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a b s t r a c t

This work presents the design of a current-sensor fault detection and isolation system for induction-
motor drives. A differential geometric approach is addressed to determine if faults can be detected and
isolated in drives with two line current sensors by using a model based strategy. A set of subsystems is
obtained based on the observability co-distribution, whose outputs are decoupled from the load torque
(detectability) and only affected by one of the sensors (isolability). A bank of observers is designed for
these subsystems in order to obtain residuals for the fault detection and isolation. It is demonstrated that
the proposed strategy allows detecting single and multiple sensor faults, including disconnection, offset
and gain faults. Experimental results validate the proposal.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Induction motors (IM) are widely used for servo systems in
applications where a high performance speed or torque control is
required, such as industry automation and traction systems. Faults
in some components of IM drives (IMD) (motor, power electronics,
driving circuits, sensors) can degrade the overall system perfor-
mance, damage its internal components or leave it out of opera-
tion. Moreover, in many applications IMD are used in critical
systems, where faults can endanger the safety of persons (Agui-
lera, de la Barrera, & De Angelo, 2012; Giantomassi, Ferracuti,
Iarlori, Ippoliti, & Longhi, 2015; Raisemche, Boukhnifer, Larouci, &
Diallo, 2014). For this reason, in last years the study of fault de-
tection and isolation systems (FDIS) for IMD has been an im-
portant topic in different scientific publications (Arnanz, Miguel,
Perán, & Mendoza, 2011; Drobnič, Nemec, Fišer, & Ambrožič, 2012;
Mustafa, Nikolakopoulos, Gustafsson, & Kominiak, 2016; Pons-
Llinares et al., 2015; Riera-Guasp, Antonino-Daviu, & Capolino,
2015; Zhang, Zhao, Zhou, & Huang, 2014). These systems are used
to report the occurrence of a fault and to determine which com-
ponents are affected, in order to avoid problems caused by faults.
uilera),
In this way, the information provided by the FDIS can be used by a
fault tolerant drive (FTD), where a control reconfiguration me-
chanism enables to keep the IMD in operation despite the fault
(Fonod et al., 2015; Marino, Scalzi, Tomei, & Verrelli, 2013; Schuh,
Zgorzelski, & Lunze, 2015; Shi & Krishnamurthy, 2014).

In particular, faults in the feedback sensors can produce critical
consequences in the IMD performance. As it was shown in Agui-
lera et al. (2012), a current-sensor fault produces very high current
values in the IM phases in a short period of time. Therefore, this
fact must be taken into account in order to develop and design the
fault detection stage in a FTD for current sensors. Mechanical
speed or position sensors are more prone to faults than current
sensors. Nevertheless, its effect over phase currents is not so ser-
ious, requiring longer times for its detection (Aguilera et al., 2012).
In addition, the design of FDIS for mechanical sensors have been
widely threated in literature and have proved to give good results
(Kommuri, Rath, Veluvolu, Defoort, & Soh, 2015; Raisemche et al.,
2014). Therefore, it is necessary to study further the design of fast
FDIS for current sensors.

Most fault detection methods for current sensors proposed in
literature are based on physical redundancy by using three line
current sensors in the IMD (Shi & Krishnamurthy, 2014; Freire
et al., 2014; Yu et al., 2014). Nevertheless, the use of redundant
sensors increases the system size and costs (Zhang et al., 2013). For
this reason, some works propose FDIS using only the information
of two line current sensors. For example, in Najafabadi, Salmasi,
and Jabehdar-Maralani (2011) an adaptive observer is proposed for
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detecting faults in current, speed or voltage sensors. This techni-
que is based on the assumption that only one sensor may be faulty
at a time, namely, only single faults can be isolated. This approach
requires to compute the average value of residuals along some
electrical cycles, which implies a long time for fault isolation.

A similar method for fault detection and isolation of single
sensor faults has been reported in Zhang et al. (2013). The fault
detection and isolation is performed by computing residuals from
a Kalman filter and the absolute values of the currents. These re-
siduals are not perfectly decoupled from each other, and therefore
thresholds must be carefully selected, by following empirical al-
gorithms. This approach is not able to detect the recovery of a
sensor from a faulty condition, for example, after a short duration
fault.

In Chakraborty and Verma (2015), a FDIS for speed and current-
sensor faults based on axes transformations is proposed. Residuals
used for the detection of current-sensor faults depend on the re-
ference currents used for the control strategy. These residuals are
affected by current tracking errors and faults in the current sen-
sors, therefore it is difficult to distinguish between them when
residuals are evaluated. This fact is the main drawback of the cited
method. Another drawback is the inability of diagnosing the re-
covery of a sensor from a fault.

Only disconnection faults were considered in all the previous
cited works. In addition, the theoretical analysis for obtaining re-
siduals sensitive to faults in a specific current sensor and de-
coupled from load variations was not addressed. A comparison of
the previous cited FDIS for current sensors is summarized in
Table 1.

As it can be seen from cited works, there are few studies on
single and multiple current-sensor fault detection and isolation in
IMD using only two current sensors. Hence, the main objective of
the present work is to propose a method to design a FDIS con-
sidering multiple current-sensor faults without physical re-
dundancy. For this purpose, the fundamental problem of residual
generation (FPRG) for nonlinear systems is first studied for IMD
with current sensors faults (De Persis & Isidori, 2001). This ap-
proach proposes geometrical conditions in order to determine if a
specific fault can be decoupled from other faults and perturba-
tions. If these conditions are satisfied, then a coordinates trans-
formation can be obtained. This transformation allows to obtain a
subsystemwhose output is sensitive to that specific fault. If several
faults are considered in this analysis, a set of subsystems can be
obtained. Then, dedicated residual signals can be designed using a
state observer deduced from these subsystems.

The geometric approach was previously applied to IMD ad-
dressing different types of faults, such as actuator (Espinoza-Trejo
& Campos-Delgado, 2009) and stator short-circuit faults (Khelouat,
Benalia, Boukhetala, & Laleg-Kirati, 2012). These works show the
usefulness of the approach in order to design diagnostic systems in
this application. In this paper, the FPRG is analyzed using a model
of the IM considering current sensors faults as arbitrary inputs and
the load torque as a perturbation. Based on this model, two new
representations of the IM in stationary reference frames are ob-
tained. These representations are used for designing a bank of
observers in order to generate dedicated residuals to develop the
FDIS.

With the proposed FDIS, the following main technical con-
tributions were achieved (see Table 1):

� Single and multiple current sensor fault detection and isolation
are performed without sensor redundancy.

� The FDIS is sensitive to different kind of faults, such as dis-
connection, offset and gain errors.

� Residuals are sensitive to the fault derivative, allowing an early
detection of sudden faults.
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� The FDIS is not based on the control reference currents, and
hence they are not affected by current estimation errors nor the
IMD control strategy.

� There is no need of steady-state, open-loop, or special operating
condition for fault isolation because residuals are decoupled
from load torque.

� The proposed system is able to detect the recovery of a sensor
from a faulty condition.

The obtained results can be used in combination with speed or
voltage sensors fault detection methods in order to design a
comprehensive FDIS for IMD sensors (Chakraborty & Verma, 2015;
Kommuri et al., 2015).

The rest of the paper is organized as follows. First, the ad-
dressed geometric approach is briefly described in Section 2. In
Section 3, the FPRG is studied for IMD considering current-sensor
faults and a bank of observers is proposed. Experimental results as
well as a parameter variation study are presented to validate the
proposed FDIS in Section 4. Finally, conclusions are drawn in
Section 5.
Fig. 1. System under study.
2. Differential geometric approach

The differential geometric approach used in this work is briefly
described in this section (De Persis & Isidori, 2001). The following
nonlinear system with faults is considered:

∑ ∑ ρ̇ = ( ) + ( ) + ( ) + ( )

= ( ) ( )

= =

⁎ ⁎

u f wx g x g x l x x

y h x 1

k

m

k k i
j

d

j j0
1 1

where ∈ x n is the state vector, ∈ y p is the output vector,
uk (k¼1, …, mn) are known inputs, g0, …, ⁎gm , ρ1, …, ρ ⁎d , l and h
are smooth vectorial fields. Signals w1, …, ⁎wd represent dn un-
known arbitrary inputs whereas fi represents the fault signal that
must be detected and isolated. Inputs wj represent perturbations
and other fault signals. This representation is obtained by as-
suming that sn fault inputs f1, …, ⁎fs and tn perturbations p1, …, ⁎pt
are considered. Then, set = + ( − )⁎ ⁎ ⁎d t s 1 such that the unknown
arbitrary inputs can be obtained as

= [ … ] =⊤⁎w w ww , , , d1 2 … … …− +
⊤

⁎ ⁎⎡⎣ ⎤⎦p p f f f f, , , , , , , ,t i i s1 1 1 1 .
The objective of this approach is to obtain a subsystem with an

output vector sensitive to the fault fi but decoupled from pertur-
bations and other faults. Then, a residual can be designed using a
dedicated observer for that subsystem, thus allowing the detection
and isolation of fault fi. According to De Persis and Isidori (2001),
let P be the distribution defined by:

ρ ρ ρ= { … } ( )⁎P span , , , 2d1 2

then, the FPRG has a solution only if

Ω( ) ∉ ( )⊥l x 3

where Ω is the largest observability codistribution contained in ⊥P .
This observability codistribution can be computed through the
algorithms described in De Persis and Isidori (2001).

If condition (3) is satisfied, changes of coordinates in the state
and output spaces can be obtained in order to deduce the sub-
system. In case that Ω is independent of state and ( ) =h x Cx , with
C being a constant matrix, it implies that the transformations are
linear mappings (Espinoza-Trejo & Campos-Delgado, 2009). The
procedure to obtain the changes of coordinates for this class of
systems is recalled below.

Let n1 the dimension of Ω. It is assumed that Ω is locally
spanned by exact differentials and that ( ) =h x Cx with { }Cspan
being full row rank. Let −p n2 be the dimension of Ω ∩ { }Cspan
and assume that there exists a surjection → − H : p p n

1 2 such that

Ω ∩ { } = { } ( )C H Cspan span . 41

Then, there exists a matrix H2 such that

ψ
ψ
ψ= =

=
( )
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2

where H is an isomorphism over p which represents the trans-
formations of the outputs space. Now, choose a matrix Φ ∈ ×n n

1 1 ,
such that:

Ω Φ= { } ( )span . 61

Then, there exists a matrix Φ ∈ −( + )×n n n n
3 1 2 such that:

Φ

Φ

Φ
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3

where Φ is an invertible matrix which represents the transfor-
mation of the states space.

A subsystem with output decoupled from perturbations wj but
affected from the fault fi is obtained considering z1 as the state
vector and ψ = z2 2 as a known input (De Persis & Isidori, 2001).
3. FDIS for current sensor faults in IMD

This work studies the design of a FDIS based on a bank of ob-
servers, as illustrated in Fig. 1. It is assumed that a speed control
strategy is implemented in the IMD. The control loop uses two line
currents, ia and ib, which are measured through sensors prone to
faults. These faults are modelled by arbitrary signals, ma and mb,
added to the line currents. The differential geometric approach is
used in order to design a bank of observers which generates re-
siduals, νa or νb, sensitive to the faults. Then, by the post-proces-
sing of the residual signals, the detection and isolation of the
current sensor faults is performed using two logic signals, Fa and
Fb, which indicate the detection of a fault in sensor a or sensor b,
respectively.
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3.1. IM model with current sensor faults

The IM model is described in two stationary reference frames,
denoted by α β( ), and α β( ˜ ˜), (Chakraborty & Verma, 2015). These
frames are obtained by linear transformations applied to the three
phase electromagnetic variables, denoted by ( )a b c, , . A graphic
representation of the stationary reference frames is shown in
Fig. 2, where ζ denotes the components of the currents, voltages or
fluxes. It can be observed that in the α β( ), frame, the α component
is aligned with axis a, whereas in the α β( ˜ ˜), frame, the α̃ compo-
nent is aligned with axis b.

In order to obtain the representation of the IM model in the
α β( ), frame, transformation ζ ζ ζ ζ ζ= [ ]α β

⊤ ⊤⎡⎣ ⎤⎦ T a b c is used, where

=
− −

−
( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

T
2
3

1
1
2

1
2

0
3

2
3

2

.

8

The IM model is represented in the α β( ), frame by the following
dynamic equations:

λ ωλ

λ ωλ

λ λ ωλ

λ λ ωλ

ω ω λ λ

̇ = − + + +
̇ = − + − +
̇ = − −
̇ = − +

̇ = − + ( − ) − ( )

α α α β α

β β β α β

α α α β

β β β α

α β β α

i ai bc b du

i ai bc b du

L ci c

L ci c

kc kc i i kT 9

M

M

f t L

where constants are =
σ

+
a

L R L R

L
r s M r

r

2 2
; =

σ
b LM ; =c R

L
r

r
; =

σ
d Lr ;

σ = ( − )L L Lr s M
2 ; =k

J
1 and =ct

PL
L

M

r
. Rs and Rr are stator and rotor

resistances, respectively; Ls, Lr and LM are stator, rotor and mag-
netizing inductances, respectively; J and P are the moment of in-
ertia and the number of pole pairs, respectively; cf is the friction
coefficient; iα and iβ are stator currents; λα and λβ are rotor fluxes;
uα and uβ are stator voltages; ω is the rotor speed; TL is the load
torque, which is considered as an arbitrary input.

The components in the α β( ˜ ˜), reference frame are obtained by
transformation ζ ζ ζ ζ ζ= ˜[ ]α β˜ ˜

⊤ ⊤⎡⎣ ⎤⎦ T a b c , where

˜ =
− −

−
( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

T
2
3

1
2

1
1
2

3
2

0
3

2

.
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With this transformation, the IM model in the α β( ˜ ˜), frame is de-
scribed as:

λ ωλ

λ ωλ

λ λ ωλ

λ λ ωλ

ω ω λ λ

̇ = − + + +
̇ = − + − +
̇ = − −
̇ = − +

̇ = − + ( − ) − ( )

α α α β α

β β β α β

α α α β

β β β α

α β β α

˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

i ai bc b du

i ai bc b du

L ci c

L ci c

kc kc i i kT . 11

M

M

f t L
Fig. 2. Graphic representation of the stationary reference frames.
As already mentioned, current sensor faults are modelled as
arbitrary inputs ma and mb added to line currents, as follows:

= +

= + ( )

i i m

i i m 12

af a a

bf b b

where iaf and ibf are the outputs from sensors (see Fig. 1). This
modelling of current sensor faults can represent constant or time-
varying failures, and they can include offset, gain or disconnection
faults. The representations of faults in the previously introduced
reference frames is obtained below.

3.1.1. Faults in the α β( ), reference frame
Considering that the sum of the three line currents of the IM is

zero, namely + + =i i i 0a b c , currents in the α β( ), reference frame
can be obtained from two line currents as follows:

=
− − ( )

α

β

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

i
i

i
i

i i

T .

13

a

b

a b

Departing from (12) and (13), the outputs from sensors can be
represented in this reference frame as

= +

= + ( )

α α α

β β β

i i m

i i m 14

f

f

where =αm ma and = +βm m ma b
1
3

2
3

. Thus, signals αi f and βi f

from (14) can be considered as the outputs of the system (9), re-
presented in the α β( ), stationary reference frame. It is worth
noting that αm only depends on faults in sensor a while βm de-
pends on faults in both current sensors.

3.1.2. Faults in the α β( ˜ ˜), reference frame
In a similar manner, currents in the α β( ˜ ˜), reference frame can

be obtained as:

= ˜
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From (12) and (15), the outputs from sensors can be represented
as

= +

= + ( )

α α α

β β β

˜ ˜ ˜
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i i m

i i m 16

f

f

where =α̃m mb and = − −β̃m m mb a
1
3

2
3

. In this case, α̃m de-

pends on faults in sensor b while β̃m depends on faults in both
current sensors.

Therefore, through the transformations (8) and (10) the IM model
and the sensor faults can be represented in two stationary referent
frames. In the following sections, the representation in the α β( ),
frame is used to design a residual sensitive to the faultmα, in order to
isolate the faults in sensor a. Moreover, the representation in the
α β( ˜ ˜), frame is used to design a residual sensitive to the fault α̃m , in
order to isolate the faults in sensor b.

3.2. Detectability and isolability of sensor faults

In this section, detectability and isolability of current sensor
faults are studied with the geometric analysis. In order to apply
the approach presented in Section 2, the IM model structure has to
be similar to (1), where faults are represented as actuator faults
(Espinoza-Trejo & Campos-Delgado, 2009). The most common
methods to obtain this representation are applying a filter to the
sensor signals (Alwi & Edwards, 2014) or an integrator (Zhang,
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Swain, & Nguang, 2014). These methods increase the order of the
system and its associated observers. Thus, the method used in the
present work is based on Du, Jiang, and Shi (2014), where a
transformation of states is used in order to obtain the required
representation, without increasing the order of the system. With
this approach, the transformation for model (9) is directly given by
the output Eq. (14), replacing stator currents by = −α α αi i mf and

= −β β βi i mf . As a result, the following representation is obtained:

λ ωλ

λ ωλ

λ λ ωλ

λ λ ωλ

ω ω λ λ λ λ

̇ = − + + + + + ̇
̇ = − + − + + + ̇

̇ = − − −
̇ = − + −

̇ = − + ( − ) − + ( − ) ( )

α α α β α α α

β β β α β β β

α α α β α

β β β α β

α β β α α β β α

i ai bc b du am m

i ai bc b du am m

L ci c L cm

L ci c L cm

kc kc i i kT kc m m 17

f f

f f

M f M

M f M

f t f f L t

Note that it is straightforward to apply a similar transformation
to model (11) in the α β( ˜ ˜), reference frame, using the output Eq.
(16).

In the following subsections, the FPRG solution is obtained for
the IMD with three different objectives. The first one is to study
the detectability of faults ma and mb when the load torque is
considered an arbitrary input. The second objective is to study the
isolability of the sensor fault ma, while fault mb is considered as a
perturbation and the third one is to study the isolability of the
sensor fault mb. According to Section 2, three subsystems are ob-
tained for the design of the FDIS. The studied cases are summar-
ized in Table 2.

3.2.1. Detectability
Model (17) can be represented in a compact form as:

̇ = ( ) + + +

= ( )

wx g x B u L f D

y C x 18

0 0 0

0

where λ λ ω= [ ] = α β α β
⊤ ⊤⎡⎣ ⎤⎦x x x x x i ix , , , , , , , ,f f1 2 3 4 5 is the state vector,

= ⊤⎡⎣ ⎤⎦y y y y, ,1 2 3 is the output vector, = α β
⊤⎡⎣ ⎤⎦u uu , is the known

input vector, = ̇ ̇α α β β
⊤⎡⎣ ⎤⎦m m m mf , , , is the fault vector,

= − ( − )β αw T c x m x mL t 3 4 is the perturbation and:
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M

f t

M

M

1 3 5 4

2 4 5 3

1 3 5 4

2 4 5 3

5 1 4 2 3

0 0

0 0
Table 2
Studied cases of sensor faults.

Objective Detectability Isolation of ma Isolation of mb

Faults ma, mb ma mb

Perturbations TL mb, TL ma, TL
Using (18), as described in Section 2, the algorithms presented
in De Persis and Isidori (2001) can be computed to obtain the
following observability codistribution:

Ω = { } ( )⎡⎣ ⎤⎦dx dx dx dxspan , , , . 201 2 3 4

A change of coordinates of the output space is given by the
transformation described in (5), with

= = [ ]
⎡
⎣⎢

⎤
⎦⎥H H1 0 0

0 1 0
, 0 0 11 2

and using ψ ψ ψ≜ [ ]⊤,1 11 12 and ψ ψ≜ [ ]2 21 . Moreover, a transfor-
mation of state space is given by (7), where

Φ = = [ ]

⎡

⎣
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⎢

⎤

⎦

⎥
⎥
⎥
⎥

H C

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

, 0 0 0 0 11 2 0

and states are ≜ [ ]⊤z z z zz , , ,1 11 12 13 14 and ≜ [ ]zz2 21 . Applying these
transformations, the following subsystem is obtained:

ψ

ψ

ψ

ψ

ψ

ψ

̇ = − + + + + + ̇

̇ = − + − + + + ̇

̇ = − − −

̇ = − + −

=
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Note that, in the obtained subsystem, the angular speed ω ψ= 21
is now considered as a known input. The output of this subsystem
is decoupled from the load torque but sensitive to both sensor
faults, namely ma and mb. Residuals for fault detection could be
designed by using an observer based on subsystem (21). These
residuals will be sensitive to faults in both sensors, but additional
processing and considerations are needed in order to accomplish
the isolation (Najafabadi et al., 2011).

The condition that the speed sensor is required was obtained
because an arbitrary load torque was assumed. This condition
could be avoided if more relaxed specifications for fault isolation
or the load torque are considered, such as a constant torque. A
speed estimator could be implemented in order to provide the
speed signal required by the FDIS. Nevertheless, in general, speed
estimators requires the current measurements. Thus, if a current
sensor fault occurs, the speed estimation will be affected. This
degraded speed signal will increase residual levels in both ob-
servers, interfering with the isolation of the fault.

3.2.2. Isolation of faults in sensor a
In order to isolate faults in sensor a, a subsystem insensitive to

faults in sensor b and load torque must be obtained. With this end,
≜ ̇β βw m and ≜ βx ma

6 are defined, where the last one is considered
as a new state of (17). Then, from (9), IM model in the α β( ), re-
ference frame can be represented as:

̇ = ( ) + + ( ) +

= ( )

x g x Bu L x f Dw

y Cx 22

a a a a a a a

a a

where λ λ ω= [ ] = α β α β β
⊤ ⊤⎡⎣ ⎤⎦x x x x x x i i mx , , , , , , , , , ,a a a a a a a

f f1 2 3 4 5 6 is the

state vector, = [ ] = α β
⊤ ⊤⎡⎣ ⎤⎦u u u uu , ,a a a

1 2 is the known input vector,

= [ ̇ ]α α
⊤m mf ,a is the fault vector, = − β β

⊤⎡⎣ ⎤⎦T c x m ww ,a
L t

a
3 is the

perturbation vector and:
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By using algorithms described in Section 2, the following ob-
servability codistribution can be obtained:

Ω =

− ( )
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In order to obtain the subsystem, a change of coordinates of the

output space is obtained by the transformation ψ ψ = ˜⊤⎡⎣ ⎤⎦ Hy,a a a
1 2 ,

where
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˜
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The outputs in the new coordinates are ψ ψ≜ [ ]a a
1 11 and

ψ ψ ψ≜ [ ],a a a
2 21 22 . Moreover, transformation of state space is obtained

by Φ[ ] = ˜⊤z z x,a a a
1 2 , where
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States in the new coordinates are ≜ [ ]⊤z z z zz , , ,a a a a a
1 11 12 13 14 and

≜ [ ]⊤z zz ,a a a
2 21 22 . Applying these transformations, the subsystem can
be described as:
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Thus, the output of subsystem (28) is sensitive to the sensor a
fault signal, namely = αm ma , and its first derivative ̇ αm . As can be
observed from (28) and (14), the subsystem is decoupled from
signal βm , which depends on the fault in sensor b, namely mb. This
subsystem is useful for the design of an observer-based residual
generator. The output residual will be sensitive to faults in sensor a
but insensitive to faults in sensor b and load torque changes. Fi-
nally, it is worth noting that the observer will use the rotor speed
signal ω ψ= a

21 as an input.

3.2.3. Isolation of faults in sensor b
The same procedure is followed to study the isolation of

faults in sensor b. In this case, the IM model in the α β( ˜ ˜), re-
ference frame (11) is used in order to represent the system in
the compact form:

̇ = ( ) + + ( ) +

= ( )
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The outputs for model (30) in the new coordinates are obtained

by ψ ψ = ˜⊤⎡⎣ ⎤⎦ Hy,b b b
1 2 , whereas state space is obtained by

Φ= ˜⊤⎡⎣ ⎤⎦z z x,b b b
1 2 , where ≜

⊤⎡⎣ ⎤⎦z z z zz , , ,b b b b b
1 11 12 13 14 , ≜

⊤⎡⎣ ⎤⎦z zz ,b b b
2 21 22

ψ ψ≜ [ ]b b
1 11 and ψ ψ ψ≜

⊤⎡⎣ ⎤⎦,b b b
2 21 22 . The resulting subsystem can be

described as:
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where ξ = zb
1 11, ξ ξ ξ ξ= =
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In this case, the output of subsystem (32) is sensitive to the
fault in sensor b, namely = α̃m mb , and its first derivative ̇ α̃m . Also,
as can be observed from (32) and (16), the subsystem is decoupled
from signal β̃m , which depends on the fault in sensor a, namelyma.
Subsystems (28) and (32) can be used for the design of decoupled
residual signals for the FDIS shown in Fig. 1, as presented in the
following section.

3.3. Design of the bank of observers

As an example, observers for residual generation are designed
in this section, based on subsystems (28) and (32). The proposed
observers are designed from a combination of sliding mode ob-
servers (SMO) and high gain observers (HGO). In last years, SMO
have been successfully used for FDIS in critical applications such as
aerospace. They have proven to be an effective way to generate
residuals to detect and even reconstruct system faults, including
sensor faults (Alwi & Edwards, 2014; Rahme & Meskin, 2015). HGO
are well-known techniques for fast and reliable state estimation,
which have been proposed for several classes of nonlinear systems
(Busawon & De Leon-Morales, 2000). In present paper, the SMO is
used to generate residuals based on the equivalent output error
injection term while the HGO is designed to estimate the sub-
systems states after the sliding surface is reached.

Observers are described using the same set of equations de-
noted by Σi, where ∈ { }i a b, refers to the observer for subsystem
(28) and (32), respectively, as:
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next section, and
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Signals νi represent the discontinuous functions of the SMO.
For its implementation, the following continuous approximation is
used (Alwi & Edwards, 2014):

ν ξ ξ
δ

= ( ^ − ) ≈
+ ( )

ν νk k
e

e
sign

36
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i i
i
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1

1

where ξ ξ= ^ −ei
i

i
1 1 1 are the estimation errors of ξi

1, kν is a positive
gain and δ is a positive scalar.

Fig. 3 shows a diagram with the observers structure, where ua,
ub, uc and ω are inputs taken from the IMD. Outputs νi are the
residual signals. The observers estimation error and the behavior
of the residuals is described below.

3.3.1. Residual signals without faults
First, it is assumed that there are no sensor faults, i.e.
= ̇ =m m 0i i . In this condition, the dynamics of the estimation er-

rors e1
i are

ψ ν̇ = − + ( ) − ( )ee ae f bc, 37i i i i
i1 1 1 2 21

where ξ ξ= = ^ −
⊤⎡⎣ ⎤⎦e e e e, ,i i i i

i
i

2 21 22 23 2 2 are the estimation errors of ξ i
2.

By considering the Lyapunov function ( )=V ei i
1

1
2 1

2
and assuming

that ν ≈ ( )νk esigni
i
1 , the following result can be obtained:
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with >bc 0. Therefore, if gain νk is chosen high enough such that

( )ψ> ( )ν ek f emax ,
bc

i i i1
1 2 21 1 , then ̇ <V 01 until the sliding surface

=e 0i
1 is reached, which guarantees that the estimation error ei

1

converges to zero. When this condition is satisfied, and taking into
account (28), (32) and (34), the following expression can be ob-
tained:

ν ψ ψ_ = ( ) = + ( )e
bc

f e
c

e
1

,
1

39i eq
i i i i i

1 2 21 21 21 22

where ν _i eq is the equivalent output error injection.
Once the sliding surface =e 0i

1 is reached, the dynamics of the
estimation errors e i

2 are given by

ψ ψ νΓ̇ = ( ) − ( ) _ ( )νe f e , 40i i i i
i eq2 2 2 21 21

where

ψ

ψ

ψ

ψ

( ) =

− −

− +

− + − ( )

ν

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

f e

ce e

e ce L ce

b e bce ae

,

41

i i

i i i

i i i
M

i

i i i i

2 2 21

21 22 21

21 21 22 23

21 21 22 23

By analyzing (40), it is noted that the structure of this error dy-
namics is similar to the class of nonlinear single-output systems
threated in Busawon and De Leon-Morales (2000). Therefore, it is
straightforward to apply the HGO design method proposed in
previously cited paper. Following this design method, the feedback
gain ψΓ( )i

21 has the form:
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The assumption that the IM is working at a speed different from
zero, namely ω > 0, was required in order to apply the procedure
of Busawon and De Leon-Morales (2000). Additionally, gain K
must be selected in order that the following matrix

≜ + [ ]
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⎢
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⎥R K

0 1 0
0 0 1
0 0 0
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has all its eigenvalues with negative real part. If above conditions
are satisfied, there exists θ > 00 such that for all θ θ> 0, estimation
errors ei

2 will tend exponentially to zero. Thus, considering fault
signals = ̇ =m m 0i i , after the sliding surface =e 0i

1 is reached
signals νi will tend to zero, as can be deduced from (39). The
convergence of the estimation errors is validated by simulation
results in Appendix A.

3.3.2. Residual signals considering faults
Now, fault signals ≠m 0i are considered, assuming that mi and

ṁi are bounded. Under this assumption, a large enough value

of νk , such that ( )( )ψ> + + ̇ν ek f e m e m emax ,
bc

i i i a
bc i

i
bc i

i1
1 2 21 1 1

1
1 , still

guarantees that the sliding surface =e 0i
1 is reached. In this case,

from (28), (32) and (34) the following expression can be obtained
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Therefore, the equivalent output error injection will be affected by
the fault and its derivative, and by the dynamics of ψ( )ef ,i i

1 2 21

which depend on the estimation error e i
2.

Based on the obtained results, the following conclusions can be
enumerated:

1. Residual signals νi tend to zero if sensors are healthy.
2. Under a current sensor fault, the corresponding residual will

have a non-zero value that depends on the fault mi, as obtained
in (45).

3. Signals νi are very sensitive to abrupt faults because of its de-
pendence on the fault signal derivatives ṁi.

4. Each residual νi is affected only by faults in the sensor i, as it
was concluded in Section 3.2.

An additional potential application of the observers is the es-
timation of IM currents using only one line current sensor. This can
be noted from the transformation (27), where the equality ξ = βia

23

can be obtained. Thus, signal ξ̂
a

23 could be used as an estimate of
current iβ. Then, from the α β( ), transformation defined in (8), line
currents can be reconstructed using the observer Σa in the case
that a fault is detected in sensor b. In a similar manner, Σb can be
used to estimate the line currents if a fault occurs in sensor a.
These estimates may be useful to implement FTD based on virtual
sensors (Raisemche et al., 2014).

It must be noted that, the same as other model-based strate-
gies, the proposed FDIS design strategy needs a preliminary
knowledge of the IM parameters. However, in any closed loop IM
drive, motor parameters are needed for a correct tuning of the
closed-loop controller. Therefore, such parameters are usually
obtained at a self-commissioning stage (Espinoza-Trejo & Campos-
Delgado, 2009). Nonetheless, state estimation errors and un-
modelled non-linearities can affect the residuals signals. Thus, if
the effect of uncertainties in models (28) and (32) is important,
robust techniques must be investigated for synthesizing the ob-
servers for residual generation (Zhang et al., 2014).

3.4. Post-processing of the residuals signals

As it was shown in Fig. 1, fault detection and isolation are
carried out by the post-processing of the residuals νi generated by
the bank of observers. In this work, the post-processing stage
consists on the estimation of residuals peak values. The estimation
is done by an envelope detector filter, composed by a fall-rate
limiter that is fed by the absolute value of signals νi (Bisheimer, De
Angelo, Solsona, & Garcia, 2008). Then, estimated peak values are
compared with a constant threshold Cth. After residuals post-
processing, the FDIS produces two logic signals Fa and Fb which
indicate the detection of a fault in sensor a or sensor b,
respectively.

Note that although from the theoretical analysis residuals are
sensitive to any non-zero fault signal mi, from the practical point of
view the minimum fault level that can be diagnosed depends on
different aspects, such as: sensor characteristics, model un-
certainties, A/D converter resolution, numerical precision of the
microcontroller, noise level, among others. Moreover, it also de-
pends on the threshold level used for the residual evaluation. This
threshold is usually set after some measurements under normal
operating conditions, according to measurement noise level and
disturbances, in order to avoid false alarms (Zhang et al., 2013).

In order to establish the threshold level, in this work different
tests were performed on the experimental setup. The maximum
noise level of the residual signals under healthy sensor condition
was measured. Then, threshold Cth was set as twice the measured
maximum noise. The selected threshold level is shown in Table 3.
4. Results

Here, the experimental setup used to validate the FDIS de-
signed in Section 3 is presented together with experimental re-
sults. In addition, simulation results of residuals response against
parameter variations and load changes are analyzed.

4.1. Experimental setup

Fig. 4 shows the block diagram of the experimental setup used
to validate the proposed FDIS. The system described in Section 3
was implemented in a PC using a fixed step-size Bogacki–Sham-
pine solver from MATLAB environment, with the parameters listed
in Table 3. Although the strategy was programmed on a PC, it has a
low computational requirement. For this reason, it can be easily
implemented in the microcontroller of a variable speed drive.

The FDIS was tested using a low voltage 0.75 kW squirrel cage
IM, whose rated variables and parameters are provided in Table 3.
With the objective of validating the method with the IM under load,
a second standard 5.5 kW IM with torque control was used as load.



Table 3
IM and FDIS parameters.

IM
Power 0.75 kW Frequency 50 Hz
Line voltage 26.4 V Rated speed 1435 RPM
Rs 69.7 mΩ Rr 347.1 mΩ
Ls, Lr 0.11 mH LM 2.66 mH
P 2 J 0.00294 kgm2

Current sensors: LEM LA 125-P
Primary nominal current rms 125 A
Frequency bandwidth (�1 dB) 0–100 kHz
Accuracy 70.6%

FDIS
kν 10 θ 5
k1 30 k2 400
k3 2000 δ 1
Cth 0.05

Fig. 4. Experimental setup.

Fig. 5. Experimental results during a single fault in sensor a and load change.
(a) Measured speed and line a current, (b) residuals and, (c) diagnostic signals.
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An open-loop speed control was used during the experimental
tests. This control was selected in order to avoid negative effects
caused by sensor faults when IMD use closed-loop speed control,
such as over currents (Aguilera et al., 2012). In case of closed-loop
control is used, a FTD is needed to avoid those negative effects (Shi
& Krishnamurthy, 2014). Nevertheless, FTD is not the aim of this
paper and only the FDIS is validated.

Variables required by the FDIS were measured using two hall-
effect current sensors, two voltage sensors and a digital encoder.
The measured signals were acquired using a TMS320F28335 mi-
crocontroller, with a sample period =T 1 mss . Details about cur-
rent sensors are shown in Table 3. With the experimental setup
described above, the results shown in the following sub-section
were obtained.

4.2. Experimental results

With the IM working at constant speed and without faults, a
sudden load torque variation from 50% to 90% of the rated load
torque at t ¼ 0.93 s is applied. The torque variation causes a de-
celeration of the rotor and an increase of the line currents, see
Fig. 5(a). Under this condition, residuals are not affected, as it is
shown in Fig. 5(b).

At t ¼ 1.2 s disconnection fault of sensor a occurs, this means
that the signal provided by the sensor is made zero, see Fig. 5(a).
The fault is generated into the implemented software by in-
troducing a fault signal = −m ia a, where ma is defined in (12).
After this fault, the value of νa increases over the threshold level,
which is reported by changing the signal Fa from ‘0’ to ‘1’ at t ¼
1.201 s, see Fig. 5(c). It is worth noting that the fault detection time
corresponds to one sample period, namely 1 ms, which is faster
than previously reported results.

As it was demonstrated by (45), residuals depend on the fault
signals mi and its derivatives ṁi. This fact causes a significant
transient in the absolute value of νa at t ¼ 1.2 s. This feature shows
that residuals are highly sensitive to sudden sensor faults im-
proving in this way the fault detection time.

Fault detection time is a key topic for the design of a FTD, as it
was stated in Section 1. For instance, in electric traction applica-
tions, a detection time below 5 ms is at least required in order to
avoid negative effects over the IMD, as it was reported in Aguilera
et al. (2012). Thus, the FDIS proposed in the present paper could be
used in such applications.

From a practical point of view, the dependence on the fault
derivative can produce an increase of residual levels under normal
condition if high frequency noise is present in the measurements.
Thus, the signals from the sensors must be passed trough a low-
pass filter after being used by the FDIS. The cutoff frequency of this
filter has to be selected to balance the trade-off between sensi-
tivity to the fault derivative and noise level reduction.

The fault in sensor a is removed at t ¼ 1.5 s and the fault de-
tection signal Fa changes from ‘1’ to ‘0’ at t ¼ 1.69 s, reporting that
the sensor is again operating normally. This is an important feature
in order to recover the system after a short duration fault. Note that
along this experiment, signal νb is not affected by the fault in sensor
a, demonstrating that residuals are decoupled from each other.

Fig. 6 shows the behavior of the FDIS during multiple sensor
faults. Offset and gain faults were selected in order to analyze the
FDIS performance. These faults are very common in practical ap-
plications, nevertheless they are not generally treated in the lit-
erature. They could be caused, for example, by a sudden or gradual
detuning of sensors as a consequence its aging process. At t ¼ 2.2 s
a sudden offset fault occurs in sensor b, with an offset level of 30%
of the rated IM line current, see Fig. 6(a). In the present paper, this
fault is generated by introducing a sudden fault signal =m fa 0,
with f0 constant. This fault causes an increase of νb and the change
of signal Fb from ‘0’ to ‘1’, as it is shown in Fig. 6(b) and (c). The
fault detection time is also of one sample period for this fault. Note
that signal νa is not affected by the fault in sensor b.

With the offset fault present in sensor b, a progressive gain
reduction fault occurs in sensor a at t ¼ 2.7 s. The fault is gener-
ated by introducing a fault signal = −m k ia fg a, where the scalar kfg
varies linearly from 0 to 0.55 in < <t2.7 s 3 s, see Fig. 6(a). This
fault produces a progressive rise of residual νa , see Fig. 6(b). Note
that for any progressive faults, detection time depends on the fault
evolution and the threshold level. In this case, the residual



Fig. 6. Experimental results during multiple sensor faults. (a) Measured currents,
(b) residuals and, (c) diagnostic signals.

Fig. 7. Maximum residual values under variations of stator resistance at different
load levels.

Fig. 8. Maximum residual values under variations of rotor resistance at different
load levels.
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increases above the threshold level at t ¼ 2.79 s, where the fault
produces a reduction of 18% in measured current. Once the re-
sidual reaches the selected threshold, the fault is detected in one
sample period. When the gain fault is reported, both fault in-
dicators Fa and Fb are active, demonstrating that the FDIS is able to
detect single and multiple faults, see Fig. 6(c).

As a final remark, results show the practical value of the the-
oretical proposal. In addition, they show some advantages over
other proposals found in literature, such as:

� shorter detection times;
� single and multiple fault isolation without sensor redundancy;
� detection of different kind of faults, including disconnection,

progressive, offset and gain faults;
� recovery from a faulty condition.

4.3. Analysis of residuals against disturbances and parameter
variations

Simulations were performed in order to analyze the residual
levels against parameter and fault variations at different load le-
vels. The FDIS was implemented in MATLAB/Simulink environ-
ment based on the block diagram of Fig. 1, with parameters listed
in Table 3. A three-phase inverter composed by ideal switches was
implemented, using a switching frequency of 10 kHz. All results
were obtained with the IM working at rated speed. Only residual
from observer Σa is analyzed due to the fact both observers pre-
sents similar results.

The FDIS was tested against variations of Rs and Rr at load levels
100%, 50% and 10%, without sensor faults. Parameter variations
were introduced by modifying the parameters in the IM model as

= + ΔR R Rs s s0 and = + ΔR R Rr r r0 , where subindex 0 denotes rated
values, ΔRs and ΔRr denotes the variations introduced in stator
and rotor resistances, respectively. Peak values of residual νa in
steady state, denoted by νamax , were obtained for each parameter
variation.

Figs. 7 and 8 show results of parameters variations. It can be
observed that residuals are affected by the variations of both
parameters, even in healthy sensor condition. Residual levels
caused by variations of Rs are independent of the load level (Fig. 7).
In the case of variations of Rr (Fig. 8), residuals increase when the
load level is increases. Therefore, errors in the Rr parameter affects
the decoupling between residuals and the load torque.
Results show that false fault detection may occur in case of

parameter variations if threshold levels are not high enough. For
example, using the threshold level Cth shown in Table 3, a false
fault detection could be produced if Rs increases more than 85% or
if Rr increases more than 40% of its rated values.

Additionally, peak residual levels in steady state are obtained
for different values of the offset-fault signal =m fa 0, with f0 con-
stant, at the load levels 100%, 50% and 10% (see Fig. 9). Results
show that residual levels increase according to de magnitude of
the fault signal, independently of the load level. The magnitude of
the faults which could be detected by the FDIS depends on the
threshold level. For example, using the threshold Cth shown in
Table 3, offset faults must be higher than 18% of rated phase cur-
rent in order to be detected by the FDIS. Therefore, results de-
monstrate that parameter uncertainties and fault levels must be
taken into account in order to select the threshold levels.
5. Conclusions

In this paper, current sensor fault detection and isolation (FDI)
in induction motor (IM) drives was investigated. In a first step, IM
modelling was threated considering a drive with two line current



Fig. 10. Transient of estimation errors from observer Σa.

Fig. 9. Maximum residual values under different constant fault signals and load
levels.
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sensors prone to arbitrary faults. The geometric approach applied
to the proposed IM model representations allowed to establish the
detectability of sensor faults, while obtaining a subsystem in-
dependent of load torque. Next, it was demonstrated that it is
possible to establish the isolability of sensor faults, without the
need of redundant sensors. Besides, the applied procedure allowed
us to obtain subsystems sensitive to faults in a specific sensor, but
independent from faults in the other sensor. From the obtained
subsystems, it was possible to build a bank of observers for re-
siduals generation. Such residuals depend on both, the fault signal
and its derivative.

Experimental tests demonstrate the feasibility of the addressed
design methodology. Results show that different kind of fault are
detected and isolated with this proposal, including disconnection,
progressive, offset and gain faults. The proposal demonstrates a
short detection time as well as the ability to detect single and
multiple faults without sensor redundancy. Moreover, the re-
covery from a faulty condition is demonstrated.

An analysis of residuals against disturbances and parameter
variations was performed, demonstrating that these effects must
be taken into account in order to select the threshold levels for
residuals processing.
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Appendix A. Observers performance

In this appendix, the performance of the observers is shown by
analyzing simulation results. The bank of observers was im-
plemented in MATLAB/Simulink environment, using the test
bench described in Section 4.3. Only observer Σa is analyzed due to
the fact that both observers show similar results.

Observer Σa is started at t ¼ 0 s with the IM working at rated
operating condition in steady state, without sensor faults. Fig. 10
shows the transient produced in estimation errors e1

a and
= [ ]⊤e e e e, ,a a a a

2 21 22 23 , corresponding to the estimation errors for SMO
and HGO, respectively, after the observer startup. It can be noted
that =e 0.52a

1 p.u. at t ¼ 0 s and reaches a null level for >t 0.025 s,
see Fig. 10(a), by considering an estimation error under 0.01 p.u. as
a null level. Similarly, =e 0.71a

21 p.u. and = −e 0.70a
22 p.u. at

t ¼ 0 s, then reach null levels for >t 0.141 s, see Fig. 10(b) and (c).
In addition, = −e 0.68a

23 p.u. at =t 0 s and reaches a null level
after =t 0.179 s, see Fig. 10(d). Therefore, results show that all
estimation errors tend to zero and have a null levels for >t 0.179 s,
demonstrating the proper performance of designed observers.
Appendix B. Supplementary data

Supplementary data associated with this paper can be found in the
online version at http://dx.doi.org/10.1016/j.conengprac.2016.04.014.
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