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∗jsaldia@conicet.gov.ar
†selaskar@unc.edu.ar

J. Tamagno

Department of Aeronautics
National University of Córdoba
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A numerical scheme for the solution of both unsteady and steady-state, two-dimensional
Euler equations considering gas in chemical equilibrium, is presented. Three alternatives
of the Total Variation Diminishing (TVD) Harten–Yee scheme are implemented. One

of them is a technique based on the adaptive use of different limiter functions in each
wave of the inter-cell Riemann problem. With this technique, the undesirable effects
of the artificial viscosity on the capture of contact discontinuities are reduced, without
loss of robustness in nonlinear waves resolution. In order to verify the accuracy of the
proposed scheme, results of the unsteady flow in cylindrical explosions, and of the steady-
state solution of hypersonic flow over a blunt body, are presented. Finally, comparisons
considering accuracy of results and convergence properties between the three Harten–Yee
schemes are carried out.

Keywords: TVD schemes; chemical equilibrium; hypersonic flows.

1. Introduction

Shocks and contact surfaces are physical discontinuities, which arise in solving Euler
equations, the system that describes the dynamics of general compressible non-
viscous flows [Whitham (1974)] and [Tamagno et al. (2003)]. The accuracy of a
numerical discretization of this system, its ability to capture discontinuities and
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the correct prediction of wave velocities is strongly dependent on the numerical
fluxes evaluation. Second-order schemes have the ability of solving these discon-
tinuities accurately, but they are also proclive to introduce spurious oscillations
in the solution. On the other hand, first-order schemes do not introduce oscilla-
tions, but they present the disadvantage of smearing the discontinuities excessively
[Toro (2009)] and [Leveque (2004)]. A class of high-order schemes known as Total
Variation Diminishing (TVD) Schemes present both the advantage of solving accu-
rately the discontinuities without introducing unphysical oscillations. However, the
TVD condition has been proven only in the scalar convection equation [Harten and
Hyman (1983b)]. Thus, if the TVD schemes are applied for general nonlinear equa-
tion systems, the numerical solutions may not be oscillations free. When applying
the TVD scheme originally devised by [Harten and Hyman (1983b)] and later mod-
ified by [Yee (1986); Yee (1987a)], (at present called Harten–Yee TVD scheme), to
numerically solve Euler equations, the discontinuities associated to linearly degen-
erated waves family are very hard of solving accurately, unless highly compressive
limiter functions are used. However, compressive limiter functions present certain
disadvantages: lack of robustness in the capture of shock waves, nonfree unphysical
oscillatory solutions, poor convergence rates and poor numerical stability in 2D and
3D steady-state calculations [Zheng and Lee (1998)].

In more recent papers [Falcinelli et al. (2008)] and [Elaskar et al. (2009)], an
adaptive use of limiter functions in the context of the Harten–Yee TVD scheme
for calorically perfect gas was proposed. In this technique, if under a comparison
criteria, the strengths of the linearly degenerate waves family are higher than the
strength of the genuinely nonlinear waves family, then a highly compressive lim-
iter function, know as superbee, is applied to the linearly degenerate wave family.
Otherwise, the original upwind scheme of Yee, which uses the more diffusive min-
mod limiter function in all waves, is employed. This scheme has shown ability in
solving accurately contact discontinuities without losing robustness in capturing
shock waves. In a previous paper, the one-dimensional supersonic flow in chem-
ical equilibrium using an adaptive scheme for the limiter functions [Saldia et al.
(2015)] was studied. Now, the main objective of this work is to extend this tech-
nique to solve two-dimensional, time-dependent and steady-state Euler equations,
considering a working gas in thermo-chemical equilibrium. Results obtained solv-
ing Riemann problems with cylindrical symmetry specifically selected to enhance
the differences between thermo-chemical equilibrium states, and its perfect caloric
counterpart [Vinokur (1989)] and [Vinokur and Montagné (1990)], and from solving
steady-state hypersonic flows over a blunt body, are presented and discussed.

2. Governing Equations

The Euler equations form a nonlinear hyperbolic system of differential equations,
that describe the dynamics of a compressible gas flow disregarding the effects of
mass forces, viscosity and heat transfer by conduction and radiation. The unsteady
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two-dimensional Euler equations defined on a Cartesian coordinate system (x, y)
can be written in conservation form as:

∂u
∂t

+
∂f(u)
∂x

+
∂g(u)
∂y

= 0, (1)

where t denotes the temporal variable and where u, the vector of conservative
variables, is

uT = [ρ, ρvx, ρvy, E]. (2)

The inviscid fluxes are written as

fT = [ρvx, ρv
2
x + p, ρvxvy, vx(E + p)],

gT = [ρvy, ρvxvy, ρv
2
y + p, vy(E + p)],

(3)

where ρ is the density, vx and vy are the velocity components, p is the pressure, and
the total energy is given by

E = ρ

(
e+

1
2
(v2

x + v2
y)

)
. (4)

In this work, the closure of the Euler equations systems is provided by solving the
chemical equilibrium state of the fluid at a given density ρ and specific internal
energy e, assuming that the fluid is a mixture of thermally perfect gases, that obeys
the equation of state

p = ρ
R

W
T, (5)

where R is the universal gas constant, T is the thermodynamic temperature and
W is the molecular mass of the gas mixture given by the chemical equilibrium
composition.

3. Numerical Scheme

In this paper, to solve the Euler equations, a two-dimensional finite difference
method has been used. Moreover, to evaluate the numerical fluxes, an extension
of the Harten–Yee TVD scheme, which uses an adaptive method of different limiter
functions for each wave of the Riemann problem, has been implemented.

3.1. Spatial discretization

To implement the Harten–Yee scheme, a coordinate transformation between the
physical domain and the computational domain has been utilized. Let (x, y) and
(ξ, η) be the system of coordinates that represent the physical and computational
domains, respectively, and ξ = ξ(x, y) and η = η(x, y) the mapping between both.
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The system (1) can be written in terms of computational domain coordinates
through,

∂û
∂t

+
∂ f̂(û)
∂ξ

+
∂ĝ(û)
∂η

= 0, (6a)

where,

û = u/J, (6b)

f̂ = (ξxf + ξyg)/J, (6c)

ĝ = (ηxf + ηyg)/J (6d)

and J is the Jacobian of the coordinate transformation given by:

J = ξxηy − ξyηx. (6e)

Let (ξi, ηj) = (i∆ξ, j∆η) denote the nodes coordinates defined on the computational
grid. Let ûi,j = u(ξi, ηj)/Ji,j be the vector of conservative variables transformed to
the computational grid, where Ji,j is the Jacobian of the coordinate transformation
for the point (i, j). Therefore, a discretized conservative form of system (6a) can be
written as:

∂ûi,j

∂t
= − 1

∆ξ
(f̃i+ 1

2 ,j − f̃i− 1
2 ,j) −

1
∆η

(g̃i,j+ 1
2
− g̃i,j− 1

2
). (7)

For the Harten–Yee scheme, the numerical flux f̃i+ 1
2 ,j can be defined as [Yee (1987)],

f̃i+ 1
2 ,j =

[(
ξx
J

)
i+ 1

2 ,j

(fi,j + fi+1,j) +
(
ξy
J

)
i+ 1

2 ,j

(gi,j + gi+1,j)

]

+
1
2

(Rξ)i+ 1
2 ,j Φi+ 1

2 ,j

/
Ji+ 1

2 ,j , (8)

where fi,j denotes f(ui,j). In this paper, the derivatives of the coordinates trans-
formation ξx, ξy and the Jacobians Ji+ 1

2 ,j are calculated according to [Yee (1989)]:

(
ξx
J

)
i+ 1

2 ,j

=
1
2

[(
ξx
J

)
i,j

+
(
ξx
J

)
i+1,j

]
, (9a)

1
Ji+ 1

2 ,j

=
1
2

(
1
Ji,j

+
1

Ji+1,j

)
. (9b)

The matrix (Rξ)i+ 1
2 ,j in (8) is a matrix, whose columns corresponds to the right

eigenvectors of the Jacobian matrix Â = ξx
∂f
∂u + ξy

∂g
∂u evaluated at the generalized

Roe’s average state [Vinokur and Montagné (1990)].
The l-components of the numerical dissipation vector Φi+ 1

2
are given by

Φl
i+ 1

2
=

1
2
ψ(λl

i+ 1
2
)(gl

i + gl
i+1) − ψ

(
λl

i+ 1
2

+ γl
i+ 1

2

)
αl

i+ 1
2
, (10)

where for simplicity reasons we avoid the suffix j hereafter.
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Moreover, αl
i+ 1

2
are the components of the spectral decomposition vector of the

Riemann problem at cell interfaces:

α = (R−1
ξ )i+ 1

2
(ui+1 − ui) =




1
2
(aa+ bb+ ∆i+ 1

2
ρ)

−aa
cc

1
2
(aa− bb+ ∆i+ 1

2
ρ)



, (11a)

aa =
κ̃

c̃2

[
∆i+ 1

2
E − (Ĥ − ṽ2

x − ṽ2
y)∆i+ 1

2
ρ− ṽx∆i+ 1

2
ρvx − ṽy∆i+ 1

2
ρvy

]
, (11b)

bb =
1
c̃

[
−(k1)i+ 1

2
∆i+ 1

2
ρvx − (k2)i+ 1

2
∆i+ 1

2
ρvy +

(
(k1)i+ 1

2
ṽx + (k2)i+ 1

2
ṽy

)
∆i+ 1

2
ρ
]
,

(11c)

cc = (k1)i+ 1
2
∆i+ 1

2
ρvy − (k2)i+ 1

2
∆i+ 1

2
ρvx +

(
(k2)i+ 1

2
ṽx − (k1)i+ 1

2
ṽy

)
∆i+ 1

2
ρ,

(11d)

where ∆i+ 1
2
() ≡ ()i+1 − ()i, and where the upper tilde denotes the average state of

Roe between the states ui+1 and ui. The geometric coefficients are

(k1)i+ 1
2

=

(
ξx

J

)
i+ 1

2√(
ξx

J

)2

i+ 1
2

+
(

ξy

J

)2

i+ 1
2

(12)

with an analogous definition for (k2)i+ 1
2
.

λl
i+ 1

2
in (10), denotes the l-eigenvalue of the Jacobian matrix Â, and γl

i+ 1
2

is the
term that modifies the characteristic speed value and it is given by:

γl
i+ 1

2
=

{
(gl

i+1 − gl
i)/∆i+ 1

2
ul, if ∆i+ 1

2
ul �= 0,

0, if ∆j+ 1
2
ul = 0,

(13)

where ul is the l-component of the vector of conservative variables u. The function
ψ(z), also known as “entropy fix”, is necessary to guarantee the scheme convergence
toward the physically relevant solution. It is given by [Harten (1983a)]:

ψ(z) =

{
|z| , if |z| ≥ ε,

(z2 + ε2)/2ε, if |z| < ε,
(14)

where ε is a small parameter, that can be either constant or solution dependent.
The scalar function gl

i is the flux limiter function and is closely related to the
TVD property of the scheme. In the selection of limiter functions, the methodology
proposed by [Falcinelli et al. (2008)] and [Elaskar et al. (2009)] is used. In this
technique, the superscript l in (10) is considered to be associated either to a linearly
degenerated family or to a genuinely nonlinear family of characteristic waves of the
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hyperbolic system of equations. Then, the strength of the spectral decomposition
vector components are compared under a certain imposed criteria. If the strength of
those components associated to the linearly degenerated family are higher than the
corresponding to genuinely nonlinear family waves, the superbee [Ro (1986)] limiter
function is employed with all l′s associated to the linearly degenerated family, and
the minmod limiter function [Harten and Hyman (1983b)] with the rest. Otherwise,
only the minmod limiter is used with all waves. This way of proceeding aims to
take advantage of what each limiter function does better, that is, getting robustness
without introducing oscillations with the minmod function, and high resolutions in
contact discontinuities with the superbee function.

The aforementioned minmod limiter is given by:

gl
i = minmod(∆i−1/2(ul),∆i+1/2(ul)) (15)

and the minmod function takes the smaller absolute value of its arguments, if these
are of the same sign, and zero otherwise. The superbee limiter function [Ro (1986)]
is defined as:

gl
i = S · max

[
0,min

(
2

∣∣∣αl
i+ 1

2

∣∣∣ , S · αl
i− 1

2

)
,min

(∣∣∣αl
i+ 1

2

∣∣∣ , 2S · αl
i− 1

2

)]
;

S = sign(∆i+ 1
2
ul). (16)

The adaptive technique for selecting the limiter function is defined by performing
the following steps: first, the eigenvalues of the Jacobian matrix Â are numbered
according to

λ(1,4) = ξxvx + ξyvy ∓
√
ξ2x + ξ2yc,

λ(2,3) = ξxvx + ξyvy.

With this definition, the l = 1, 4-characteristic waves correspond to genuinely non-
linear fields and the l = 2, 3-characteristic waves to linearly degenerate fields. Then,
the l-characteristic waves intensity I l operator is defined

I l = ‖αl
i+ 1

2
(Rξ)l

i+ 1
2
‖. (17)

Finally, the rule for selecting limiter functions can be expressed as follows:{
minmod in all waves if max (I(2), I(3)) ≤ max (I(1), I(4)),

superbee in waves 2 and 3 if max (I(2), I(3)) > max(I(1), I(4)).
(18)

3.2. Time integration

The time integration is carried out through an explicit Runge–Kutta like scheme
developed by [Gottlieb and Shu (1998)], which was specifically designed with the aim
of preserving the TVD property of the spatial discretization. Also, this Runge–Kutta
method reduces high frequency numerical oscillations, therefore, is also suitable for
steady-state simulations. Let us call L(u) the right-hand side operator of (7); then,
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the implemented second-order Runge–Kutta method can be written as [Gottlieb
and Shu (1998)]:

û(1)
i,j = ûn

i,j + ∆tL(ûn), (19a)

ûn+1
i,j =

1
2
ûn

i,j +
1
2
û(1)

i,j +
1
2
∆tL(û(1)), (19b)

where the CFL condition is given by ∆t ≤ mini,j{min( ∆ξ
|vξ|+c ,

∆η
|vη |+c)i,j}, in which c

denotes the speed of sound.

3.3. Chemical equilibrium calculations

To compute the thermodynamic properties of the chemical equilibrium gas mixture,
the CEA program (Chemical Equilibrium with Applications) [Gordon and McBride
(1994)], developed by NASA-Glenn Research Center is employed. However, for effi-
ciency purposes, a database, that stores discrete values of required thermodynamical
variables in the numerical scheme has been built. Then, an efficient interpolation
procedure of these values is used during the fluid flow computations. This procedure
has increased the accuracy without incurring in an additional computational cost,
in comparison with another widely used approach, the Tannehill curves fit, in spite
of the fact that the latter is only valid for air [Tannehill and Mugge (1974)].

The database is stored in a matrix, called here CSET, whose elements cSET
i,j

store information about pressure, internal energy, temperature and thermodynamic
derivatives. To obtain thermodynamics variables from the matrix elements, the
input variables are the density and the internal energy, because these variables are
obtained directly from the conservative state vector of Euler equations.

To evaluate the corresponding chemical equilibrium thermodynamic properties
at a given density and internal energy, an interpolating procedure has been imple-
mented. It takes advantage of the physical fact of the internal energy is a monoton-
ically increasing function with temperature for constant density. This interpolating
procedure can be described as follows.

Given an input density ρ satisfying

log(ρj) ≤ log(ρ) ≤ log(ρj+1), (20)

where log(ρj) denotes the (constant) value of density, which corresponds to a j-
column of CSET, let mj(ρ) be defined as:

mj(ρ) =
log(ρ) − log(ρj)

log(ρj+1) − log(ρj)
, ρj ≤ ρ ≤ ρj+1. (21)

The value of the internal energy e is known from the Euler system, and it satisfies

log(eiL,j) ≤ log(e) ≤ log(eiL+1,j), (22a)

log(eiR,j+1) ≤ log(e) ≤ log(eiR+1,j+1), (22b)
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where ei,j are the values for the internal energy stored in the elements ci,j of CSET.
Now, let nL(e) and nR(e) be respectively defined as

nL(e) =
log(e) − log(eiL,j)

log(e)iL+1,j − log(eiL,j)
, eiL,j ≤ e ≤ eiL+1,j , (23a)

nR(e) =
log(e) − log(eiR,j)

log(e)iR+1,j − log(eiR,j)
, eiR,j+1 ≤ e ≤ eiR+1,j+1. (23b)

Given the above definitions the interpolation procedure to compute a generic ther-
modynamic variable β stored in CSET is accomplished through the evaluation of

β(ρ, e) = βL(e)(1 −mj(ρ)) + βR(e)mj(ρ), (24)

where

βL(e) = βiL,j(1 − nL(e)) + βiL+1,jnL(e), (25a)

βR(e) = βiR,j+1(1 − nR(e)) + βiR+1,j+1nR(e). (25b)

To validate this interpolation methodology, comparisons have been made with
results obtained by means of both the Tannehill curves and the CEA program for
air in a wide range of conditions. It was found that the interpolation procedure
gives an acceptable accuracy with considerable reduction in computing times, when
compared to the CEA program [Sald́ıa (2012)].

4. Results

In this section, results from numerical tests performed with the aim of testing the
behavior of the adaptive technique, when applied to both unsteady and steady
two-dimensional chemical equilibrium flows computations are presented.

4.1. Unsteady problems

Three Riemann problems with cylindrical symmetry are presented. Note that these
tests have been previously implemented by [Yee (1989)] and [Montagné et al. (1989)]
to compare the performances of TVD schemes, when the gas is considered in
chemical equilibrium. The initial conditions of the Riemann problem with cylin-
drical symmetry are defined with respect to the radial distance r =

√
x2 + y2 as

u(x, y, t = 0) = u(I), if r < rc and u(x, y, t = 0) = u(E), if r > rc, where (I) and
(E) stands for internal and external states, respectively. The initial conditions of
the respective test cases are shown in Table 1.

The physical domain consists in a square of length L = 14.0m, 0 ≤ x, y ≤ L. The
cylinder radius is rc = 7.0m. A Cartesian mesh with constant mesh size of 0.14m is
employed (101×101 mesh points). The domain is reduced by symmetrical boundary
conditions imposed on x = 0 and y = 0 sides, and exit boundary conditions on sides,
where x = L and y = L. The working gas is air (79% N2 and 21% O2). The chemical
species considered are: N2, O2, NO, N, O, NO+ and e−. For all simulations, the
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Table 1. Riemann problems with cylindrical symmetry.
Initial conditions of test cases.

Density Pressure Temperature
Test State (kg/m3) (Pa) (K)

A (I) 0.0660 9.84 × 104 4390.8
(E) 0.030 1.50 × 104 1741.8

B (I) 1.40 9.88 × 105 2456.5
(E) 0.140 9.93 × 103 247.1

C (I) 1.0 6.50 × 105 2263.6

(E) 0.010 1.00 × 103 348.4

parameter ε of the entropy fix (14) is constant and equal to 0.10. Three variations of
the Harten–Yee scheme are implemented: the first one, called Harten–Yee Adaptive
(HYAD), is the adaptive technique already described in Sec. 3.1. The second one,
here called Harten–Yee Minmod (HYMM), employs the minmod limiter in all waves
without taking into consideration, if the characteristics fields of these waves are
nonlinear or linearly degenerates. The last one, here called Harten–Yee NonAdaptive
(HYNAD), employs the minmod limiter in the genuinely nonlinear waves and the
superbee limiter in the linearly degenerate waves in all the domain.

Figures 1–3 plot the temperature solution with respect to the radial distance
for test cases A, B and C, respectively. The numerical solutions are compared with
those obtained through the solution of the one-dimensional Euler equations with
cylindrical symmetry source terms on a fine mesh of 5,000 nodes (called here as
“exact”). The plotted results correspond to the diagonal line given by y = x, because
along this line, the mesh has the greatest misalignment with respect to the waves
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Fig. 1. Test case A. Comparison of limiter functions. Time: 3.5ms.
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Fig. 3. Test case C. Comparison of limiter functions. Time: 3.2ms.

propagation direction. However, the results over other radial lines showed similar
accuracy.

Results obtained for test A are shown in Fig. 1. The output shown corresponds
to a simulation time of t = 3.5 ms. The resultant wave pattern of the Riemann
problem is composed of an expansion wave, which moves to the center of the cylinder
and a contact wave and a shock moving in the opposite direction. From Fig. 1, it
can be observed that both the schemes HYAD and HYNAD improve the contact
discontinuity resolution in comparison with HYMM, and show similar accuracy
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in the numerical capture of the shock wave. In this last regard, the three schemes
present a similar behavior, capturing the shock wave in a total of three cells. Figure 2
shows results of temperature for the test B at time t = 3.0 ms. The general wave
pattern in this case is similar to the already described in test A. For this case, the
three schemes capture the shock wave in two cells. The schemes which employs the
superbee limiter function presents a similar general behavior and captures in only
two cells, the contact wave while the scheme HYMM requires a total of four cells
for this purpose.

Figure 3 shows the temperature solution for test C corresponding to time
t = 4.2 ms. The advantages of employing the adaptive scheme (HYAD) are best
illustrated with this test. It can be observed that the nonadaptive application of
the superbee limiter corresponding to scheme HYNAD produces an over estima-
tion and oscillations near the contact surface, which are damped with the scheme
HYAD. Also, the HYAD scheme solves more accurately this discontinuity wave than
the traditional HYMM scheme.

4.2. Steady hypersonic flows

A steady-state hypersonic flow simulation over a blunt body is presented in this
section. The gas considered is air and the flow is assumed to be in thermo-chemical
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Fig. 4. Blunt body. Geometry and implemented mesh.
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Table 2. Blunt body problem. Free stream conditions.

ρ p T V
Test (kg/m3) (Pa) (K) (km/sec)

1 8.8035 × 10−2 5474.89 216.65 4.426
2 3.85 × 10−3 277.52 2751.05 7.9408

equilibrium conditions. The blunt body corresponds to a cylinder of 1 m of radius
and the physical domain of interest is discretized through a mesh, which has 70 and
35 nodes in tangential and radial directions, respectively (Fig. 4). Two free-stream
conditions, which are described in Table 2, were considered. Boundary conditions
on the symmetry line are implemented through first-order extrapolation values of
density, internal energy and tangential velocity, while a zero normal velocity is
imposed. Free-stream conditions are imposed at the supersonic inlet, while at the
outlet, supersonic values obtained by first-order extrapolation are used. At the solid
boundary, the tangential velocity is obtained by first-order extrapolation and the
density is obtained by second-order extrapolation. Free-stream values are imposed
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Fig. 5. Blunt body. Test 1. Density contour lines
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Fig. 6. Blunt body problem. Test 1. Mach contour lines.

as initial condition for the whole model domain. Time integration is carried out
by means of the same Runge–Kutta explicit method used in unsteady flows. The
parameter ε (Eq. (14)) is chosen equal to the spectral radius of the Jacobian matrix
of the flux multiplied by a constant in agreement with the entropy fix proposed by
[Yee (1986)] with the aim of avoiding convergence to unphysical solutions in blunt
bodies hypersonic computations.

In Figs. 5 and 6, the numerical results of density and Mach number distribution
respectively obtained for Test 1 with the HYMM scheme are shown. For the con-
ditions of Test 2, Figs. 7 and 8 show the results of density and Mach distribution
respectively obtained employing the HYAD scheme. It is possible to note that, both
variants of Harten–Yee scheme provide similar results regarding accuracy in shock
wave capturing along the stagnation line. However, in those regions of the model
domain, where the mesh is not sufficiently well aligned with the shock wave, appears
distortions in the shock wave capture, showing the dependence of the scheme on
the mesh orientation. To evaluate the chemical behavior, the results obtained of the
distribution of N2 and O2 employing the HYAD scheme for Test 2 are shown in
Figs. 9 and 10, respectively.
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Fig. 7. Blunt body. Test 2. Density contour lines
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Fig. 8. Blunt body. Test 2. Mach contour lines.
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Fig. 9. Blunt body. Test 2. Distribution of N2.

In Fig. 11, the temperature solution along the symmetry line is shown. In this
plot, the results obtained through the three Harten–Yee scheme variants here imple-
mented, HYAD, HYMM and HYNAD, are compared. Note that the capture of
the normal shock wave is obtained in one cell width in all cases. The compari-
son between the temperature solution obtained with the HYAD scheme after the
shock, and the exact solution obtained by solving the Rankine–Hugoniot conditions
gives an error of approximately 0.1%. To evaluate and compare the steady-state
convergence properties, the L2-norm of the density residual evolution, consider-
ing both chemical equilibrium and calorically perfect gas, are shown in Fig. 12.
The HYMM scheme provides the best convergence properties in comparison to the
HYAD and HYNAD schemes, as is expected due to the discontinous nature of the
superbee limiter function [Zheng and Lee (1998)]. Regarding this issue, although
the adaptive technique HYAD has been able to achieve practically machine-zero
convergence in the calorically perfect gas case, it has not improved the convergence
properties of the nonadaptive technique HYNAD, when chemical equilibrium was
considered. It was noted in numerical experiments, that when the superbee limiter
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Fig. 10. Blunt body. Test 2. Distribution of O2.
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Fig. 11. Blunt body. Test 2. Temperature solution on the symmetry line.
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Fig. 12. Blunt body. Test 2. Steady-state solution convergence curves. (a) Calorically perfect gas
and (b) Chemical equilibrium gas.

function is employed, local numerical oscillations appears close to the intersection
between the sonic line and the shock wave, which prevents the convergence of the
solution.

5. Conclusions

Three different variations of the finite difference Harten–Yee TVD scheme for the
numerical solution of 2D, time-dependent and steady-state Euler equations have
been implemented and tested. Depending on how they use the minmod and superbee
limiter functions, these variations have been called HYMM, HYNAD and HYAD.
Of particular interest was the extension of the adaptive technique (HYAD) pro-
posed in [Falcinelli et al. (2008); Elaskar et al. (2009); Saldia et al. (2015)], when
two-dimensional supersonic and hypersonic flows in chemical equilibrium are consid-
ered. For unsteady flows, numerical solutions of three different Riemann problems
with cylindrical symmetry, specifically designed to validate numerical schemes for
gas dynamics with chemical equilibrium effects have been presented. In these tests,
both the HYAD and HYNAD schemes improve significantly the accuracy of con-
tact discontinuity resolution in comparison to the classical HYMM scheme, while
maintaining similar properties in shock wave capturing; also, it was found that the
proposed adaptive technique (HYAD) reduced the oscillations that appears at the
contact wave, when the superbee limiter function is employed (HYNAD). To study
the behavior of the numerical schemes in steady-state flow simulations, solutions of
the hypersonic flow over a blunt body have also been presented. Results obtained
using the proposed adaptive technique are not significantly differenct with results
computed using other previously well-tested variants of the Harten–Yee scheme.
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However, it was noted that the use of the superbee limiter function reduces and also
prevents the convergence to the steady-state solution.
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Tamagno, J., Elaskar, S. and Ŕıos, G. [2003] “Numerical simulation of time-dependent
reacting flows in pulse facilities,” App Numer. Math. 47, 515–530.

Tannehill, J. and Mugge, P. [1974] “Improved curve fits for the thermodynamic properties
of equilibrium air suitable for numerical computation using time dependent or shock-
capturing methods,” NASA, CR-2470. NASA.

Toro, E. [2009] Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer,
Berlin).

Vinokur, M. [1989] “An analysis of finite-difference and finite-volume formulations of con-
servation laws,” J. Comput. Phys. 81, 1–52.
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