the running time increases,
this issue is due to a memory latency problem because there
is not enough active warps to hide the memory access cost.
Also, it can be seen in Fig. 3 that the wallclock time for dif-
ferent block sizes has the same behavior for two different
lattice sizes.

Communication and kernel compute time is shown in
Table 3, using the NVIDIA Visual Profiler tool to inspect
the performance of the GPU simulation. Communication and
compute time scales as expected like N2. The Compute time
includes CUDA kernels executed in the Setup and Evolve
stages, this is the reason why the kernel Compute time (Table
3) is greater to the Evolve stage time previously shown in
Table 2 and Fig. 2.

3.4 Realistic case

The Realistic case simulation was executed for a lattice size
of 1250 x 1250 in the two hardware infrastructures, using
three GPUs. Results can be seen in Fig. 4. The difference
in execution time present in the Realistic case experiment
(N = 1250) versus the Baseline case (N = 1024, Fig.
1) is due to the environmental factors added to the Real-
istic case. We profiled the Realistic case experiment running
in CPU with gprof in the Phenom workstation. The calcu-
late_min_distances() function now uses the ~90 % (~867 s)
of the total running time (~959 ), the calculate_PAIl_BMC()
function requires ~7 % (~705s) of the time, and finally the
recalc_pdist_settlements() functions uses ~1.5 % (~165) of
the total time.
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Fig. 3 Wallclock time normalized with total lattice cells
(seconds/N x N), considering the Baseline case for different
block sizes (N = 1024 and N = 2048). Executed in the Phenom
workstation

The GPU simulation obtains the best performance with
blocksize = 128. The k20X GPU performs better than the
c2050 and the m2090 GPUs, an expected behavior since
the microarchitecture of the k20X (Kepler) is newer and it
has more CUDA cores than the m2090 and c2050 (Fermi)
microarchitecture. The performance of the NVIDIA m2090
GPU is very similar to the c2050 GPU present in the Phe-
nom workstation. The CPU performance in the Xeon CPU
(Mendieta cluster) is ~5 times better than the performance of
the Phenom CPU, which will result in smaller speedups for
the simulation in the Mendieta cluster. The speedup obtained
for the GPU versus CPU simulation in the Phenom worksta-
tion is ~80x (blocksize = 128). For the k20X GPU the
speedup versus the Xeon CPU is ~23x (blocksize = 128).
The m2090 GPU versus the Xeon CPU has a speedup of
~20x (blocksize = 128). We consider that it is a fair com-
parison between the GPUs and CPUs utilized to perform
the tests. The Phenom CPU is only one year older than the
C2050 GPU, and the Xeon CPU is one year newer than the
k20x GPU and two years newer than the m2090 GPU. For
more details of the hardware used see Sect. 3.2.

As stated in the Introduction, we need to execute ~100
simulations for each set of parameters. Running 100 simula-
tions in the Phenom CPU of the Realistic case with N = 1250
will result in ~26h of execution time for one set of parame-
ters, and we need to run multiple configurations of the same
system. Executing the same 100 simulations in one GPU
requires only ~21 min. Therefore, the faster GPU code opens
the possibility to add more relevant environmental factors
with their corresponding set of parameters for the parameter
sweep, like distance to unpaved roads, the topography of the
terrain, etc.
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Table 3 Communication and compute time (in seconds) for GPU sim-
ulations with four lattice sizes executed in the Phenom Workstation with
blocksize = 128, during 1000 steps

Lattice size (N) Communication time Compute time

512 0.016 0.575
1024 0.048 2.1
2048 0.181 8.5
4096 0.714 38
1,000 F — ' ! .
- - BN GPU-512 |
% r = GPU-256 7
e I BN GPU-128 | |
=] [ cpu
%]
Q | = = i
z
g 100f -
= I ]
%
[®] L 4
L
<
= I ]
2
10 .
€2050 m2090 k20x

Hardware Infrastructure

Fig. 4 Wallclock time for simulations of the Realistic case with a lat-
tice size of 1250 x 1250, executed in three hardware infrastructures
with three block sizes (128, 256, and 512)

We also tested the Realistic case with N = 150 during
1000 steps, the same lattice size we used in our previous
work [14]. The obtained performance resulted in ~4x of
speedup in the Phenom Workstation with the Tesla C2050
GPU. This speedup is reasonable for a small lattice size due
to the required time to prepare and copy the input data from
the CPU to the GPU, which is one order of magnitude higher
for the GPU simulation than the one required for the CPU
simulation.

We aim to simulate the settlement distribution at a final
time step, and not to present a “realistic”” demographic time
evolution as in Kohler et al. [13]. The results of our model
approximate the spatial pattern of settlements at a regional
scale, with higher densities and more aggregation near rivers
and old river beds, and sparse settlements, with a random dis-
tribution, in areas inside the region without access to surface
water, as observed in the real case. The simulated vegetation
map resulting from the degradation of the vegetation around
settlements has a similar spatial distribution of different veg-
etation classes as the remotely sensed (real case) vegetation.
Degraded vegetation classes appear in simulation and real
data in the NW and NE of the grid. Patches of vegetation
with less vegetation cover are immersed in the area of his-
toric woodlands in both, simulation and observation [14].
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The model can reproduce the current settlement pat-
tern because environmental factors and stochastic effects,
suggesting that environmental features related on water avail-
ability have a strong effect on settlement spatial distribution
in the studied area. Therefore, change in water availability
and quality will modify settlement distribution and pressure
on the environment. The model could be a useful tool to eval-
uate the effects of land use change (water provision, river
flows), on settlement distribution and vegetation degradation
in arid environments.

4 Conclusions

We developed a GPU Monte Carlo (MC) model in order to
simulate the establishment of livestock settlements consid-
ering the environmental factors of the region. A 2D lattice is
considered, and the settlements are placed in the lattice by
using probabilities for each environmental factor and random
numbers to account for social factors. The CPU implementa-
tion would take months of running in a desktop computer in
order to sample the required parameter space with a greater
lattice size. The GPU implementation enables the execu-
tion of such systems in a fraction of the time and results
in speedups of up to ~80x.

In order to parallelize the code, each lattice cell was
assigned a given thread, which can evolve one step inde-
pendently of any other threads, and without communication
amongst threads. Of course, if a new settlement appears, each
thread has to be given information of the distance to that set-
tlement. An efficient reduce operation with shared memory
[10] is used to find maximum probabilities for new settle-
ments.

Two numerical experiments were executed aiming to test
different optimizations of the code: a Baseline case with three
artificial environmental factors and a Realistic case with six
environmental factors. Three GPUs were used to execute the
simulations: the Baseline case used a Tesla C2050, and a
Tesla K20x; the Realistic Case added a third GPU, the Tesla
M2090. We obtained speedups between ~8x and ~20x for
the Baseline case in the Tesla C2050, for a Phenom CPU
(2.8 GHz). Using the k20x GPU, we obtained from ~2.5x
to ~8x of speedup versus a Xeon CPU (2.8 GHz). The Real-
istic case experiment is more complex and requires more
computing time. In the Tesla C2050 the speedup obtained
was ~80x, while using the k20x GPU we obtained ~23 x
of speedup versus the Xeon CPU. The reduced speed-ups
for the k20x are due to the comparison with a much faster
CPU.

For a square 2-D lattice with size N x N, scaling
with lattice size followed the expected N2 behavior. We
tested several thread block sizes to find the optimum
value for our simulation, and the best timing was achieved

for a block size of 128, in agreement with results for
other applications [12,18]. The occupancy of the GPU
for different block sizes was also analyzed and we found
that having a high occupancy did not give the best per-
formance, a result that was also reported by Volkov in
[19].

The performance improvement obtained with this new
GPU simulation would allow the execution of larger lattice
sizes, leading to increased resolution. In addition, more rele-
vant environmental factors can be taken into account, includ-
ing the possibility of a parameter sweep with many more
dimensions. Such improvements are required for advanced
simulations of settlements which would hopefully allow
detailed planning of resource usage in arid environments.
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