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The derivative-expansion approach to the calculation of the interaction between two surfaces is a generalization
of the proximity force approximation, a technique in widespread use in different areas of physics. The derivative
expansion has so far been applied to seemingly unrelated problems in different areas; it is our principal aim here
to present the approach in its full generality. To that end, we introduce a unified setting, which is independent
of any particular application, provide a formal derivation of the derivative expansion in that general setting, and
study some of its properties. With a view toward the possible application of the derivative expansion to other
areas, like nuclear and colloidal physics, we also discuss the relation between the derivative expansion and some
time-honored uncontrolled approximations used in these contexts. By putting them under similar terms as in
the derivative expansion, we believe that the path is open to the calculation of next-to-leading-order corrections
also for these contexts. We also review some results obtained within the derivative expansion, by applying it to
different concrete examples and highlighting some important points.
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I. INTRODUCTION

The proximity force approximation (PFA) has been widely
used in many areas of physics, as a tool to compute the
total force between smooth surfaces at short distances, the
scale of that smoothness being set by the distance between
them. Although that total force may result from very different
underlying microscopic mechanisms, the PFA is essentially
the same in all of them, since its basis is geometrical.

The main idea behind this approximation was introduced
by Derjaguin in 1934 [1], who studied the effect of contact
deformations on the adhesion of particles. In that context,
the so-called Derjaguin approximation (DA) has, as its main
ingredient, the (assumed) knowledge of E‖(h), the interaction
energy per unit area for two (infinite) plane parallel surfaces
separated by a distance h. The DA tells us that then the
interaction energy UDA(d) between two curved surfaces is [1,2]

UDA(d) = 2πReff

∫ ∞

d

E‖(h)dh, (1)

where d is the distance between the surfaces, R1 and R2

are their respective curvature radii evaluated at the point
of closest approach, and Reff = R1R2/(R1 + R2). The same
approximation can be alternatively written in terms of the
force, fDA, as follows:

fDA(d) = 2πReffE‖(d). (2)

The usual derivation of this approximation relies upon the
rather reasonable assumption that the interaction energy be-
tween the surfaces can be approximated by the PFA expression,

UPFA =
∫

dS E‖, (3)

where the integration is performed over just one of the
surfaces, or even over an intermediate mathematical surface
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lying between the two physical surfaces.1 Assuming that
the surfaces are gently curved, and approximating them by
portions of the osculating spheres of radii R1 and R2 at the
point of closest approach, one arrives at the DA.

The DA has been used to compute forces in many different
physical situations: colloidal and macromolecular phenomena,
nuclear physics, electrostatic forces, van der Waals interac-
tions, Casimir forces, etc. The DA has been generally assumed
to be an uncontrolled approximation, presumably working well
for close and gently curved surfaces. Its major drawback was,
perhaps, the absence of a procedure to assess the importance
of the next-to-leading-order (NTLO) corrections since, by
construction, the DA is not obtained as the leading term of any
expansion. In spite of that drawback, surprisingly few works
have been devoted to implementing a systematic improvement
of the DA, which could give a more solid foundation for the
PFA and a way to improve it.

Recently, we presented an approximation scheme, the
so-called derivative expansion (DE), originally introduced
within the context of the Casimir effect, for the calculation
of the interaction energy between two surfaces, one of them
flat and the other slightly curved [3,4]. This approximation
has been shown to be a natural extension of the PFA, and it
has proven to be useful in rather different situations, not just
for Casimir effect calculations. The DE approach provides a
systematic way of introducing the DA and the PFA and, in
some circumstances, also of evaluating the NTLO corrections.

In this paper, our principal aim is to formulate and derive
the DE in a quite general form, so that previous (and hopefully
new) applications of it may be regarded as particular cases. To
that end, we present a derivation of the PFA and its NTLO
correction from first principles, for the particular case of
a curved surface described by a function x3 = ψ(x1,x2) in

1When applied to a compact object in front of a plane, the integration
is usually restricted to the portion of the compact object’s surface that
faces the plane.
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front of a plane at x3 = 0. We also interpret the result of this
derivation in physical and geometrical terms.

The surfaces involved shall have quite different physical
realizations, depending on the system considered. Indeed,
in some examples they may correspond to two physical
objects with very small widths, interacting as a result of
the presence of an electric charge or dipole layers on them.
In other cases, they may instead correspond to interfaces
between different material media. Besides, the nature of the
“microscopic” interaction that produces the interaction may
also have quite different origins. For example, it may be
electrostatic, mediated by a short-range force, or may even
be the result of a more involved phenomenon, like the Casimir
effect. As it stems from the different nature of the examples
mentioned above, no assumption will be made about whether
or not the interaction between the surfaces proceeds from a
microscopic interaction that satisfies a superposition principle.

After presenting the general derivation, we touch on
other efforts made in the literature towards generalizing and
improving the DA, like the surface element integration (SEI)
[5] and the surface integration approach (SIA) [6] introduced
in the context of colloidal physics, as well as the different PFAs
used in nuclear physics [7,8].

This paper is organized as follows: in Sec. II we provide a
first-principles derivation of the DE and then a construction of
it using physical arguments. We also consider some properties
of the general formulas so obtained and comment on the form
of the higher order terms. Then in Sec. III we discuss, from the
point of view of the DE, some generalizations of the DA that
have been proposed in the literature, mostly in the context of
colloidal and nuclear physics. Based on a formal analogy with
the Casimir interaction between almost-transparent media,
we make contact with the SEI approach used in colloidal
physics. In Sec. IV we briefly review results obtained during
recent years using the DE, along with discussions of particular
examples. Finally, Sec. V contains our conclusions.

II. DERIVATION AND PROPERTIES OF THE DERIVATIVE
EXPANSION

A. Derivation by resummation of a perturbative expansion

Let us first set up the problem: regardless of the interaction
considered, the geometry of the systemis assumed to be as
follows: one of the surfaces, L, will be a plane, which (by
a proper choice of coordinates) shall be described by the
equation x3 = 0. Denoting by x1, x2, and x3 the set of three
orthogonal Cartesian coordinates, the other surface, R, is
assumed to be describable by using a single Monge patch.
Namely, it can be parametrized in terms of just a single function
ψ(x‖), with x‖ = (x1,x2), such that x3 = ψ(x‖).

To begin, we note that the interaction between the two
surfaces shall be a functional F [ψ] of a single function, ψ(x‖).
That functional may be an energy, a free energy, a force,
etc., depending on the context and the kind of system being
considered.

The PFA to F , which is denoted F0 here, is obtained by
adding, for each point x‖, the product of a local surface density
F0(ψ(x‖)), depending only on the value of ψ at point x‖, times

the surface element area; namely,

F0[ψ] =
∫

d2x‖ F0(ψ(x‖)). (4)

The local surface density is in turn determined by the
knowledge of the exact form of F for the case of two parallel
surfaces,

F0(a) = lim
S→∞

[
F [a]

S

]
, (5)

where S denotes the area of the L plate.
Namely, to determine the density, one only needs to know

the functional F for constant functions ψ ≡ a and then extract
a surface factor due to translation invariance. This density is
then evaluated at the local distance between plates, ψ(x‖),
multiplied by d2x‖, and integrated. When the functional F

describes the interaction energy between the surfaces, the local
density F0 is just the interaction energy per unit area E‖, and
F0 becomes UPFA [see Eq. (3)].

We now show that one can derive the PFA and its corrections
by considering

ψ(x‖) = a + η(x‖) (6)

and performing a resummation of the perturbative expansion
in powers of η. We start by expanding the functional F [ψ] in
powers of η,

F [ψ] = SF0(a) +
∑
n�1

∫
d2k

(1)
‖

(2π )2
· · · d2k

(n)
‖

(2π )2
δ(k(1)

‖ + · · ·

+ k
(n)
‖ )h(n)(k(1)

‖ , . . . ,k
(n)
‖ )̃η(k(1)

‖ ) · · · η̃(k(n)
‖ ), (7)

where the form factors h(n) can be computed by using standard
perturbative techniques [9]. They may depend on a, although
we do not write this dependence explicitly in order to simplify
the notation.

Now we see that, for a smooth function η, the Fourier trans-
form η̃ will be peaked at zero momentum; therefore, inside
Eq. (7) we can approximate h(n)(k(1)

‖ , . . . ,k
(n)
‖ ) �

h(n)(0, . . . ,0). As a consequence,

F (ψ) � SF0(a) +
∑
n�1

h(n)(0, . . . ,0)
∫

d2x‖η(x‖)n. (8)

In principle, one could evaluate the form factors at zero
momentum explicitly. However, there is a shortcut that allows
one to obtain all of them at once: for a constant η(x‖) = η0,
the interaction energy is simply given by Eq. (8) with the
replacement

∫
d2x‖ η(x‖)n → Sηn

0 . But for this particular case,
F is just the functional for parallel plates separated by a
distance a + η0, namely,

F0(a + η0) = F0(a) +
∑
n�1

h(n)(0, . . . ,0)ηn
0 . (9)

Therefore, in this low-momentum approximation, the pertur-
bative series can be summed up, the result being

F0[ψ] �
∫

d2x‖F0(a + η(x‖)) =
∫

d2x‖F0(ψ), (10)

which is just the PFA.
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The straightforward calculation above has shown that, for
the class of geometries considered in this paper, the PFA can be
derived from first principles by performing a resummation of
the perturbative calculation for the case of almost-flat surfaces.
The PFA will be well defined as long as the form factors
h(n)(k(1)

‖ , . . . ,k
(n)
‖ ) have a finite limit as k

(i)
‖ → 0.

This procedure also suggests that the PFA can be improved
by considering the NTLO in the expansion of the form factors.
We assume that the form factors can be expanded in powers
of the momenta up to order 2. This is a nontrivial assumption:
depending on the details of the interaction considered, the
low-momentum behavior of the form factors could include
nonanalyticities. When that is not the case, we can perform
the expansion

h(n)(k(1)
‖ , . . . ,k

(n)
‖ ) = h(n)(0, . . . ,0) +

∑
i,α

A
(n)
iα k

(i)
‖α

+
∑

i,j,α,β

B
(n)
ijαβk

(i)
‖ αk

(j )
‖β . . . (11)

for some a-dependent coefficients A
(n)
iα and B

(n)
ijαβ . Here i,j =

1, . . . ,n denote the different arguments of the form factor,
and α,β = 1,2 their components. Symmetry considerations
allow us to simplify the above expression. Indeed, rotational
invariance implies that the form factors depend only on the
scalar products k

(i)
‖ · k

(j )
‖ . Moreover, they must be symmetric

under the interchange of any two momenta. As a consequence,

h(n)(k(1)
‖ , . . . ,k

(n)
‖ ) = h(n)(0, . . . ,0) + B(n)

∑
i

k
(i) 2
‖

+C(n)
∑
i �=j

k
(i)
‖ · k

(j )
‖ (12)

for some coefficients B(n) and C(n). Inserting Eq. (12) into
Eq. (7), and performing integrations by parts, we find the
following correction to the PFA:

F2[ψ] =
∫

d2x‖

[ ∑
n�2

D(n) ηn−2

]
|∇η|2, (13)

where the coefficients D(n) are linear combinations of B(n) and
C(n). The subscript index 2 indicates the number of derivatives.

To complete the calculation, the next step is to calculate the
sum in Eq. (13). This can be done by evaluating the correction
F2 for the particular case η(x‖) = η0 + ε(x‖), with ε 	 η0, and
expanding up to second order in ε. For this particular case,

F2[a + η0 + ε] =
∫

d2x‖

[ ∑
n�2

D(n) ηn−2
0

]
|∇ε|2. (14)

Once more, the resummation can be performed, in this case by
considering the usual perturbative evaluation of the interaction
energy up to second order in ε. This calculation will depend
on the particular interaction considered, and from the result,
one can obtain the series above, which we denote Z. More
explicitly,

Z(a + η0) ≡
∑
n�2

D(n) ηn−2
0 . (15)

Making the replacement η0 → η in the above equation, we
arrive at

F2[ψ] =
∫

d2x‖ Z(ψ)|∇ψ |2, (16)

which is the NTLO correction to the PFA. This concludes the
derivation of the PFA and its first correction, which reads

FDE[ψ] = d2x‖ [V (φ) + Z(ψ)|∇ψ |2], (17)

where V (ψ) = F0(ψ) is determined from the known value of
the parallel surfaces geometry, while Z(ψ) can be computed
perturbatively. Note that Z can be evaluated, in practice, by
just setting η0 = 0 in Eq. (15).

Higher orders may be derived by a natural extension of
the procedure. It also becomes apparent that for the expansion
to be well defined, the analytic structure of the form factors
appearing in the perturbative expansion around flat surfaces
is relevant. In particular, the existence of zero-momentum
singularities can certainly render the DE nonapplicable; on
the other hand, this should be expected on physical grounds
since these singularities imply that the functional cannot be
approximated, in coordinate space, by the single integral of
a local density. Physically, it is a signal that the interaction
becomes essentially nonlocal (see Sec. IV C 2). Indeed, if
written in coordinate space, they would require more than
one integral over the spatial coordinates.

B. Construction of the second-order derivative expansion

We now present a physical construction of the DE, based
on a procedure whereby one attempts to improve the PFA.
The expression for the PFA does not involve derivatives of
ψ , since one is using parallel planes to obtain the density,
and the corresponding functional is characterized by a single
number, their distance. The DE may then be introduced, as a
rather natural way to improve the PFA, simply by constructing
an improved surface density F . The improvement can be
implemented by using the density that results from using, at
each point of the surface, a second-order approximation to it.
Namely, the curved surface shall be approximated (locally) by
a surface that makes a second-order contact with it, i.e., that
has the same first and second derivatives as ψ .

In other words, rather than evaluating F for a constant
ψ = a, we consider evaluating it at

ψ = ψ(y‖) = a + η(y‖), (18)

where η is a quadratic function of its argument:

η(y‖) =
2∑

i=1

biyi + 1

2

2∑
i,j=1

cij yiyj . (19)

We use y‖ for the coordinates on which η may depend, since
later on we use x‖ to denote each point on which the expansion
is performed (for example, a will depend on x‖).

Since we want to construct a second-order expansion in
derivatives, the expression for F will be expanded up to the
second order in bi and first order in cij . That expansion shall
have the form

F = F (0) + F (1) + F (2) + · · · , (20)
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where the index denotes the order in derivatives. One then has
F (0) = F [a] (yielding the PFA contribution), while the term
of order 1 in derivatives is

F (1) =
∫

d2y‖ 
(1)
a (y‖)

2∑
i=1

biyi, (21)

with


(1)
a (y‖) =

[
δF [a + η]

δη(y‖)

]
η=0

. (22)

The second-order term receives two contributions:

F (2) =
∫

d2y‖ 
(1)
a (y‖)

⎛⎝1

2

2∑
i,j=1

cij yiyj

⎞⎠ + 1

2

∫
d2y‖

×
∫

d2y′
‖

(
2∑

i=1

biyi

)

(2)

a (y‖,y′
‖)

⎛⎝ 2∑
j=1

bjy
′
j

⎞⎠ , (23)

one involving the one-point kernel appearing in F (1) and the
other depending on the two-point function,


(2)
a (y‖,y′

‖) =
[

δ2F (a + η)

δη(y‖)δη(y′
‖)

]
η=0

. (24)

Let is consider now the term of first order in derivatives,
F (1). We first see that 
(1)

a cannot depend on y‖ (since the
functional derivative is evaluated at a constant function), and
it is therefore a constant regarding that variable. Indeed, note
that it can even be written explicitly in terms of the density
F0(a):


(1)
a = 1

S
∂F [a]

∂a
= ∂F0(a)

∂a
. (25)

Then we see that

F (1) = F (1)
a

∫
d2y‖biyi = 0, (26)

thus the first-order term vanishes.
Let us now consider the two contributions to the second-

order term, F (2), namely, F (2) = F (2,1) + F (2,2), with

F (2,1) =
∫

d2y‖ 
(1)
a (y‖)

⎛⎝1

2

2∑
i,j=1

cij yiyj

⎞⎠ (27)

and

F (2,2) = 1

2

∫
d2y‖

∫
d2y′

‖

(
2∑

i=1

biyi

)

×
(2)
a (y‖,y′

‖)

⎛⎝ 2∑
j=1

bjy
′
j

⎞⎠ . (28)

Regarding F (1), using (25), one sees that

F (2,1) = S ∂F0(a)

∂a
〈η〉, (29)

where we have introduced the spatial average of η,

〈η〉 ≡ 1

S

∫
d2y‖η(y‖). (30)

Regarding F (2,1), since 
(2)
a can only depend on the

difference between its arguments,

F (2,2) = 1

2

2∑
i,j=1

bibj

∫
d2y‖

∫
d2y′

‖ yi 
(2)
a (y‖ − y′

‖) y ′
j ,

(31)

and in terms of 
̃(2)
a (k‖), the Fourier transform of 
(2)

a ,∫
d2y‖

∫
d2y′

‖ yi 
(2)
a (y‖ − y′

‖) y ′
j

= S lim
k‖→0

[
∂2
̃(2)

a (k‖)

∂ki∂kj

]

= S 1

2
δij lim

k‖→0

[
2∑

i=1

∂2
̃(2)
a (k‖)

∂k2
i

]
, (32)

where rotational invariance on the x3 = a spatial planes has
been used. Thus,

F (2,2) = S Z(a)
2∑

i=1

b2
i , (33)

with

Z(a) = 1

4
lim

k‖→0

[ 2∑
j=1

∂2

∂k2
i


̃(2)
a (k‖)

]
. (34)

Putting together the results for F (0), F (1), and F (2) we see
that, in all of them, an S factors out. Therefore, up to second
order in derivatives,

F [a + η] = S
[
F0(a) + ∂F0(a)

∂a
〈η〉 + Z(a)

2∑
i=1

b2
i

]
(35)

or (since 〈η〉 involves two derivatives), to the same order,

F [a + η] = S
[
F0(a + 〈η〉) + Z(a)

2∑
i=1

b2
i

]
. (36)

It then transpires that it is convenient to perform the splitting
between a and η in such a way that 〈η〉 = 0, since then the cij

term may be ignored (to second order). In what follows, we
assume that this is the case.

Thus, the second-order correction to the density, in the DE,
is denoted F2 and shall be

F2(a,bi,cij ) = Z(a)
2∑

i=1

b2
i , (37)

and the resulting contribution to F results by integrating this
density, evaluated at the proper (x‖-dependent) values of a

and bi :

F2 =
∫

d2x‖ Z(ψ) (∇ψ)2. (38)

The total F in this second-order approximation is thus
obtained by multiplying the two contributions to the density
by the area element and integrating. This results in FDE, the
functional given in Eq. (17), where, we recall, the two functions
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that completely determine the approximation are obtained
from the functional F , as follows:

V (ψ) ≡ F0(ψ(x‖)) = [F0(a)]a=ψ(x‖) (39)

and

Z(ψ) = 1

4
lim

k‖→0

⎡⎣ 2∑
j=1

∂2

∂k2
i

F̃ (2)
a (k‖)

⎤⎦
a=ψ(x‖)

. (40)

Note that, from the formulas that determine the functions
V and Z, we see that a possible practical way to obtain them
is by evaluating F (ψ) for ψ = a + η, with an η whose spatial
average is 0, and expanding F up to the second order in η

and its derivatives. An important implicit assumption in the
construction above is the existence of the zero-momentum
limit in Eq. (32). This is of course the same assumption we
made in the previous subsection about the analytic structure
of the form factors, which in turn depend on the problem
being considered. We remark once more on the fact that the
nonexistence of that limit means that the functional F shall
receive nonlocal contributions beyond the PFA. In other words,
it will not be just the integral of a density.

C. Some general properties of the derivative expansion

We present here some consequences that follow from the
form of the general expression for the DE. Let us first point out
an important property of both the PFA and its NTLO correction
in the DE: they stem from the expansion in derivatives of a
functional, thus they involve integrals of local functions of
ψ and its derivatives. Thus, in order to assess the relative
magnitude of those terms, it is not sufficient, in general, to
look at the behavior of the integrands at some particular points.
Rather, they measure global features of the distance function ψ

and its derivatives. Thus, a function may have a small curvature
radius at some region but, nevertheless, give rise to a small
contribution. Besides, note that these two terms have different
properties regarding spatial scaling. Indeed, let us consider the
two terms F0[ψ] and F2[ψ] for a given function ψ , assuming
that the corresponding integrals are finite. Then introduce the
scaled function,

ψλ(x‖) ≡ ψ(λx‖) , (41)

for a scale parameter 0 < λ < ∞. We see, by evaluating these
terms for the scaled function, that

F0[ψλ] = λ−2 F0[ψ], F2[ψλ] = F2[ψ], (42)

as follows by performing the change of variables x‖ → λ−1x‖
in both integrals. Thus, when the function ψ has a bump or
depression of characteristic size r0, the second-order term
will be independent of r0, producing the same contribution,
even when the size goes to 0 (and the corresponding curvature
diverges).

This can be illustrated by an example which appears
in Casimir physics. Assuming the boundary conditions are
perfect, there is no dimensionful object in the system except
ψ itself. Thus, in natural units, when calculating the energy,
both V and Z have to be proportional to 1/ψ3. Here the role
of the functional F is played by the static energy, U [ψ]. The

zeroth- and second-order terms in the DE for the energy then
have the form

U0[ψ] = a0

∫
d2x‖

1

ψ3
,

(43)

U2[ψ] = a2

∫
d2x‖

|∇ψ |2
ψ3

,

where a0 and a2 are constants.
For the revolution paraboloid ψ = a(1 + x‖2

σ 2 ), we may
evaluate both terms exactly, which yields

U0[ψ] = π

2
a0

σ 2

a3
,

(44)
U2[ψ] = 2πa2

1

a
.

Since σ is proportional to the radius of curvature, the ratio
σ 2

a2  1, and therefore the second-order term is much smaller
than the zeroth-order one.

This analysis can be extended to the higher order terms.
Indeed, a term with 2n (n ∈ N) derivatives has in the integrand
a 1/ψ3 factor times a polynomial with 2n derivatives and 2n

powers of ψ in the numerator. Thus, under scaling,

U2n[ψλ] = λ2n−2U2n[ψ]. (45)

Thus, for the quadratic ψ that we are considering,

U2n ∝ 1

a

(
a

σ

)2n−2

. (46)

Of course, we have assumed the expansion to be well defined to
those orders; that is something which, as we shall see, depends
on the properties of the system.

D. Fourth-order term

Let us, for the sake of illustration, briefly
comment here on the construction of the fourth-
order term (there is no third-order one), in a
scheme similar to the one considered in Sec. II B.
To derive the improved F density, one now has to consider

ψ = ψ(y‖) = a + η(y‖), (47)

where

η(y‖) =
2∑

i=1

biyi + 1

2

2∑
i,j=1

cij yiyj + 1

3!

2∑
i,j,k=1

dijk yiyjyk

+ 1

4!

2∑
i,j,k,l=1

eijkl yiyj ykyl. (48)

To find the fourth-order term in derivatives, one should collect
in F terms which come from its first-order contribution in e,
second order in c, fourth order in b, and also first order in b

and d or second order in b and first in c.
Thus F (4) receives five different contributions, F (4,j ) (j =

1, . . . ,5). All these contributions may be evaluated in Fourier
space, where they can be expressed in terms of derivatives
at zero momentum of the corresponding functional derivative;
besides, these functional derivatives, being evaluated at η = 0,
are translation invariant.
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It is possible to check that the F (4,1) term produces a
constant, and it can be ignored at this order by a redefinition
of a. The remaining terms have the structure

F (4,2) = 1

8
S

2∑
i,j,k,l

γ
(4,2)
ijkl cij ckl, (49)

F (4,3) = 1

24
S

2∑
i,j,k,l

γ
(4,3)
ijkl bibjbkbl, (50)

F (4,4) = 1

6
S

2∑
i,j,k,l

γ
(4,4)
ijkl bibj ckl, (51)

F (4,5) = 1

4
S

2∑
i,j,k,l

γ
(4,5)
ijkl bidjkl, (52)

where the γ coefficients are constant tensors, which, moreover,
may be further simplified by using rotational invariance. All the
terms carry a factor ofS, which appears because of momentum
conservation.

We conclude by analyzing the tensor corresponding to one
of these contributions: γ

(4,2)
ijkl . It can be obtained as

γ
(4,2)
ijkl =

[
∂4
̃(2)(p)

∂pi∂pj∂pk∂pl

]
p→0

, (53)

and rotational invariance means that it has the form

γ
(4,2)
ijkl = C (δij δkl + δikδjl + δilδij δjk), (54)

where C is an a-dependent constant, determined by the term
of order 4 in an expansion of the kernel at low momenta:

C = 1

8

[
∂4
̃(2)(p)

∂pi∂pi∂pj∂pj

]
p→0

. (55)

When used to construct the DE to fourth order, this term shall
produce

F (4,2) = 1

8

∫
d2x‖C(ψ)[|∇ψ |4 + 2(∂i∂jψ)2]. (56)

A similar approach allows one to derive all the other contribu-
tions.

III. GENERALIZATIONS OF THE DERJAGUIN
APPROXIMATION IN NUCLEAR AND COLLOIDAL

PHYSICS

In this section we discuss some generalizations of the DA
proposed in the context of nuclear and colloidal physics, from
the point of view of the DE.

A. Generalized PFA in nuclear physics

The application of the DA in nuclear physics started with a
celebrated paper by Blocki et al. [7]. In that paper, the authors
rediscovered the DA in a rather different context and applied it
to compute the interaction between nuclei. The starting point of
Ref. [7] is a Derjaguin-like formula for the interaction energy
between surfaces. That formula incorporates, as an essential
ingredient, what the authors called ‘universal function’, the

interaction energy between planar surfaces, which the authors
calculated using a Thomas-Fermi approximation.

To proceed, let us describe the kind of system being
considered and, at the same time, introduce some notation:
let us consider two surfaces SL and SR , plus an intermediate
mathematical surface S used to parametrize the physical
ones. For smooth and slightly curved surfaces, we expect
the interaction energy to be well described by the PFA, as
in Eq. (3). One can now rewrite the surface integral above
by introducing the set of level curves for h in S: they are
closed curves that correspond to a fixed distance h between SL

and SR . Denoting by J (h)dh the area between two curves
on S corresponding to distances h and h + dh, the PFA
expression for the interaction energy U can be written as a
one-dimensional integral:

UPFA =
∫

dh J (h) E‖(h). (57)

We then assume the surfaces to be gently curved, so that
just one patch is sufficient to describe them, and besides,
we use Cartesian coordinates (x1,x2) ≡ x‖ on S. The distance
between SL and SR then becomes a function h = h(x‖), and J

is constant.
Performing a second-order Taylor expansion of h around

the point of closed approach, which corresponds to a
distance d,

h(x1,x2) � d + 1

2

x2
1

R1
+ 1

2

x2
2

R2
, (58)

where R1 and R2 are the radii of curvature of the surface
defined by x3 = h(x‖), one obtains the DA of Eq. (1).

In a subsequent paper [8], a generalization of the PFA was
introduced. The starting point was again Eq. (57), but now the
surfaces could have large curvatures, as long as they remained
almost parallel locally. The main difference introduced by the
weaker assumptions about the surfaces is that now the Jacobian
J may become a nontrivial function of h, rather than being just
a constant. Using the linear expansion

J (h) ≈ J0 + J1h, (59)

it can be shown that the force f between surfaces becomes

fPFA(d) = J0E‖(d) − J1(d)
∫ ∞

d

dh E‖(h), (60)

where the second term is a correction to the usual DA. Note,
however, that from a conceptual point of view, this is not a
generalization of the DA, since the starting point is the same as
before: UPFA. What the previous formula does is to provide an
explicit formula for the surface integral appearing in the PFA,
which now involves a new geometrical object, the Jacobian J .

In other words, Eq. (60) is still determined by the energy
density for parallel plates, not including corrections to that
object, like the ones appearing in the DE. That kind of
correction depends on the geometry and on the nature of the
interaction.

Note that in nuclear physics there is an additional complica-
tion to deal with: even for two infinite half-spaces separated by
a gap, the interaction energy E‖ is not exactly known. Different
approximations have been used to compute that, and they give
rise to different PFAs. For a recent review see Ref. [10].
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B. SEI and SIA in colloidal physics

The SEI [5] and SIA [6] methods have been introduced
within the context of colloidal physics and constitute another
generalization of the DA. While based on different physical
assumptions, the final result in both cases is the same. It may
be introduced as follows: consider a compact object in front of
a plane x3 = 0, x3 denoting the normal coordinate to the plane
that points towards the compact object.

The SEI approximation to the interaction energy is then
given by

USEI = −
∫

plane
dx1dx2

n̂ · ê3

|n̂ · ê3| E‖, (61)

where n̂ is the unit outward normal to a surface element in
the compact object. When the compact object can be thought
of as being delimited by two surfaces, one facing the plane
and the other away from it, the SEI approximation consists
in computing the difference between the usual PFAs for each
surface.

It may appear surprising, at first glance, that the two
surfaces contribute with different signs to the interaction
energy. However, as we will see, this is related to the fact that
the SEI becomes exact for almost-transparent bodies, where
the interaction comes from volumetric pairwise contributions.

In the colloidal physics literature, the SEI method is justified
by assuming that there is a pressure on the compact object,
which should be integrated over the closed surface surrounding
it in order to find the total force [5]. Alternatively, it has
been shown that Eq. (61) becomes exact when the interaction
between bodies can be obtained as the result of pair potentials
of their constituents [6].

In order to understand, and reinterpret, this formula within
the context of Casimir physics and, at the same time, to provide
a systematic way of evaluating the NTLO, we use a rather
simple example. Let us consider a quantum scalar field ϕ,
in the presence of two media: one of them, denoted by L,
corresponding to the x3 � 0 half-space, while the other, R, is
defined in terms of two functions,

R = {(x1,x2,x3) : ψ1(x1,x2) � x3 � ψ2(x1,x2)}, (62)

as shown in Fig. 1.
Besides, we assume that the field propagation inside each

medium can be represented by the presence of a nonvanishing
interaction term. Assuming also that outside the L and R

regions there is vacuum, the Euclidean action adopts the form

S[ϕ] = S0[ϕ] + SI [ϕ], (63)

FIG. 1. Representation of the two media. One of them, denoted
L, corresponds to the x3 � 0 half-space, while the other, R, is
defined in terms of two functions: R = {(x1,x2,x3) : ψ1(x1,x2) �
x3 � ψ2(x1,x2)}.

where

S0[ϕ] = 1

2

∫
d4x (∂ϕ)2 (64)

is the free action for the fluctuating vacuum field, while SI

contains two terms, corresponding to the L and R regions,
respectively,

SI [ϕ] = SL[ϕ] + SR[ϕ], (65)

with

SL[ϕ] = λL

2

∫
d3x‖

∫ 0

−∞
dx3 LI (ϕ) (66)

and

SR[ϕ] = λR

2

∫
d3x‖

∫ ψ2(x‖)

ψ1(x‖)
dx3 LI (ϕ), (67)

where x‖ ≡ (x0,x1,x2) and LI is a local Lagrangian.
In what follows, we assume that the R medium is semi-

transparent, so that the corresponding term SR can be treated
perturbatively, to the first nontrivial order in λR . No assumption
is made about the L term.

The vacuum energy U shall be a functional of the two
functions ψ1,2 and may be written in terms of the vacuum
amplitude Z , as

U [ψ1,ψ2] = − lim
T →∞

(
1

T
lnZ

)
, (68)

where T is the extent of the imaginary time coordinate and

Z =
∫

Dϕ e−S(ϕ). (69)

Expanding the functional integral in powers of λR , the lowest
nontrivial contribution reads

U [ψ1,ψ2] = E[ψ1] − E[ψ2] , (70)

with

E[ψ1,2] = lim
T →∞

[
1

T
〈S1,2[ϕ]〉L

]
. (71)

Here we have introduced

S1,2[ϕ] = λR

2

∫
d3x‖

∫ ∞

ψ1,2(x‖)
dx3 LI , (72)

and the 〈·〉L symbol denotes the functional average with the
weight defined by S0 + SL. The crucial point is to observe
that all the dependence with the shape of the surfaces is in the
lower integration limit of S1,2. As a consequence, we can write

U [ψ1,ψ2] =
∫

d2x‖(E‖(ψ1) − E‖(ψ2)), (73)

where E‖(a) is the interaction energy per unit area between
semispaces separated by a gap of width a. The physical
interpretation of this result is that, as E‖ is the interaction
between semispaces, in order to obtain the interaction energy
for the configuration described by ψ1 and ψ2, one must
subtract from E‖(ψ1) the contribution coming from points
with x3 > ψ2. This “linearity” is valid only for the first order
in λR . Equation (73) coincides with the result obtained using
the SEI.
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In order to illustrate these points, let us assume that
LI = ϕ2. In the strong-coupling limit for λL, the field
satisfies Dirichlet boundary conditions at x3 = 0. An explicit
calculation yields

U [ψ1,ψ2] = λR

32π2

∫
d2x‖

[
1

ψ1(x‖)
− 1

ψ2(x‖)

]
, (74)

which is the difference between the PFA energies associated
with the surfaces ψ1 and ψ2. It can be shown explicitly,
however, that the property of the energy’s being the difference
between the ones corresponding to each surface is lost in the
next order in λR .

To summarize this section, we have shown that SEI gives an
exact result for almost-transparent media, where one can use
the superposition principle and consider the interaction as the
sum of pairwise potentials. Although this was mentioned in
Ref. [6], the model presented here suggests how to go beyond
the leading order and provides a systematic way of evaluating
the interaction energy for dilute media. Finally, wenote that
the fact that PFA becomes exact in this limit has also been
mentioned by authors working in Casimir physics [11,12].

IV. REVIEW OF RESULTS

In this section we summarize and briefly review some of the
results obtained through the use of the DE for the calculation
of interaction energy between surfaces, in different contexts. It
is our intention not to be exhaustive, but to enumerate some of
the results that, we believe, are noteworthy. We also take the
opportunity to pinpoint and clarify some aspects that deserve
more comment than in their original presentation, under
the light of this general derivation. For the Casimir effect, we
consider a scalar field with Dirichlet and Neumann conditions,
at zero and finite temperature, and also an electromagnetic
field with non-perfectly-conducting surfaces. We show how the
PFA emerges naturally from this approach and, also, calculate
the NTLO correction to the PFA. We also review results
obtained for the electrostatic interaction, for both surfaces at
fixed potentials and surfaces endowed with patch potentials.
At the end of this section we briefly discuss some findings
related to nonanalytic terms appearing in the expansion at
finite temperature in the Neumann case.

A. Derivative expansion for the Casimir effect

We have shown that the PFA can be thought of as being
akin to the leading-order term in a derivative expansion of the
Casimir energy with respect to the shape of the surfaces in
Ref. [3]. Moreover, when the first nontrivial correction con-
taining two derivatives of ψ are included, the general formula
gives the NTLO correction to the PFA for a general surface.
The general expression for the second-order approximation to
the interaction energy (or free energy, depending on the case)
is the one shown in Eq. (17).

In Ref. [3] we applied the DE to the evaluation of the
Casimir interaction energy for a scalar field with Dirichlet
boundary conditions. The calculation consisted, in terms of
the general derivations we present in Sec. II A of the present
paper, of the application of the expansion to an effective action
(proportional to the energy for static boundary conditions).

The DE was obtained by performing the same calculation as
suggested in Sec. II A, namely, a second-order expansion of
the functional around the parallel-plane case.

The general result for the DE approximation to the Casimir
interaction energy for perfect mirrors can be written as

UDE[ψ] = − π2

1440

∫
d2x‖

1

ψ3
[α + β(∇ψ)2], (75)

where α and β are numerical coefficients that depend on
the field considered (scalar or electromagnetic) and on the
boundary conditions imposed on the surfaces. This form for
UDE can of course be anticipated by simple dimensional
analysis. The zeroth-order term equals the PFA to the vacuum
energy, while the second-order term contains the first nontrivial
correction to the PFA.

For a scalar field satisfying Dirichlet (D) boundary condi-
tions [3] we have αD = 1 and βD = 2/3. A scalar field with
Neumann (N) boundary conditions was considered in [13],
where it was shown that αN = 1 and βN = 2/3 (1 − 30/π2).
In the same reference, the authors present the results corre-
sponding to an electromagnetic field and perfectly conducting
surfaces, which turns out to be the sum of the Dirichlet and
Neumann results.

It is worth stressing the last result: within the DE approach,
the electromagnetic Casimir interaction energy between per-
fectly conducting surfaces is the sum of the scalar Casimir
energy for Dirichlet and Neumann boundary conditions. This is
known for the leading PFA, and it is also valid for the first non-
trivial correction [4]. Of course, it is not valid at higher orders.

Also in Ref. [13], the DE was extended to two curved sur-
faces, for Dirichlet, Neumann, mixed (Dirichlet and Neumann
on different surfaces), and electromagnetic (perfect metal)
boundary conditions. Reference [14] presents the leading
correction to the PFA for gold at room temperature.

Although derived for surfaces describable by a single func-
tion ψ(x‖), the DE has been applied to more general geometries
that include compact objects in front of a plane. In these cases,
the integration is restricted to a portion of the compact object
that is closer to the plane. It has been shown that, for perfect
mirrors, the PFA and its NTLO correction are insensitive to the
choice of the integration area in the limit where the surfaces
are very close [3]. This is not the case for semitransparent
mirrors, as we have shown in the previous section.

In all particular examples where the NTLO correction to the
PFA has been computed analytically, the results coincide with
the prediction of the derivative expansion. This is the case for
a cylinder in front of a plane [15] and also for a sphere in front
of a plane [16]. Moreover, the DE has been useful to detect
[14] an error in previous calculations [17] of the sphere-plane
interaction energy beyond the PFA, which was subsequently
corrected in Ref. [16].

Let us denote the exact Casimir interaction energy for a
given geometry by U and its PFA by UPFA. For both cylinder-
plane and sphere-plane geometries the analytic NTLO correc-
tion is of the form

U

UPFA
= 1 + γ

a

R
, (76)

where a is the minimum distance, R the radius (of the sphere or
the cylinder), and γ a numerical coefficient that depends on the
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geometry and the boundary condition. For the cylinder-plane
it has been shown that

γD = 7

36
, γN = 7

36
− 40

3π2
, (77)

while for the sphere-plane

γD = 1

3
, γN = 1

3
− 40

π2
. (78)

It has also been proved that the electromagnetic result is the
sum of the Dirichlet and Neumann cases. All these results
can be reproduced using the DE by plugging the functions ψ

corresponding to a cylinder and a sphere into Eq. (75) and
expanding the result of the integrals in powers of a/R.

The numerical calculations are also consistent with the
NTLO correction for the cylinder-plane geometry [18] and
for the sphere-plane geometry [14], although for Neumann
boundary conditions there is a discrepancy between the
analytic predictions [14,16] and the numerical fit. A similar
discrepancy occurs with the fit presented in Ref. [19] for the
electromagnetic case. We believe that these discrepancies
may be due to the fact that the numerical calculations have
not been performed for sufficiently small values of a/R, and
therefore the fits are sensitive to the particular functions and
intervals used to obtain them. This sensitivity has been noted
in [18] for the cylinder-plane geometry and in [14] for the
sphere-plane geometry.

B. Patch potentials and the electrostatic energy interaction

In Ref. [20], we have applied the DE to the evaluation of
the electrostatic interaction energy (the functional to expand
in derivatives) between two perfectly conducting surfaces, one
flat and the other slightly curved, held at a potential difference
V0. In this situation, the interaction energy reads

UDE � ε0V
2

0

2

∫
d2x‖

1

ψ

[
1 + 1

3
(∇ψ)2

]
. (79)

We have shown explicitly that, in particular cases where
analytic exact results are available, the DE reproduces the
exact ones up to NTLO (this is the case, for instance, for a
sphere or a cylinder in front of a plane).

In Ref. [21], we extended these results to the case in which
the surfaces have patch potentials. These potentials were not
introduced as boundary conditions but modeled by means of
electric dipole layers that are adjacent to the surfaces. The
result was expressed in terms of the two-point autocorrelation
functions for those patch potentials and of the single function
ψ which defines the curved surface. The reason for studying
this is based on the fact that surface imperfections can lead
to a local departure from ideal metallic behavior, yielding a
space-dependent patch potential on the surface of the mirrors.
They produce a force that may be, in principle, relevant to the
interpretation of precision experiments involving two surfaces.

In order to present a more compact expression for the
results, it is convenient to assume that the potentials’ autocor-
relation function depends on the variance of the potential Vrms

and on a single characteristic length �. Then, on dimensional
grounds we have that the Fourier transform of the auto

correlation function is of the form

�̃(k‖) = V 2
rms �2 g(|k‖|�) (80)

for some dimensionless function of a dimensionless
argument, g.

In terms of the objects above, we have found that

V (ψ) = V 2
rms

ψ
v(�/ψ), Z(ψ) = V 2

rms

ψ
z(�/ψ), (81)

where

v(�/ψ) = − 2

π

�2

ψ2

∫ ∞

0
dx

x2

e2x − 1
g(x�/ψ),

z(�/ψ) = 1

16π

�2

ψ2

∫ ∞

0
dx

x2g(x�/ψ)

sinh5(x)
[(1 − 8x2) cosh(x)

− cosh(3x) + 12x sinh(x)]. (82)

One can show that, when �  ψ , v and z tend to the result for
constant potentials, and therefore

UDE � −ε0V
2

rms

∫
d2x‖

1

ψ

[
1 + 1

3
(∇ψ)2

]
. (83)

This is twice the result for the electrostatic energy between
surfaces held at a constant potential difference Vrms [see
Eq. (79)]. The factor 2 comes from the fact that we are
considering the same correlation function on both surfaces.2

On the other hand, in the opposite limit, � 	 ψ , one can
make the approximation g(xψ/�) � g(0) inside the integrals
to get

V � −g(0)ζ (3)�2

2π

V 2
rms

ψ3
, Z � −g(0)(1 + 6ζ (3))�2

24π

V 2
rms

ψ3
,

(84)

which has the same dependence on distance as the Casimir
energy, something which is, in this case, due to the lack of a
dimensionful quantity associated with the correlation length.

C. Derivative expansion at finite temperature

In [22], we obtained expressions for the coefficients that
determine the DE at finite temperatures, for the free energy F

in a Casimir system.3 We presented closed analytic expressions
for these coefficients, in different numbers of spatial dimen-
sions d, for both the zero- and the high-temperature limits. We
considered surfaces satisfying either Dirichlet or Neumann
boundary conditions, finding some qualitative differences
between these two cases: for two Dirichlet surfaces, the NTLO
term in the DE is well defined (local) for any temperature T .
Besides, it interpolates smoothly between the proper limits:
namely, when T → 0 it tends to the one we had calculated
for the Casimir energy, while for T → ∞ it corresponds to

2There is also an extra minus sign, which comes from the fact
that in the present calculation the potentials on the surfaces are not
produced by external batteries but are due to the internal structure of
the materials.

3We use here identical notation (F ) for the free energy and for the
functional used in the general derivation of the DE.
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the one for a d = 2 theory, realizing the expected dimensional
reduction at high temperatures.

The DE approach (up to second order) may be applied to
this case, with the free energy as a functional of the surface.
We present the Dirichlet and Neumann cases separately.

1. Dirichlet boundary conditions

In the Dirichlet case, we write the Casimir free energy as

FDE[ψ] =
∫

dd−1x‖

{
b0

(
ψ

β
,d

)
1

[ψ(x‖)]d

+ b2

(
ψ

β
,d

)
(∇ψ)2

[ψ(x‖)]d

}
, (85)

where the two dimensionless functions b0 and b2 can be
obtained from the knowledge of the Casimir free energy for
small departures around the ψ(x‖) = a = constant case. In the
very-high (infinite)-temperature limit, we have that

[b0(ξ,d)]ξ1 � ξ [b0(ξ,d − 1)]ξ→0 ≡ ξ b0(d − 1),
(86)

[b2(ξ,d)]ξ1 � ξ [b2(ξ,d − 1)]ξ→0 ≡ ξ b2(d − 1),

where ξ = ψ/β. The coefficients b0(d − 1) and b2(d − 1) are
those corresponding to perfect mirrors at zero temperature in
d − 1 dimensions, a reflection of the well-known “dimensional
reduction” phenomenon at high temperatures, for bosonic
degrees of freedom. In particular, the DE up to the second
order in the high-temperature limit, in d = 3 dimensions, is

FDE[ψ]|ψ/β1,d=3 ∼ − ζ (3)

16πβ

∫
d2x‖

1

[ψ(x‖)]2

×
{

1 + (1 + 6ζ (3))
12ζ (3)

(∇ψ)2

}
. (87)

Let us apply this result to the evaluation of the Dirichlet
Casimir interaction for a sphere in front of a plane. As before,
we denote by a the minimum distance between the surfaces,
and by R the radius of the sphere. As already mentioned,
although the surface of the sphere cannot be covered by a
single function z = ψ(x‖), we consider just the region of the
sphere which is closer to the plane [3].

The sphere is described by the function

ψ = a + R

(
1 −

√
1 − ρ2

R2

)
, (88)

where we have used polar coordinates (ρ,φ) for the x3 = 0
plane. This function describes the hemisphere when 0 � ρ �
R. The DE will be well defined if we restrict the integrations
to the region 0 � ρ � ρM < R.

We assume that ρM/R = O(1) < 1. Inserting this expres-
sion for ψ into the free energy, Eq. (87), and performing
explicitly the integrations, we obtain4

FDE[ψ]|ψ/β1,d=3 ∼ −ζ (3)R

8βa

(
1 − 1

6ζ (3)

a

R
ln

(
a

R

))
.

(89)

4There is a typo in Eq. (39) in Ref. [22]. The coefficient 0.569
should read −1/6ζ [3].

Note that, as long as a 	 R, the force will not depend on ρM .
As expected on dimensional grounds, the R/a2 behavior of the
leading contribution in the zero-temperature case changes to
R/aβ at high temperatures. This problem has been solved
exactly in Ref. [23]. One can readily show that Eq. (89)
coincides with the small distance expansion of the exact result.

It is interesting to note that the NTLO correction from
the DE becomes nonanalytic, because of the integration, in
the parameters defining the function ψ . This behavior has
been noted in numerical estimations of the Casimir interaction
between a sphere and a plane in the infinite-temperature limit,
for the electromagnetic case in Refs. [23] and [24]. Note that
this nonanalyticity has nothing to do with the nonanalyticity
of the form factors described in Sec. II A (see also Sec. IV C
below). There, the DE was not applicable; here we deal with
terms that appear in a system where the DE is perfectly well
defined. One integrates over the surface, and when expanding
or with a small a/R, one gets both analytic and nonanalytic
contributions. The latter are not a drawback but a normal
feature of the DE.

Very recently, the free interaction energy between a sphere
and a plate at high temperatures has been computed exactly
in an arbitrary number of dimensions for Dirichlet boundary
conditions [25]. We have checked that the DE reproduces the
leading and NTLO of the exact result for d = 4 and 5. We
sketch the calculations here. In the high-temperature limit the
free energy reads

FDE[ψ] = 1

β

∫
dd−1x‖

{
b0(d − 1)

1

[ψ(x‖)]d−1

+ b2(d − 1)
(∇ψ)2

[ψ(x‖)]d−1

}
. (90)

Inserting Eq. (88) into Eq. (90) and expanding in powers of
a/R, we obtain, for d = 4,

FDE

FPFA
= 1 + 1

4

a

R
, (91)

while for d = 5 we get

FDE

FPFA
= 1 + 1

3

(
1 − ζ (3)

ζ (5)

)
a

R
. (92)

Both expressions are consistent with the analytic results for
the force presented in Ref. [25].

2. Neumann boundary conditions

The free energy can be written as before [see Eq. (85)], but
with coefficients c0 and c2 instead of b0 and b2. The zero-order
term coincides with the one for the Dirichlet case, namely,
c0 = b0. The second-order coefficient is given by

c2(ξ ) = 1

2

[
∂G(2)(ξ ; n,|l‖|)

∂|l‖|2
]

n→0,|l‖|→0

. (93)

The expression of G(2)(ξ ; n,|l‖|) was calculated in [22]. We do
not present the explicit expression of it here since their form
is not relevant for the actual presentation.

For d = 1, the coefficient c2 coincides with its Dirichlet
counterpart b2. In higher dimensions, the structure of the
NTLO correction is different.
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For d = 3, the NTLO term contains, besides a standard-
looking local term, also a nonlocal contribution, linear in T

and, therefore, present for any T > 0. This leaves room, when
the temperature is sufficiently low, to use just the local term
(of second order in derivatives) as the main correction to the
PFA.

Of course, the nonlocal term will always break down for a
sufficiently high temperature, whose value will depend on the
actual shape of the surface involved. We stress once more that
this nonanalytic behavior is a consequence of the Neumann
boundary conditions and may not be present for imperfect
boundary conditions, such as those considered in Ref. [13].
This point deserves further analysis.

It is important to note that a local DE breaks down for
Neumann boundary conditions at d = 2 and zero temperature.
However, one can still perform an expansion for smooth
surfaces, including nonlocal contributions in the Casimir
energy. For instance, in this case, the NTLO correction to
the PFA will be nonlocal and proportional to∫

d2x‖η(x‖)∇2
‖ ln(−a2∇2

‖ )η(x‖), (94)

where η is a small departure from ψ = const. The breakdown
of the local expansions is related to the existence of massless
modes in the theory. These modes are generally allowed by
Neumann but not by Dirichlet boundary conditions, which
impose a mass gap of order 1/a.

The logarithmic behavior of the form factor in d = 2
induces a similar nonanalyticity for d = 3 at finite temperature.
Therefore, in an expansion for small values of |k‖|, in addition
to a term proportional to k2

‖ , there is a contribution proportional
to (T a)k2

‖ ln(k2
‖a

2) at any nonvanishing temperature, which is
not canceled by the rest of the sum over Matsubara frequencies.

V. CONCLUSIONS

We have presented both a construction of the DE, based
on a physical argument, and a formal derivation of it, for a
general family of problems, which can be defined in terms of
a functional depending on a function characterizing a surface
as its argument. This can be applied, as it has been, to Casimir
and electrostatic problems. We have argued that the same
procedure can also be used in nuclear and colloidal physics,
since the derivation is sufficiently general to encompass these
and other physical situations, such as Casimir-like forces in
critical systems [26]. We have made contact with the latter by
comparing and putting in similar terms the various existing

PFA-like approximations, showing that they correspond to the
zeroth order in the DE.

The existing results about the application of the DE to
different contexts have been briefly reviewed, mentioning
some of the features that, we believe, may shed new light on the
respective systems. We have shown in an explicit example, how
the DE may induce nonanalytic contributions to the ratio a/R,
where a is the minimum distance and R the radius of a sphere,
for the Casimir free energy between a plane and a sphere at
high temperatures. This nonanalyticity is dependent on the
geometry of the system considered and appears in situations
where the DE is well defined. In other words, it is not due to
the existence of nonanalyticities in the momentum kernel of
the second functional derivative of the functional F .

We have shown that the DE does reproduce correctly the
NTLO corrections in various Casimir calculations. This is the
case, in particular, for the sphere-plane geometry with Dirichlet
boundary conditions at very high temperatures (the classical
limit), where the result is known exactly in an arbitrary number
of dimensions.

We end this paper with a few remarks on the generality of
the DE approach and possible future lines of research. Regard-
ing the interactions, the DE can be applied, in principle, both
to additive and to nonadditive forces, superficial or volumetric,
as long as the interaction energy can be written as a functional
of the geometry of the surfaces. This is the case when the
surfaces describe homogeneous physical objects with very
small widths or when they correspond to interfaces between
different homogeneous material media. There are of course
situations where the above condition is not met. For instance,
the gravitational interaction between two nonhomogeneous
bodies cannot be described as a functional of their shapes.

Regarding the geometry of the bodies, up to now all
applications of the DE have been restricted to a particular
class of geometries, i.e., surfaces describable by functions
x3 = ψ(x1,x2), where xi are Cartesian coordinates. It would
be interesting to generalize the results to other coordinates
or, even better, to provide a covariant formulation in terms of
geometric invariants of the surfaces. Work in this direction is
in progress.
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[26] See M. Labbé-Laurent, M. Tröndle, L. Harnau, and S. Dietrich,

Soft Matter 10, 2270 (2014), and references therein.

062120-12

http://dx.doi.org/10.1016/0003-4916(77)90249-4
http://dx.doi.org/10.1016/0003-4916(77)90249-4
http://dx.doi.org/10.1016/0003-4916(77)90249-4
http://dx.doi.org/10.1016/0003-4916(77)90249-4
http://dx.doi.org/10.1016/0003-4916(81)90268-2
http://dx.doi.org/10.1016/0003-4916(81)90268-2
http://dx.doi.org/10.1016/0003-4916(81)90268-2
http://dx.doi.org/10.1016/0003-4916(81)90268-2
http://dx.doi.org/10.1103/PhysRevD.86.125018
http://dx.doi.org/10.1103/PhysRevD.86.125018
http://dx.doi.org/10.1103/PhysRevD.86.125018
http://dx.doi.org/10.1103/PhysRevD.86.125018
http://dx.doi.org/10.1103/PhysRevC.81.064609
http://dx.doi.org/10.1103/PhysRevC.81.064609
http://dx.doi.org/10.1103/PhysRevC.81.064609
http://dx.doi.org/10.1103/PhysRevC.81.064609
http://dx.doi.org/10.1103/PhysRevD.79.124021
http://dx.doi.org/10.1103/PhysRevD.79.124021
http://dx.doi.org/10.1103/PhysRevD.79.124021
http://dx.doi.org/10.1103/PhysRevD.79.124021
http://dx.doi.org/10.1209/0295-5075/97/50001
http://dx.doi.org/10.1209/0295-5075/97/50001
http://dx.doi.org/10.1209/0295-5075/97/50001
http://dx.doi.org/10.1209/0295-5075/97/50001
http://dx.doi.org/10.1063/1.3686903
http://dx.doi.org/10.1063/1.3686903
http://dx.doi.org/10.1063/1.3686903
http://dx.doi.org/10.1063/1.3686903
http://dx.doi.org/10.1103/PhysRevD.73.125018
http://dx.doi.org/10.1103/PhysRevD.73.125018
http://dx.doi.org/10.1103/PhysRevD.73.125018
http://dx.doi.org/10.1103/PhysRevD.73.125018
http://dx.doi.org/10.1103/PhysRevD.81.065011
http://dx.doi.org/10.1103/PhysRevD.81.065011
http://dx.doi.org/10.1103/PhysRevD.81.065011
http://dx.doi.org/10.1103/PhysRevD.81.065011
http://dx.doi.org/10.1103/PhysRevD.84.125037
http://dx.doi.org/10.1103/PhysRevD.84.125037
http://dx.doi.org/10.1103/PhysRevD.84.125037
http://dx.doi.org/10.1103/PhysRevD.84.125037
http://dx.doi.org/10.1103/PhysRevD.78.085009
http://dx.doi.org/10.1103/PhysRevD.78.085009
http://dx.doi.org/10.1103/PhysRevD.78.085009
http://dx.doi.org/10.1103/PhysRevD.78.085009
http://dx.doi.org/10.1103/PhysRevLett.102.230404
http://dx.doi.org/10.1103/PhysRevLett.102.230404
http://dx.doi.org/10.1103/PhysRevLett.102.230404
http://dx.doi.org/10.1103/PhysRevLett.102.230404
http://dx.doi.org/10.1016/j.aop.2012.04.006
http://dx.doi.org/10.1016/j.aop.2012.04.006
http://dx.doi.org/10.1016/j.aop.2012.04.006
http://dx.doi.org/10.1016/j.aop.2012.04.006
http://dx.doi.org/10.1103/PhysRevA.88.062501
http://dx.doi.org/10.1103/PhysRevA.88.062501
http://dx.doi.org/10.1103/PhysRevA.88.062501
http://dx.doi.org/10.1103/PhysRevA.88.062501
http://dx.doi.org/10.1103/PhysRevD.86.045021
http://dx.doi.org/10.1103/PhysRevD.86.045021
http://dx.doi.org/10.1103/PhysRevD.86.045021
http://dx.doi.org/10.1103/PhysRevD.86.045021
http://dx.doi.org/10.1103/PhysRevLett.109.160403
http://dx.doi.org/10.1103/PhysRevLett.109.160403
http://dx.doi.org/10.1103/PhysRevLett.109.160403
http://dx.doi.org/10.1103/PhysRevLett.109.160403
http://dx.doi.org/10.1103/PhysRevA.85.052501
http://dx.doi.org/10.1103/PhysRevA.85.052501
http://dx.doi.org/10.1103/PhysRevA.85.052501
http://dx.doi.org/10.1103/PhysRevA.85.052501
http://arxiv.org/abs/arXiv:1404.1419
http://dx.doi.org/10.1039/c3sm52858h
http://dx.doi.org/10.1039/c3sm52858h
http://dx.doi.org/10.1039/c3sm52858h
http://dx.doi.org/10.1039/c3sm52858h



