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The applications and contributions of fuzzy set theory to human reliability analysis (HRA) are reassessed.Themain contribution of
fuzzymathematics relies on its ability to represent vague information.ManyHRA authors havemade contributions developing new
models, introducing fuzzy quantification methodologies. Conversely, others have drawn on fuzzy techniques or methodologies for
quantifying already existing models. Fuzzy contributions improve HRA in five main aspects: (1) uncertainty treatment, (2) expert
judgment data treatment, (3) fuzzy fault trees, (4) performance shaping factors, and (5) human behaviour model. Finally, recent
fuzzy applications and new trends in fuzzy HRA are herein discussed.

1. Introduction

The term “Human Reliability Assessment” (HRA), human
reliability evaluation or analysis, was first introduced in 1962
by Munger et al. [1] and can be defined as “the probability
that a task or job is successfully completed by an individual
in a specific state of operation of the system in a minimum
required time (if there is time requirements)” [2].

In the negative sense, “human error” is defined as “the
failure probability to execute a given task (or execution of
a prohibited task), which may cause equipment damage or
disrupt the sequence Operations” [3].

Almost all HRA methods and approaches share the
assumption that it is significant to use the concept of “human
error,” so it is also significant to develop ways to estimate
chances of “human error.” As a result, numerous studies have
been performed to produce data sets or databases to be used
as a basis for human error probabilities (HEP) quantification.
This view prevails despite serious doubts expressed by HRA
scientists and professionals and related disciplines. A general
review of HRA [4] notes that many approaches are based on
highly questionable assumptions about human behaviour.

The main contribution of fuzzy mathematics is its ability
to represent vague information. It has been used to model

systems that are difficult to define precisely [5]. As a method-
ology, fuzzy set theory incorporates vagueness and sub-
jectivity. Fuzzy decision-making includes the uncertainties
of human behaviour in decision-making. Fuzzy set theory,
created by Zadeh in 1965, emerges as a powerful way to
quantitatively represent and manipulate imprecise decision-
making problems [6]. Since the vague parameters are treated
as imprecise rather than precise values, the process is more
powerful and results are more credible. Fuzzy mathematics
emerges as a tool to model processes that are too complex for
traditional techniques (such as probability theory) and when
process information is qualitative, inaccurate, or unclear; for
these cases the concept of membership function properly
represents this type of knowledge [7].

Fuzzy logic captures an inherent property of most human
communications: they are not accurate, concise, perfectly
clear, and crisp [8]. The meaning of the word (natural
language) is diffused because a word can be applied perfectly
to some objects or events, clearly excluding others, and can be
applied to a certain extent, in part, to other objects or events.
Language statements are inherently vague; this fact could be
addressed with fuzzy set theory [9]. Fuzzy logic resembles the
way that humans make decisions and inferences [7].
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In fuzzy processing there are basically three components
[7]: (1) fuzzification, (2) fuzzy inference, and (3) defuzzifica-
tion. Fuzzification is the process by which the input variables
are transformed into fuzzy numbers sets. Fuzzy inference
is a set of fuzzy if-then-else rules used to process diffuse
inputs and generate fuzzy conclusions; that is, fuzzy inference
interprets input vector values and, based on a rules set,
generates an output vector. Defuzzification is the process of
weighing and averaging out all fuzzy values into a single
output signal or decision.

It is easy to see the applicability of this tool for quantifying
human reliability. Many HRA authors have made contri-
butions developing new models with fuzzy quantification
methodologies or using fuzzy techniques or methodologies
for quantifying existing models, for example, fuzzy CREAM
[7]. In the following sections the main concepts of HRA
methodologies and fuzzy applications and contributions
made to human reliability are presented.

2. Human Reliability Assessment Review

The birth of HRA methods was in 1960, but most of
the techniques for human factor evaluation, in terms of
propensity to fail, have been developed since the mid-80s.
HRA techniques or approaches can be basically divided
into two categories: first and second generation. Currently,
dynamicHRA techniques ormethods of the third generation,
understood as an evolution of the previous generations [10],
are subject to research.

The first-generation methods or quantitative HRAmeth-
ods were based on statistics. The most important first-
generation HRA method is THERP (technique for human
error-rate prediction) [11], based on event tree analysis.
A lot of methods and models in classical HRA theory
assume that all probabilities are accurate [12]; that is, each
probability involved can be perfectly determined. HEP can
be assigned on the basis of operator’s task characteristics
and then modified by performance shaping factors (PSFs).
In first-generation HRA, task characteristics are represented
by HEPs; and the context, which is represented by PSF,
is considered a minor factor in HEP estimation [12]. This
generation is concentrated in HRA quantification, in terms
of action success/failure, with less attention paid to in-depth
causes and reasons for human behaviour.

The integrity of probabilistic information implicates two
conditions: (1) all probabilities and probability distributions
are well known or determinable; (2) system components are
independent; that is, all random variables that describe com-
ponent reliability behaviour are independent or alternatively
dependence is precisely known.

Precise measurements of system reliability can be calcu-
lated whenever these two conditions are met. However, reli-
ability evaluations combined with systems and components
descriptionmay come fromvarious sources. Inmost practical
applications, it is difficult to expect that the first condition is
met and, usually, the second condition is violated.

Utkin and Coolen [13] provide an important contribution
to the imprecise reliability, discuss a variety of topics, and
review the suggested applications of imprecise probabilities

in terms of reliability. Modelling human error through
probabilistic approaches has shown a limitation in qualita-
tive aspects’ quantification of human error and attributes
complexity of involved circumstances. Mosleh and Chang
[14] indicate the first-generation HRA methods’ limitations,
enumerate some expectations, and show thatmethods should
be based on human behaviour models.

Among first-generation techniques are Absolute Proba-
bility Judgment (APJ), Human Error Assessment and Reduc-
tion Technique (HEART), Human Error Justified Data Infor-
mation (JHEDI), Probabilistic Human Reliability Analysis
(PHRA), Action Tree System Operator (OATS), and Success
Likelihood Index Method (SLIM). The most popular and
effective method is THERP, characterized, as other first-
generation approaches, by a precise mathematical treatment
of probability and error rates. THERP is based on event
tree where each branch represents a combination of human
activities and their mutual influences and results.

The main features of first-generation methods can be
summarized [15] as (1) binary representation of human
actions (success/failure); (2) human action phenomenology;
(3) low attention in human cognitive actions (lack of a
cognitivemodel); (4) emphasis on quantifying the probability
of incorrect human actions; (5) dichotomy between the errors
of omission and commission; and (6) indirect treatment of
context.

THERP and approaches developed in parallel—as HCR
(Human Cognition Reliability) developed by Hannaman,
Spurgin, and Lukic in 1985—describe cognitive aspects of
operator performance with a cognitive model of human
behaviour, known as skill-rule-knowledge (SRK) model [16].
This model, based on human behaviour classification, is
divided into practical skills, rules, and knowledge-based
behaviour, depending on the cognitive level used. Attention
and conscious thought that an individual gives to activities
decreased from the third to the first level. This model of
behaviour fits very well with Reason’s human error theory
[17]: there are several types of errors, depending on the
actions’ result carried out with intention or not. Reason
distinguished “slips” errors that occur in skill level; “lapses”
errors caused bymemory failure; and “mistakes” errors made
during the action execution. In THERP, however, bad actions
are divided into omission and commission errors represent-
ing, respectively, failure to carry out necessary operations
to achieve the desired result and execution of actions not
referred to as concerned task, which keep off the desired
result [18].

First-generation HRA methods ignore the cognitive pro-
cesses that underlie human behaviour, in fact, they have a
cognitivemodel without realism and they are psychologically
inadequate. They are often criticized for not considering
some factors’ impact such as environment, organizational
factors and other relevant PSFs, and inadequate treatment of
commission errors and expert judgment [14, 18, 19].Hollnagel
[18] noted that “all inadequacies of previous HRA methods
often lead analysts to perform anHEP evaluation deliberately
high and with greater uncertainty limits to compensate, at
least in part, these problems” [18]. This is clearly not a
desirable solution.
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In the early 1990s, the need for improved HRA methods
generated a number of important research and development
activities worldwide. These efforts led to great advances in
first-generation methods and the birth of new techniques,
identified as second generation.These HRAmethods were, at
first, vague and unclear.While first-generationHRAmethods
are primarily behavioural approaches, second-generation
HRA methods aspire to be conceptual [14].

The gap between generations is evident in the abandon-
ment of quantitative approach in probabilistic risk analysis
(PRA) or probabilistic safety assessment (PSA) in favour of
greater attention to qualitative assessment of human error.
The focuswas on cognitive aspects of human beings, causes of
errors rather than their frequency, study of factors interaction
that increases error probability, and PSFs interdependence.

The second-generation HRA methods (such as CREAM
“Cognitive Reliability and Error Analysis Method” or
ATHEANA “A Technique for Human Event Analysis”) are
based on human behaviour models.This generation of meth-
ods emphasizes the qualitative characterization of human
error, describing cognitive roots and human cognitive func-
tions involved.

Clearly, any attempt to understand human behaviour
should include the role of human cognition, defined as
the act or process of knowing that includes awareness and
human operator judge. From the HRA analyst’s perspective,
the immediate solution considering human cognition was
the introduction of a new error category: “cognitive error,”
which is defined as both the lack of an activity predominantly
cognitive and the inferred cause of activity fails. For example,
CREAM, developed by Hollnagel in 1993, maintains the
division between causes and logical consequences of human
error. Causes of misconduct (genotypes) are the reasons that
determine the occurrence of certain behaviours and effects
(phenotypes) are represented by incorrect forms of cognition
and inappropriate actions.

Cognitive models have been developed to represent
the logical-rational process of human beings and include
dependence on personal factors (such as stress, incompe-
tence, etc.), situation conditions (normal system conditions,
abnormal conditions, or emergencies), and human-machine
interface models, which reflect the control system process
[20]. In this perspective, human operator must be seen as
a part of an integrated system (its acronym in English is
MTO: “Man-Technology-Organization”), that is, a team of
operators (men) working together to achieve the same goal,
which is involved in the mechanical process (technology)
within an organization and company management (organi-
zation), and, together, representing the resources available.
Cognitive models used in second generation are based on the
assumption that human behaviour is governed by two basic
principles: cyclical nature of human cognition and cognitive
processes dependence with context and work environment.

Another difference between generations refers to the
choice and use of PSF. None of the first HRA approaches
seeks to explain how PSFs exert their effect on performance
and, in addition, PSFs—such as management methods and
attitudes, organizational factors, cultural differences, and
irrational behaviour—are not adequately addressed. PSFs

in first generation are mainly derived focusing on envi-
ronmental impact, while PSFs in second generation were
obtained by focusing on cognitive effects [21]. PSFs of both
generations were revised and collected in a single taxonomy
of performance factors [22].

Most important second-generation methods are A Tech-
nique for Human Event Analysis (ATHEANA), Cognitive
Environmental Simulation (CES), Connectionism Assess-
ment of Human Reliability (CAHR), and Méthode d’Evalua-
tion Realisation des Missions Opérateur pour la Sûreté
(MERMOS—assessmentmethod of operational securitymis-
sions).

3. Applications and Contributions of Fuzzy
Mathematics to Human Reliability

3.1. The Uncertainty Problem: Fuzzy Reliability. One of the
main contributions of fuzzymathematics to human reliability
is to capture the phenomenon of uncertainty, associated
with information sources and the intrinsic randomness of
man-machine systems. As Zio indicates [23], a fundamental
problem in reliability analysis is the uncertainty of failure
occurrence and its consequences.

Risk analyses have three types of treatments of uncer-
tainty according to degree of information availability [24]:
(1) historical information available and sufficient (modelled
through simple probabilistic frequencies); (2) information
available but insufficient (modelled by statistical theories as
Bayesian networks); and (3) information not available (mod-
elled through expert judgment). Uncertainty is a function
of incompleteness and fuzziness that can be modelled using
membership functions. Contributing factors to uncertainty
are four [24]: (1) inadequate statistical analysis methods
(for statistical parameters); (2) lack of sufficient information
for proper statistical analysis (for statistical models); (3)
complexities of working conditions and health (for expert
judgment); and (4) the level of education and experience (also
for expert judgment).

As indicated by Konstandinidou et al. [7] it is necessary
to build a human reliability model that can incorporate sub-
jective information and, therefore, an adequate mathematical
treatment for this type of information. As Sheridan says [8]
operators’ knowledge (indispensable source of information
for task analysis) of system variables and their interrelation-
ships is fuzzy.

Natural language introduces uncertainty for its vagueness
and imprecision. For example, the principle underlying the
design of all systems is that if the system is designed to
withstand the worst accident scenarios then it can be resistant
to any credible accident; refer to “worst case scenario” which
implies subjectivity and arbitrariness, leading to contempla-
tion of highly improbable scenarios [23]. A fuzzy treatment
of this linguistic term should address that problem.

Equally, conceptual constructs such as “situational aware-
ness” (SA), criticized for its vagueness and imprecision, are
modelled by Naderpour et al. [25] using Bayesian networks
and fuzzy inference system. Situational awareness is a crucial
factor to improve performance and reduce human error;
however, few methods assess SA because it is difficult to
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model and evaluate.The construct “mentalmodel,” identified
as a folk model as well as situational awareness [26], can take
two forms: the first is qualitative (describing the interrela-
tionships between a set of objects and experienced events);
the second is a quantitative cause and effect relationship
(this model addresses questions like “what happens if”). The
second type of mental model can be represented by fuzzy
rules [8].

HEROS model [9] is an expert system where vagueness
of verbal statements is modelled with linguistic variables
represented by fuzzy numbers and fuzzy intervals. The input
of “expert system” is PSFs evaluation in natural language
and the output, also in natural language, is a human error
characterization (very unlikely, unlikely, likely, very likely,
and very likely).

Some authors speak of “fuzzy reliability” to incorporate
this issue [27, 28]. In fuzzy reliability, probability and binary
states are replaced with possibility and fuzzy states. Error
possibility provides a more detailed description than error
probability in probabilistic reliability [27].

Uncertainty about stress and intensity of components in
fuzzy reliability can be classified as follows [28]: (1) random
stress and fuzzy intensity, (2) fuzzy stress and random inten-
sity, and (3) fuzzy stress and fuzzy intensity. For an electronic
component, for example, stress can be operating temperature
or voltage; intensity can be the maximum temperature or
voltage that component supports. In practice, variable’s stress
or intensity is difficult to compute, so they are fuzzy variables.
In fuzzy reliability each component is taken as a fuzzy
variable.

Other types of uncertainty treated with fuzzy logic arise
from human failure event and human actions dependencies.
Methods developed to date do not provide task dependencies
[29]; one of the desirable attributes of an improved model is
the ability to cover human failure events, their dependencies,
and recoveries [30]. This source of uncertainty is approached
in twomainways: by fuzzy expert judgment elicitation [31, 32]
or HEP modifications by dependencies considerations [33,
34]. Recent third-generation HRAmodels, or dynamic HRA,
include simulation to address task dependency [35].

3.2. Expert Judgment Data Treatment. Applying HRA meth-
odologies involves numerous judgments expressed in natural
language; for example, THERP’s degree of stress, operating
instructions, and training quality have to be qualified ver-
bally; or in HRC, they are based solely on verbal evaluations
[9].

One of the great problems of extracting information from
an expert is the bias degree of people’s judgments about
variables values [8]. To address this problem, three types of
calibration are used: (1) people’s biases are quite stable so they
will be the same for the same or similar situations in the same
or similar variables, so they can be treated with probability
densities; (2) human judgment includes not only the best
guess but the degree of confidence in self-response; and (3)
judgment can be compared with actual events.

In countries where objective probabilistic risk infor-
mation is extremely rare or inadequate, using subjective
judgment based on experts’ experience is inevitable [24].

In these cases fuzzy theories are useful; fuzzy sets are used
to handle ambiguity in probabilistic modelling of subjective
judgments. For example, fuzzy theory is applied to convert
expert opinion in natural language to obtain numerical values
of risk factors [36].

FORAS risk assessment model (Flight Operations Risk
Assessment System) [37] is a fuzzy expert system (FES), based
on aviation experts knowledge (variables can be linguistic
values). The risk model is a hierarchical decomposition of
risk contributing factors, whose interrelations are represented
by fuzzy sets rules. This decomposition allows identifying
major contribution elements. FES is ideal for environments,
such as aviation safety, where knowledge is highly subjective
and empirical, resulting from years of experience, accident
investigations, simulations, and psychological studies.

The vast majority of fuzzy sets applications in HRA
use fuzzy logic ability to formally represent qualitative and
ambiguous statements, without including a FES to obtain
expert knowledge. According to Zio et al. [31], the onlymodel
that obtains expert knowledge through fuzzy set theory was
published by Huang et al. [38].

3.3. Binary Logic and Fuzzy Logic: Fuzzy Fault Trees. Errors
are modelled according to a binary logic of success/failure,
so other error modes are not explicitly identified [39].
However, human reliability analysis should not be limited
to binary treatment of human actions (correct or failed
actions) typically used in fault trees. Many actions may not
be included in that binary logic, for example, initiating events
[15]. Binary fault trees do not allow context representation
nor individuals’ representation, their interrelationships, and
system dynamics [40].

In Fuzzy Causal Model (FCM) [36], accident mechanism
is explained by directed acyclic diagrams showing the logical
relationships of a variety of events. In contrast to traditional
failure trees, and even Bayesian networks, not only the
occurrence events probability range but also the incidence
relations and influence degree between different events are
represented by triangular fuzzy numbers (𝑙, 𝑚, 𝑢). The causal
fuzzy model has two interesting contributions: (1) “relaxed”
logical operators, that is, AND operator in which, given
all the true input variables, there is a low probability of
nonoccurrence of the output variable, and OR operator in
which, given all the negative input variables, there is a low
possibility of occurrence of the output variable; (2) fuzzy
conditional operators, that is, output variable occurrence
probability given the input variable, which can be a fuzzy
value.

Celik and Cebi [41] used Human Factors Analysis and
Classification System (HFACS) theory integrated with Fuzzy
Analytical Hierarchy Process (FAHP) to quantitatively evalu-
ate human errors contribution in shipping accidents, trying
to ensure accident reports consistency in order to clearly
identify causes of accidents.

3.4. Performance Shaping Factors. Most of human reliability
theories are based on implicit functions relating PSFs with
error probabilities; however, they fail to consider variability,
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uncertainty, and incomplete knowledge that characterize
many domains and experts [42].

Bertolini [43] uses “fuzzy cognitive maps” to rank PSFs
importance. Using an expert group and by Delphi technique,
Bertolini establishes the relationships between 34 PSFs, set-
ting the “fuzzy cognitive map.” Thus, he determines that
“noise” factor is the main factor that decreases human
reliability. This is an extremely interesting and practical
finding, especially in systems design, but questionable for its
use in absolute terms and in quantifying human reliability.

In the model developed by Li et al. [44], all performance
factors, such as “working environment,” have three states
(incompatible, compatible, and advantageous); each state has
an occurrence probability (which is estimated by expert
judgment and not through historical data) according to a
triangular fuzzy membership function, where the peak is the
most likely value and extreme values are confidence interval
limits.

HEROS model [9] uses a fuzzy inference system (expert
system) combining fuzzy values of eachPSF; then these values
are associated to calculate human error possibility.

Kim and Bishu [45] use fuzzy logic in parameters mod-
elling (age, experience in and out of the control room, and
education) that influences the relationship between response
time andmisdiagnosis probability in an emergency situation.
Despite differences found in laboratory observations and field
observations, an approximate error value resulting from fuzzy
regression models plays an important role given the difficult
data acquisition in real cases.

3.5. Human Behaviour Model. Artificial intelligence authors
use fuzzy logic to simulate and emulate human behaviour
and cognition. Many authors, in order to improve HRA
methodologies, introduce the role of human cognition [15],
and they have used this knowledge to be incorporated in
human reliability analysis modelling human behaviour or
human information processing with fuzzy logic.

As an example, SAMPLE model (Situation Awareness
Model for Pilot-in-the-Loop Evaluation) [46] can be cited.
Created by Charles River Analytics and supported byWright-
Patterson Air Force Base, SAMPLE is an “information pro-
cessing model” in dynamic systems; it has an agent based
architecture that represents human entities (fighter pilots,
commercial pilots, air traffic controllers, and dispatchers). It
includes fuzzy technologies, Bayesian reasoning, and rule-
based expert systems.

Another interesting problem is decision-making mod-
elling. Zadeh [47] proposed the use of fuzzy logic for handling
uncertainties associated with human decision-making. Lei-
den et al. [46] are pioneers in decision-making theory based
on recognition (recognition-primed decision-making RPD).
According to this theory, good decisions can be reached
through the recognition of experience in typical situations
and the subsequent identification of the alternative that
works. This recognition is modelled applying fuzzy pattern
recognition.

The usual assumption in fuzzy logic is that, given a situa-
tion, the rule or combination of rules that have greater appli-
cability (membership degree) should dominate the action; in

otherwords, the action attesting a greatermembership degree
must be chosen [8]. Terano and Sugeno [48] used fuzzy logic
for multiple targets weighting problem. The decision maker
can assign a score 𝑉

𝑖
to each of the 𝑁 objectives and can

also judge the relevance 𝑅
𝑘
of any combination of the 𝑁

objectives (taking one at a time, taking in pairs, etc.). For each
objectives combination, relevance 𝑅

𝑘
is compared with the

worst scores for each objective in that combination and the
worst of the two is taken. A combination with greater weight
is then chosen.

4. Most Recent Fuzzy Set
Contributions and Applications

The applications of fuzzy logic started after Zadeh’s publica-
tions in 1965 [6], principally in automatic control [49], visual
and speech recognition, home electronics, man-machine
models interaction, artificial intelligence, and several indus-
trial applications. Mendel and John [50] proposed fuzzy sets
type-2 in order to model different levels of uncertainty for
different forms of data. According to [51] fuzzy sets type-2
approach appears to be in its infancy. In this section, recent
fuzzy applications are compared and fuzzy HRA applications
are contextualized.

A bibliometric analysis from 2012 to 2015 was made
using the online databases: ISI-Web of Science, ScienceDirect,
SpringerLink, Informaworld, Engineering Village, Emerald,
and IEEE Xplore. Application of fuzzy set can be classi-
fied under three main sets (Figure 1): (1) manufacturing
operations and industries, (2) service operations and indus-
tries, and (3) information and communication technology
(telecommunication network planning, image processing,
pattern recognition, information retrieval, and weather fore-
casting, etc.); and the main subject areas of fuzzy application
are computer science, engineering, automatic and control
systems, robotics, and mathematics. Principal fuzzy engi-
neering applications [52] are (Figure 2) (a) classification
and pattern recognition, (b) fuzzy control systems, (c) fuzzy
optimization, (d) fuzzy cognitive mapping, and (e) system
identification. In this context, fuzzy HRA publications repre-
sent almost 1% of principal fuzzy applications (Figure 1) and
1% of fuzzy engineering applications (Figure 2).

Particularly in fuzzy HRA, following the classification of
Section 3, the most recent publications (2012–2015) were on
uncertainty treatment (15%), expert judgment data treatment
(45%), fuzzy fault trees (9%), performance shaping factors
(18%), and human behaviour model (13%).

A recent and important line of research is about fuzzy
Bayesian network (26% of fuzzy HRA applications from 2012
to 2015); the applications were, for example, PSFs quantifica-
tion improvement [44], case applications [53–56], and fuzzy
Bayesian CREAM [57]. On the other hand, the most popular
recent works were about fuzzy CREAM (probably due to
the method popularity), however, without a big amount
of publications (2%). In terms of membership functions,
the most used continue to be triangular functions (56%),
followed by Gaussian (26%) and trapezoidal (18%). Only 6
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Figure 1: Comparison between fuzzy HRA applications and principal fuzzy applications.
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Figure 2: Comparison between fuzzy HRA applications and engineering fuzzy applications.

(<1% of fuzzy HRA applications) articles from 2012 to 2015
mentioned type-2 fuzzy sets, but none of them really apply.

Present researches on HRA suggest that “failure arises
from systematic and predictable organizational factors at
work, not simply erratic behaviours by individuals” [58].This
new line focuses on anticipating and preventing failure condi-
tions as a system characteristic instead of considering human
operator as a probabilistic failure component. This system
capacity is called resilience [59]. Resilience engineering
redefines the concept of safety: “the ability to succeed under
varying conditions” [59]. As an emerging line of research,
resilience engineering needs improvements, especially in the
way of measuring the resilience of organizations. Dekker and
Hollnagel [26] indicate that phenomenon or construct expla-
nations should be decomposed or reduced into fundamental
elements that suggest possible measures allowing explica-
tion’s corroboration. The quantification and measurement of
abstract and complex construct like “resilience engineering”
entails numerous problems, and fuzzy logic should be the
adequate mathematical tool for its modelling. Nevertheless,
there are no publications on the subject.

5. Conclusion and Discussion

This review presents the advantages of using fuzzy math-
ematics to quantify human reliability. Even if they repre-
sent less than 1% of the actual fuzzy applications, human
reliability analyses prove to be a prosperous and growing
field of application of fuzzy techniques. Fuzzy contributions
improve HRA in five main aspects: (1) uncertainty treatment,
(2) expert judgment data treatment, (3) fuzzy fault trees,
(4) performance shaping factors, and (5) human behaviour
model.

In the first case, sources of uncertainty and examples
of fuzzy treatment were discussed. Ambiguous, qualitative,
imprecise, and vague information is modelled with fuzzy
sets in many HRA methods. The major advantage of using
fuzzy sets is to capture the uncertainty associated with
verbal statements, linguistic variables, subjective informa-
tion, conceptual constructs (as situation awareness or mental
models), and task dependencies. In fuzzy reliability, proba-
bility and binary states are replaced by possibility and fuzzy
states.
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Expert judgment is the principal source of information
in HRA, for it is very difficult, or even impossible, to develop
an HRA method without drawing on expert opinion. Fuzzy
sets are used to handle ambiguity in probabilistic modelling
of subjective judgments, transforming natural language into
numerical values and addressing the bias degree of people’s
judgments on variable values. Fuzzy expert systems prove to
capture expert knowledge in HRA applications.

Another important contribution is fuzzy fault trees
including “relaxed” logical operators and fuzzy conditional
operators. Fuzzy fault trees allow for simpler representations
of the complex nature of human actions and much more
flexibility than binary fault trees.

Concerning PSF, there is a wide application of fuzzy tech-
niques ranging from triangular fuzzy numbers to represent
PSFs confidence limits to fuzzy cognitive maps to establish
PSFs relationships and dependence and determining the
main factor that decreases human reliability. Fuzzy sets admit
PSFs variability, uncertainty, and incomplete knowledge.

Finally, manyHRAmethods include artificial intelligence
approaches to model human behaviour. Both an agent based
architecture that represents human entities with fuzzy tech-
nologies, Bayesian reasoning, and rule-based expert systems
and a decision-making model based on fuzzy pattern recog-
nition or multiple targets weighting problems are examples
of the complexity achieved by fuzzy artificial intelligence
methods in HRA applications. Due to these methodologies,
great depth and accuracy in modelling human behaviour can
be reached.

This paper puts forth the applications and contributions
of fuzzy set theory to human reliability modelling. As shown,
most of these applications resort to triangular membership
functions demonstrating strength, flexibility, and simplicity
enough for safety analyses. The inclusion of fuzzy theory
type-2 is one vacant area of HRA research. Proposed by
Mendel and John as an extension of ordinary fuzzy sets,
fuzzy grade or fuzzy sets type-2 may probably decrease
the uncertainty in human reliability analyses. However, the
exploiting of this theory in human reliability techniques
for safety analyses may increase calculation complexity to
impractical levels.
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