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ABSTRACT
In this paper, we give a characterization of best Chebyshev approximation
to set-valued functions from a family of continuous functionswith theweak
betweeness property. As a consequence, we obtain a characterization of
Kolmogorov type for best simultaneous approximation to an infinity set of
functions.We introduce the concept of a set-sun andgive a characterization
of it. In addition, we prove a property of Amir–Ziegler type for a family
of real functions and we get a characterization of best simultaneous
approximation to two functions
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1. Introduction

Let X be a compact Hausdorff space, and let C(X) be the space of continuous real functions defined
on X, with the Chebyshev norm

‖h‖ = sup
x∈X

|h(x)|, h ∈ C(X).

Let G ⊂ C(X). We say that G has the weak betweeness property if for all g , g0 ∈ G and any closed
subset D ⊂ X satisfying min

x∈D |g(x) − g0(x)| > 0, there exists {gn}n∈N ⊂ G such that

(a) ‖gn − g0‖ → 0, as n → ∞;
(b) (g(x) − gn(x))(gn(x) − g0(x)) > 0 for all x ∈ D and n ∈ N.

Families with the weak betweeness property (see [1]) are also referred to as having the closed sign
property (see [2]) or regular (see [3]). The best known examples are linear families, convex families
and admissible rational functions. Other families with this property include those satisfying: Haar
condition, weak Haar condition,[4] betweeness property,[5] representation condition,[6] or those
which are asymptotically convex,[7] Kolmogorov set of the second kind,[8] unisolvent [9,10] and
sun.[3,11] The relationship between these properties and other examples can be found in [3].

We consider the Hausdorff space

H(R) := {K ⊂ R : K �= ∅ and K is compact},

with the Hausdorff metric dH (see [12]). Let F : X → H(R) be a set valued function. For g ∈ C(X),
x ∈ X, and y ∈ F(x) we write

ÊF(g , x, y) = y − g(x), EF(g , x) = sup
y∈F(x)

∣∣̂EF(g , x, y)∣∣ and eF(g) = sup
x∈X

EF(g , x).
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2 H. H. CUENYA AND F. E. LEVIS

We say that g0 ∈ G is a best approximation to F from G if

inf
g∈G

eF(g) = eF(g0). (1)

If for all continuous set-valued function there exists a best approximation, we say thatG is an existence
set.

Observe that our definition extends the usual definition of a best Chebyshev approximation to a
function f ∈ C(X), when F(x) = {f (x)}, for all x ∈ X.More generally, ifD ⊂ C(X) is a compact set,
we can consider the function FD : X → H(R) defined by

FD(x) = {h(x) : h ∈ D}. (2)

It is easy to see that

eFD(g) = sup
x∈X

sup
h∈D

|h(x) − g(x)| = sup
h∈D

sup
x∈X

|h(x) − g(x)| = sup
h∈D

‖h − g‖.

So, in this case (1) means that g0 is a best simultaneous Chebyshev approximation to D from G.
Let G ⊂ C(X) be an existence set.
We say that G is a set-sun if for each continuous set-valued function F : X → H(R), g0 ∈ G is a

best approximation to F from G implies that

eF(g0) ≤ eF((1 − α)g0 + αg), for all g ∈ G, 0 < α < 1. (3)

Each best approximant with this property is said to be a solar point of G.
Characterization of nonlinear best approximation has been studied extensively in the literature.

In ([5], Theorem 1), Dunham proved a characterization of best approximation by families with the
betweeness property to a function (see Theorem 2.1). A characterization of a best simultaneous
approximation of Kolmogorov type when G has the weak betweeness property and the function F is
as in (2) for a finite set, D, was established in ([1], Theorem 4.1).

The notion of suns has played important roles in nonlinear approximation theory. In ([13],
Theorem 1), a characterization of a sun for simultaneous approximation to a numerable set of
functions is given. Results about characterization of best simultaneous approximation to a bounded
set from suns in different Banach spaces and their relationships with a Kolmogorov-type condition,
were considered in [14,15]. Another results can be seen in [16].

The purpose of this paper was to show that the Dunham’s method, given in ([5], Theorem 1),
can be employed in more general cases, i.e. for approximation of continuous set-valued functions
from families with the weak betweeness property. As a consequence we get a characterization of
Kolmogorov type for approximating to continuous set-valued functions on any compact subset.
Also, show a characterization of set-suns in C(X). In particular, our results can be applied to
simultaneous approximation to a set of continuous functions under certain conditions. In addition,
we prove a property of Amir–Ziegler type for a suitable set of functions, possibly infinite and we get
a characterization of best simultaneous approximation to two functions.

2. Characterization of best approximation

Let g ∈ C(X) and F : X → H(R) be a set valued function such that F is continuous. Then
YF := {(x, y) : x ∈ X and y ∈ F(x)} is a compact subset of X × R. In fact, let {(xα , yα)}α∈D be a net
of YF . As X is a compact set, X × F(X) is a compact set. So, there are a subnet, which is denoted in
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OPTIMIZATION 3

the same way, and (x, y) ∈ X × F(X) such that (xα , yα) converges to (x, y). Since

min
z∈F(x)

|y − z| ≤ dH(F(xα), F(x)) + |y − yα|, α ∈ D,

F(x) is a closed set, and F(xα) and yα converges to F(x) and y, respectively, we have y ∈ F(x).
Therefore (x, y) ∈ YF and so YF is a compact subset.

In addition, a straightforward computation shows that

EF(g , x) − EF(g , x′) ≤ dH(F(x), F(x′)) + |g(x) − g(x′)|, x, x′ ∈ X.

Therefore, EF(g , ·) and ÊF(g , ·, ·) are continuous functions on X and YF , respectively. So, the sets

MF(g) := {x ∈ X : eF(g) = EF(g , x)} and
M̂F(g) := {

(x, y) ∈ YF : y ∈ F(x) and eF(g) = ∣∣̂EF(g , x, y)∣∣} ,
are non empty for all g ∈ G. Moreover, MF(g) and M̂F(g) are compact subsets of X and YF ,
respectively.

We observe that if p1 : YF → X is the canonical projection, then

p1
(
M̂F(g)

) = MF(g). (4)

In ([5], Theorem 1), Dunham proved the following interesting result of characterization.
Theorem 2.1: Let G ⊂ C(X) be a family with the betweeness property and let f ∈ C(X). An element
g0 ∈ G is a best approximation to f from G if and only if there exists no element g ∈ G such that
Ef (g , x) < ef (g0) for all x ∈ Mf (g0).

The next result extends Theorem 2.1 to best Chebyshev approximation of a set-valued function.
Theorem 2.2: Let G ⊂ C(X) be a family with the weak betweeness property and let F : X → H(R)

be a continuous set-valued function. The following statements are equivalent:

(a) g0 ∈ G is a best approximation to F from G;
(b) there is no element g ∈ G such that

∣∣̂EF(g , x, y)∣∣ < eF(g0) for all (x, y) ∈ M̂F(g0);
(c) there is no element g ∈ G such that EF(g , x) < eF(g0) for all x ∈ MF(g0).

Proof: (a) ⇒ (b). Suppose that there is g ∈ G with ÊF(g , x, y) < eF(g0) for all (x, y) ∈ M̂F(g0).
Since g , g0, and F are continuous, there exists an open set U1 ⊂ YF such that

(i) M̂F(g0) ⊂ U1;
(ii)

∣∣̂EF(g , x, y)∣∣ < eF(g0) for all (x, y) ∈ U1;
(iii)

∣∣g0(x) − g(x)
∣∣ ≥ α > 0 for all x ∈ p1(U1) and for some α > 0.

In fact, if r = max
(x,y)∈M̂F (g0)

∣∣̂EF(g , x, y)∣∣ and r < s < s′ < eF(g0), we consider the open set

U1 = ∣∣̂EF(g , ., .)∣∣−1
(( − ∞, s)) ∩ ∣∣̂EF(g0, ., .)∣∣−1

((s′,+∞)) ⊂ YF .

Then, clearly U1 satisfies (i) and (ii). In addition, if x ∈ p1(U1), there exists y ∈ R such that
(x, y) ∈ U1, therefore∣∣g0(x) − g(x)

∣∣ ≥ ∣∣̂EF(g0, x, y)∣∣ − ∣∣̂EF(g , x, y)∣∣ > s′ − s =: α > 0,

and so (iii) is true.
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4 H. H. CUENYA AND F. E. LEVIS

Now, M̂F(g0) and YF \ U1 are disjoint closed subsets of YF . Since YF is normal topological space,
then there exists an open set U2 ⊂ YF such that M̂F(g0) ⊂ U2 ⊂ U2 ⊂ U1, where U2 denotes
the closure of U2. As p1

(
U2

)
is a compact set, the continuity of g and g0, and (iii) implies that

min
x∈p1

(
U2

) ∣∣g0(x) − g(x)
∣∣ > 0. Since G has the weak betweeness property there exists a sequence

{gn}n∈N ⊂ G such that ‖gn − g0‖ → 0 as n → ∞, and

min
x∈p1

(
U2

) (g(x) − gn(x))(gn(x) − g0(x)) > 0 for all n ∈ N. (5)

We consider the compact setW = YF \ U2. IfW = ∅, then YF = U1, and (ii) yields
∣∣̂EF(g , x, y)∣∣ <

e(g0) for all x ∈ X, y ∈ F(x). Hence, g0 is not a best approximation to F from G. IfW �= ∅, let

β = eF(g0) − max
(x,y)∈W

∣∣̂EF(g0, x, y)∣∣ .
SinceW and M̂F(g0) are disjoint sets, then β > 0. Let n0 be such that ‖g0 − gn0‖ < β . If (x, y) ∈ W ,
we obtain ∣∣̂EF(gn0 , x, y)∣∣ = |y − gn0(x)| ≤ |g0(x) − gn0(x)| + ∣∣̂EF(g0, x, y)∣∣

< β + eF(g0) − β = eF(g0).
(6)

On the other hand, if (x, y) /∈ W , then (x, y) ∈ U2. From (5) and (ii), we have

∣∣̂EF(gn0 , x, y)∣∣ = |y − gn0(x)| < max{|y − g0(x)|, |y − g(x)|}
= max

{∣∣̂EF(g0, x, y)∣∣ , ∣∣̂EF(g , x, y)∣∣} ≤ eF(g0).
(7)

From (6) and (7) we get
∣∣̂EF(gn0 , x, y)∣∣ < eF(g0) for all x ∈ X, y ∈ F(x). So, g0 is not a best

approximation to F from G.
Finally, (b) ⇒ (c) is obvious and (c) ⇒ (a) immediately follows from definition of a best approxi-
mation of F. �
Remark 2.3: We note that for any equicontinuous family of functions, D ⊂ C(X), the function
F(x) = {f (x) : f ∈ D} is continuous, so we can apply Theorem 2.2. The results established in
Theorema 2.2 are unknown even in the case D finite.

Next, we obtain a characterization of Kolmogorov type for best Chebyshev approximation to a
continuous set-valued function.

To prove the next theorem, we use the following property of real numbers.

|a − b| < |a − c| implies (a − c)(b − c) > 0. (8)

Theorem 2.4: Let G ⊂ C(X) be a family with the weak betweeness property and let F : X → H(R)

be a continuous set-valued function. Then g0 ∈ G is a best approximation to F from G if and only if for
all g ∈ G,

min
(x,y)∈M̂F (g0)

ÊF(g0, x, y)(g(x) − g0(x)) ≤ 0. (9)

Proof: Let g ∈ G and suppose that

ÊF(g0, x, y)(g(x) − g0(x)) > 0 for all (x, y) ∈ M̂F(g0). (10)
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OPTIMIZATION 5

From (4) and (10), we have min
x∈MF (g0)

|g(x) − g0(x)| > 0. Since G has the weak betweeness property,

there exists a sequence {gn}n∈N ⊂ G such that ‖gn − g0‖ → 0 as n → ∞, and

min
x∈MF (g0)

(g(x) − gn(x))(gn(x) − g0(x)) > 0 for all n ∈ N. (11)

We choose n0 ∈ N such that ‖g0 − gn0‖ < eF (g0)
2 .

We claim that ∣∣̂EF(gn0 , x, y)∣∣ < e(g0) for all (x, y) ∈ M̂F(g0). (12)
In fact, let (x, y) ∈ M̂F(g0), by (4), x ∈ MF(g0). If g(x) > g0(x), from (10) we have
g0(x) < y. Further, (11) implies that g0(x) < gn0(x) < g(x). For y ≥ gn0(x), we have

∣∣̂EF(gn0 , x, y)∣∣ =
|y − gn0(x)| < |y − g0(x)| ≤ eF(g0). Otherwise, the condition ‖g0 − gn0‖ < eF (g0)

2 implies that∣∣̂EF(gn0 , x, y)∣∣ ≤ |g0(x) − gn0(x)| < eF(g0), so (12) holds. The same conclusion can be obtained for
g(x) < g0(x). Now, (12) contradicts Theorem 2.2.
Reciprocally, we suppose that g ∈ G and (9) is true. Then there exists (x, y) ∈ M̂F(g0) such that
(y − g0(x))(g(x) − g0(x)) ≤ 0. From (8) we get eF(g0) = |y − g0(x)| ≤ |y − g(x)| ≤ eF(g). As g is
arbitrary, g0 is a best approximation to F from G. �

The previous theorem extends Kolmogorov’s characterization theorem of best Chebyshev approx-
imation proved in ([5], p.153). In fact, it is sufficient to take D an unitary set.

3. Characterization of set-suns in C(X)

Let G ⊂ C(X) and let F : X → H(R) be a set-valued function. We claim that

(1 − α)eF(h) + αeF(g) ≤ eF((1 − α)h + αg) for all h, g ∈ G, α ≥ 1. (13)

Indeed, for x ∈ X and y ∈ F(x) we have

(1 − α)eF(h) + α|y − g(x)| = −|1 − α|eF(h) + |α||y − g(x)|
≤ −|1 − α||y − h(x)| + |α||y − g(x)|
≤ ∣∣y − (

(1 − α)h(x) + αg(x)
)∣∣ .

Therefore, (1 − α)eF(h) + αeF(g) ≤ eF((1 − α)h + αg).
Hence, if g0 ∈ G is a best approximation to F from G, we get

eF(g0) ≤ eF((1 − α)g0 + αg) for all g ∈ G, α ≥ 1. (14)

The definition of a set-sun is an extension of the notion given in ([17], p.31) to the case of
approximation of a set-valued function on C(X), as it is proved in the next lemma.
Lemma 3.1: Let G be an existence set in C(X) and g0 ∈ G. Then g0 is a solar point of G if and only if
for each continuous set-valued function F : X → H(R), g0 is a best approximation to F from G implies
that g0 is a best approximation to Fα := g0 + α(F − g0) from G for all α > 0.
Proof: The proof follows immediately from (14) and the equality

α eF 1
α

(h) = eF((1 − α)g0 + αh) for all h ∈ C(X). (15)

�
Definition 3.2: LetG ⊂ C(X) be an existence set, F : X → H(R) a continuous set-valued function,
and g0 ∈ G. We say that g0 is a local best approximation to F from G, if there exists r > 0 such that g0
is a best approximation to F from G ∩ B(g0, r), where B(g0, r) = {g ∈ C(X) : ‖g − g0‖ < r}.
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6 H. H. CUENYA AND F. E. LEVIS

The following result generalizes ([17], Theorem 2.6).
Theorem 3.3: Let G ⊂ C(X) be an existence set. The following statements are equivalent:

(a) G is a set-sun;
(b) Each local best approximation from G to any F is a best approximation to F from G;
(c) G is a family with the weak betweeness property.

Proof: (a) ⇒ (b). Let F : X → H(R) be a continuous set-valued function. Assume that g0 is a local
best approximation from G to F from a set-sun G. Then there exists r > 0 such that g0 is a local best
approximation to F from G ∩ B(g0, r), i.e.

eF(g0) ≤ eF(g) for all g ∈ G, such that ‖g − g0‖ < r. (16)

If eF(g0) > 0, let 0 < α < min
{

r
3eF (g0) , 1

}
. For g ∈ G, x ∈ X and y ∈ F(x), we observe

|g0(x) − g(x)| − r
3

≤ |g0(x) − g(x)| − r
3eF(g0)

|y − g0(x)| ≤ |g0(x) − g(x)| − α|y − g0(x)|
≤ ∣∣g0(x) + α(y − g0(x)) − g(x)

∣∣
= α

∣∣∣∣y −
((

1 − 1
α

)
g0(x) + 1

α
g(x)

)∣∣∣∣ ,
and consequently,

‖g0 − g‖ − r
3

≤ αeF
((

1 − 1
α

)
g0 + 1

α
g
)

.

Therefore, for ‖g0 − g‖ ≥ 2r
3 we have

eF(g0) ≤ eF
((

1 − 1
α

)
g0 + 1

α
g
)

. (17)

On the other hand, for ‖g0 − g‖ < 2r
3 , it follows from (13) and (16) that

eF(g0) =
(
1 − 1

α

)
eF(g0) + 1

α
eF(g0) ≤

(
1 − 1

α

)
eF(g0) + 1

α
eF(g)

≤ eF
((

1 − 1
α

)
g0 + 1

α
g
)

.

(18)

According to (15), (17) and (18), we have

eFα (g0) ≤ eFα (g) for all g ∈ G.

If eF(g0) = 0, the last inequality also holds. So, g0 is a best approximation to Fα from G. Since G is a
set-sun, g0 is a solar point of G. Lemma 3.1 shows that g0 is a best approximation to

(
Fα

)
1
α
from G.

As
(
Fα

)
1
α

= F, the proof is complete.
(b) ⇒ (c). The proof of this implication is the same as in ([17], Theorem 2.6).
(c) ⇒ (a). Assume that G has the weak betweeness property. Let G : X → H(R) be a continuous

set valued function and let g0 be a best approximation to G from G. Suppose that there exist g ∈ G
and 0 < α < 1 such that eG((1− α)g0 + αg) < eG(g0). Set F = g0 + 1

α
(G − g0). Replacing in (15), F,

F 1
α
and h by G, F and g , respectively, we obtain
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OPTIMIZATION 7

αeF(h) = eG((1 − α)g0 + αh), h ∈ C(X). (19)

Hence, eF(g) < eF(g0) and so δ := 1
2 (eF(g0) − eF(g)) > 0. Put

A = {(x, y) ∈ YF : |y − g0(x)| ≥ eF(g0) − δ}.

For (x, y) ∈ A, we have

|y − g0(x)| ≥ eF(g0) − δ = eF(g0) + eF(g)
2

> eF(g) ≥ |y − g(x)|,

and from (8) we get
(y − g0(x))(g(x) − g0(x)) > 0. (20)

Obviously, A is a compact set and therefore p1(A) is a compact set. In addition, by (20) it follows that
min

x∈p1(A)
|g(x) − g0(x)| > 0. So, by the weak betweeness property there is a v ∈ G such that

‖v − g0‖ < δ α, and (g(x) − v(x))(v(x) − g0(x)) > 0 for all x ∈ p1(A). (21)

Let (x, y) ∈ A. If y − g0(x) > 0, from (20) we get g(x) − g0(x) > 0 and by (21), g0(x) < v(x) < g(x).
If y − g0(x) < 0 , by a similar argument we have g(x) < v(x) < g0(x). So, we deduce that

(y − g0(x))(v(x) − g0(x)) > 0 for all (x, y) ∈ A.

Therefore, for (x, y) ∈ A we have sgn((y − g0(x)) = sgn(v(x) − g0(x)) and∣∣∣∣y −
((

1 − 1
α

)
g0(x) + 1

α
v(x)

)∣∣∣∣ = 1
α

∣∣α(y − g0(x)) − (v(x) − g0(x))
∣∣

= 1
α

∣∣α|y − g0(x)| − |v(x) − g0(x)|
∣∣

< |y − g0(x)| ≤ eF(g0).

On the other hand, for (x, y) ∈ YF \ A it follows from the definition of A that∣∣∣∣y −
((

1 − 1
α

)
g0(x) + 1

α
v(x)

)∣∣∣∣ = 1
α

∣∣α(y − g0(x)) − (v(x) − g0(x))
∣∣

≤ |y − g0(x)| + 1
α

‖v − g0‖
<

(
eF(g0) − δ

) + δ = eF(g0).

Consequently, eF
((
1 − 1

α

)
g0 + 1

α
v
)
< eF(g0). Finally, from (19) we conclude that eG(v) < eG(g0), a

contradiction. Therefore

eG(g0) ≤ eG((1 − α)g0 + αg), for all g ∈ G, 0 < α < 1, (22)

and so G is a set-sun. �

4. Best simultaneous Chebyshev approximation

A necessary condition for best simultaneous Chebyshev approximation is established by the next
theorem.
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8 H. H. CUENYA AND F. E. LEVIS

Theorem 4.1: Let G ⊂ C(X) be a family with the weak betweeness property and let D ⊂ C(X). Let
g0 ∈ G be a best simultaneous Chebyshev approximation to D from G. If there exists f ∈ D satisfying

(a) D \ {f } is a compact set,
(b) ‖h − g0‖ < ‖f − g0‖ for all h ∈ D \ {f },
(c) F := FD is continuous,

then g0 is a best approximation to f from G.

Proof: We claim that

MF(g0) = {x ∈ X : |f (x) − g0(x)| = ‖f − g0‖}. (23)

Indeed, if x ∈ MF(g0), from (b) we get sup
h∈D

|h(x)− g0(x)| = ‖f − g0‖. By (a),D is a compact set, thus

|g(x) − g0(x)| = ‖f − g0‖ for some g ∈ D. According to (b) we have g = f , and so |f (x) − g0(x)| =
‖f − g0‖. On the other hand, if |f (x) − g0(x)| = ‖f − g0‖ and h ∈ D \ {f }, then (b) implies that
|h(x) − g0(x)| ≤ ‖h − g0‖ < ‖f − g0‖ = |f (x) − g0(x)|. Hence, sup

h∈D
|h(x) − g0(x)| = sup

h∈D
‖h − g0‖

and consequently, x ∈ MF(g0).
Suppose that g0 is not a best approximation to f from G. As F is a continuous function, Theorem

2.2 implies that there is g ∈ G with

|f (x) − g(x)| < ‖f − g0‖ for all x ∈ MF(g0). (24)

If x ∈ MF(g0) and g0(x) = g(x), from (23) we get ‖f − g0‖ = |f (x) − g0(x)| = |f (x) − g(x)|, which
contradicts (24). Therefore for x ∈ MF(g0) we have g0(x) �= g(x).

SinceMF(g0) is a closed set and

α = min
x∈MF (g0)

|g(x) − g0(x)| > 0, (25)

the weak betweeness property implies that there exists a sequence {gn}n∈N ⊂ G such that ‖gn−g0‖ →
0, as n → ∞, and

(gn(x) − g0(x))(g(x) − gn(x)) > 0 for all x ∈ MF(g0), n ∈ N.

As ∣∣∣∣∣ sup
h∈D\{f }

‖h − gn‖ − sup
h∈D\{f }

‖h − g0‖
∣∣∣∣∣ ≤ ‖gn − g0‖,

from (a) and (b) we can choose n0 ∈ N such that

‖gn0 − g0‖ <
α

2
, and ‖h − gn0‖ < ‖f − g0‖ = eF(g0) for all h ∈ D \ {f }. (26)

Let x ∈ MF(g0). We claim that

g0(x) < gn0(x) <
g0(x) + g(x)

2
< f (x) if g0(x) < gn0(x) < g(x).

In fact, from (25)–(26) we get gn0(x) − g0(x) < g(x)−g0(x)
2 and so gn0(x) < g0(x)+g(x)

2 . According to
(24) we have g0(x) < f (x). If g(x) < f (x), clearly g0(x)+g(x)

2 < f (x). Otherwise, g0(x) < f (x) ≤ g(x),
so (24) implies that g(x) − f (x) < f (x) − g0(x) and thus g0(x)+g(x)

2 < f (x).
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A similar argument shows that

f (x) <
g0(x) + g(x)

2
< gn0(x) < g0(x) if g(x) < gn0(x) < g0(x).

Hence,
|f (x) − gn0(x)| < |f (x) − g0(x)| = eF(g0) for all x ∈ MF(g0). (27)

Now, (26) and (27) imply that

EF(gn0 , x) < eF(g0) for all x ∈ MF(g0).

In consequence, according to Theorem 2.2 we have that g0 ∈ G is not a best simultaneous approxi-
mation to D from G, a contradiction. �
Remark 4.2: Let D ⊂ C(X) and f ∈ D. The conditions (a) and (b) of Theorem 4.1 are equivalent
to the conditions: inf

h∈D\{f }
(‖f − g0‖ − ‖h − g0‖) > 0 and D a compact set.

The following result is an immediate consequence of Theorem 4.1. It gives a necessary condition
for best simultaneous Chebyshev approximation from a family with the weak betweeness property
similar to those discovery by Amir and Ziegler for convex sets and two functions (see [18]). It is
unknown for approximation from no convex sets and for a set of functions with cardinality greater
than two.
Theorem 4.3: Let G ⊂ C(X) be a family with the weak betweeness property and let D ⊂ C(X) be
such thatD \ {h} is a compact set for all h ∈ D and FD is continuous. Let g0 ∈ G be a best simultaneous
Chebyshev approximation to D from G. Then either

(a) there exist f , h ∈ D such that ‖f − g0‖ = ‖h − g0‖, or
(b) there exists f ∈ D such that ‖h − g0‖ < ‖f − g0‖ for all h ∈ D \ {f } and g0 is the best

approximation to f from G.

Given f , g ∈ C(X), we will denote by γ +(f , g) the one-sided Gateaux derivative of the norm at f
in the direction g , i.e.

γ+(f , g) = max{sgn(f (x))g(x) : x ∈ X and |f (x)| = ‖f ‖}. (28)

The next result extends ([19], Theorem 5) for Chebyshev approximation and a class G more
general than a closed subspace.
Theorem 4.4: Let G ⊂ C(X) be a family with the weak betweeness property, and f1, f2 ∈ C(X).

Consider the following conditions:

(a) γ+(f1 − g0, g0 − g) ≥ 0 or γ+(f2 − g0, g0 − g) ≥ 0, for every g ∈ G;
(b) ‖f1 − g0‖ = ‖f2 − g0‖;
(c) ‖f2 − g0‖ < ‖f1 − g0‖ and g0 is the best approximation to f1 from G;
(d) ‖f1 − g0‖ < ‖f2 − g0‖ and g0 is the best approximation to f2 from G.

Then g0 ∈ G is a best simultaneous Chebyshev approximation to {f1, f2} from G if and only if (a) and
exactly one of (b), (c) or (d) hold.
Proof: Assume that g0 ∈ G is a best simultaneous Chebyshev approximation to {f1, f2} from G and
letMj := {(x, fj(x)) : |fj(x) − g0(x)| = ‖fj − g0‖}, j = 1, 2. It follows easily that

M̂F(g0) =
⎧⎨
⎩
M1 ∪ M2 if ‖f1 − g0‖ = ‖f2 − g0‖

M1 if ‖f2 − g0‖ < ‖f1 − g0‖
M2 if ‖f1 − g0‖ < ‖f2 − g0‖

. (29)
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10 H. H. CUENYA AND F. E. LEVIS

If g ∈ G, by Theorem 2.4 we have

max
(x,y)∈M̂F (g0)

ÊF(g0, x, y)(g0(x) − g(x)) ≥ 0. (30)

Since ÊF(g0, x, y) = eF(g0)sgn(y − g0(x)) for all (x, y) ∈ M̂F(g0), from (28) and (29) we have
max
j=1,2

{γ+(fj − g0, g0 − g)} ≥ 0. Therefore (a) holds.

On the other hand, according to Theorem 4.3, exactly one of (b), (c) or (d) hold.
Reciprocally, we assume that (a) and (b) (or (c)) holds and let g ∈ G. If γ+(f1 − g0, g0 − g) ≥ 0,

from Proposition 1.4 in [20], we have ‖f1 − g‖ − ‖f1 − g0‖ ≥ γ+(f1 − g0, g0 − g) ≥ 0. Hence,

max{‖f1 − g0‖, ‖f2 − g0‖} = ‖f1 − g0‖ ≤ ‖f1 − g‖ ≤ max{‖f1 − g‖, ‖f2 − g‖}.

Otherwise, γ+(f2 − g0, g0 − g) ≥ 0 and similarly we obtain ‖f2 − g0‖ ≤ ‖f2 − g‖. Now, (b) or (c)
implies

max{‖f1 − g0‖, ‖f2 − g0‖} = ‖f1 − g0‖ ≤ max{‖f1 − g‖, ‖f2 − g‖}.
As g ∈ G is arbitrary, g0 ∈ G is a best simultaneous Chebyshev approximation to {f1, f2} from G. The
same reasoning applies to the case (a) and (d). �
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