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We determine dominant next-to-next-to-leading order QCD corrections to single-inclusive jet produc-
tion at the LHC and Tevatron, using the established threshold resummation framework. In contrast to
previous literature on this topic, our study incorporates all of the following features: (1) It properly accounts
for the way a jet is defined in experiment and treated in available full next-to-leading order calculations,
(2) it includes the three leading classes of logarithmic terms in the perturbative expansion, and (3) it is
adapted to the full kinematics in jet transverse momentum and rapidity relevant for experiments. A recent
full next-to-next-to-leading order calculation in the purely gluonic channel allows us to assess the region
where our approximate corrections provide an accurate description. We expect our results to be important
on the way to precision jet phenomenology at the LHC and as a benchmark for further full next-to-next-to-
leading order calculations.
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Introduction.—The production of high-transverse-
momentum hadron jets plays a fundamental role at the
LHC [1] and at Tevatron [2]. Jets are produced very
copiously, making them precision probes of the physics
of the standard model and beyond. Theoretical calculations
whose precision matches that achievable in experiment are
of critical importance. The efforts made in this context have
spanned more than three decades now, culminating, so far,
with the recent calculation of the next-to-next-to-leading
order (NNLO) perturbative corrections to jet production in
the “gluon-only” channel [3,4].
As complete NNLO calculations of jet production are

probably still a few years away, it is useful to determine
approximate NNLO results, at least in certain kinematical
regimes. This is possible thanks to the fact that the
perturbative series for the partonic cross sections contains
classes of logarithmic terms that often dominate.
Resummation techniques in QCD [5] allow us to determine
the all-order structure of these logarithmic terms, and one,
therefore, also obtains the logarithms present at NNLO.
Knowledge of approximate NNLO expressions is very
useful, since it potentially offers an avenue toward more
precise phenomenology than available on the basis of the
presently known full next-to-leading order (NLO) correc-
tions. It also serves as a benchmark for future full NNLO
calculations.
The logarithms just mentioned arise near a threshold

from which the production of a jet becomes possible in a
partonic collision. They are hence known as “threshold
logarithms.” The threshold is set by a vanishing invariant
mass

ffiffiffiffiffi
s4

p
of the partonic system that recoils against the

observed jet. At the kth order of perturbation theory, one
finds threshold corrections to the Born cross section of the

form αks ½logmðzÞ=z�þ, with 0 ≤ m ≤ 2k − 1, where z ¼
s4=s with

ffiffiffi
s

p
the center-of-mass energy of the incoming

partons. The systematic resummation of these logarithms to
all orders in the strong coupling αs was derived for the case
of jet production in [5], where explicit next-to-leading
logarithmic (NLL) results were given that in principle allow
us to resum the three “towers” of logarithms with
m ¼ 2k − 1, 2k − 2, 2k − 3.
An important “subtlety” was pointed out in [5] concern-

ing the threshold logarithms in jet production: the structure
of the logarithmic corrections depends on whether or not
the jet is assumed to be massless at the partonic threshold,
even at the leading-logarithmic (LL) level. If the jet is taken
to be massless at threshold, an approach for which we will
use the term “scheme (1)” in the following, LL corrections
arise in the resummed perturbative function describing the
jet. If, on the other hand, the jet is permitted to have a
nonvanishing invariant mass at threshold [“scheme (2)”],
the leading logarithms cancel, leaving behind a nonleading
logarithm whose coefficient depends on jet “size” param-
eter R introduced by the jet algorithm. The difference
between the two schemes may be understood from the fact
that fewer final states contribute in scheme (1) than in
scheme (2) [5].
Approximate NNLO corrections for jet production have

been derived in [6–8], adopting scheme (1). As one can see
in the very recent study [7], the NLO terms predicted for
scheme (1) fail to match a full NLO calculation [9] even in
a regime where threshold logs are known to dominate. This
becomes particularly evident from the fact that the thresh-
old terms for scheme (1) do not carry any dependence on
the jet parameter R, whereas the full NLO results do. These
features observed in [7] are, in fact, not surprising: explicit
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analytical NLO calculations [10,11] have shown that jets
produced close to the partonic threshold do span a range of
jet masses. Indeed, for any jet algorithm the jet produced in
the perturbative calculation can evidently contain two or
more partons and, hence, have a nonvanishing invariant
mass. This is even the case at exact threshold z ¼ 0, when,
for example, only a single parton recoils against the entire
jet. The maximally allowed jet mass at threshold will
depend on the parameter R used in the jet algorithm.
Thus, the assumption of massless jets at threshold that

was made in previous studies [6–8] does not appear to be
appropriate. Instead, the resummation ought to be carried
out within scheme (2). A resummed study in this scheme
was, in fact, performed in [12], where, however, only the
rapidity-integrated cross section was considered, for which
the resummation simplifies considerably. Integration over
all rapidity is not quite adequate for comparisons with
experimental data. In the present Letter, we present new
predictions for the NNLO threshold terms, using scheme
(2) and keeping full dependence on rapidity in the
calculation. We will also go beyond the previous studies
[6,7] by determining all three most leading logarithmic
contributions ∝ ðlog3ðzÞ=zÞþ, ðlog2ðzÞ=zÞþ, ðlogðzÞ=zÞþ at
NNLO. The last of these is new; it may be obtained by
matching the resummation framework to a full NLO
calculation. For the latter we choose that of [10,11], which
provides analytical results for the partonic cross sections.
The calculation was performed assuming that the produced
jet is rather narrow [“narrow-jet approximation” (NJA)]. It
has been shown that this approximation is extremely
accurate even at relatively large jet sizes of R≳ 0.7.
Theoretical framework.—The factorized cross section

for the single-inclusive production of a jet with transverse
momentum pT and pseudorapidity η may be written as

p2
Td

2σ

dp2
Tdη

¼
X
ab

Z
Vð1−WÞ

0

dz
Z

1−ð1−VÞ=ð1−zÞ

VW=ð1−zÞ
dvxafaðxa; μfÞ

× xbfbðxb; μfÞ
dσ̂ab
dvdz

ðv; z; pT; μr; μf; RÞ; (1)

where V ¼ 1 − xTe−η=2, VW ¼ xTeη=2, with xT ¼
2pT=

ffiffiffi
S

p
and the hadronic center-of-mass energy

ffiffiffi
S

p
.

The sum runs over all partonic collisions producing the
jet; dσ̂ab denote the corresponding partonic hard-scattering
cross sections and fa, fb the parton distribution functions at
momentum fractions xa ¼ VW=vð1 − zÞ, xb ¼ ð1 − VÞ=
ð1 − vÞð1 − zÞ. The partonic cross sections are computed in
QCD perturbation theory. As indicated, besides depending
on pT and the usual renormalization and factorization
scales μr, μf, they are functions of the partonic kinematic
variables, which we have chosen as

v ¼ u
tþ u

; z ¼ s4
s
; (2)

where s ¼ xaxbS is the partonic center-of-mass energy
squared, t ¼ ðpa − pJÞ2, u ¼ ðpb − pJÞ2 (with pa;b and pJ
the four-momenta of the initial partons and the jet,
respectively), and s4 is the invariant mass squared of the
“unobserved” partonic system recoiling against the jet. We
stress that the dσ̂ab also depend on the algorithm adopted to
define the jet, as indicated by the generic jet parameter R in
Eq. (1). We always assume the jet to be defined by the anti-
kt algorithm [13].
The perturbative series for each of the partonic scattering

cross sections may be cast into the form

sdσ̂ab
dvdz

¼
�
αs
π

�
2
�
ωð0Þ
ab þ αs

π
ωð1Þ
ab þ

�
αs
π

�
2

ωð2Þ
ab þOðα3sÞ

�
;

(3)

where αs ≡ αsðμÞ is the strong coupling constant, and
where each of the ωðkÞ

ab is a function of v, z and, for k > 0, of
R and pT=μ (we choose, from now on, μr ¼ μf ≡ μ). At
lowest order we have

ωð0Þ
ab ðv; zÞ≡ ~ωð0Þ

ab ðvÞδðzÞ; (4)

since the recoiling system is a single massless parton.
Hence, z ¼ 0 sets a threshold for the process to take place,
since the transverse momentum of the observed jet always
needs to be balanced. At higher orders in perturbation
theory, the hard scattering functions contain logarithmic
distributions in z, with increasing powers of logarithms as
the perturbative order increases. More precisely, one has
near the threshold at z ¼ 0

αksω
ðkÞ
ab ∼ αks

�
logmðzÞ

z

�
þ
; with 0 ≤ m ≤ 2k − 1. (5)

Here,
R
1
0 dzgðzÞ½fðzÞ�þ ≡ R

1
0 dz½gðzÞ − gð0Þ�fðzÞ. As one

can see, two additional powers of the logarithm arise for
every order of perturbation theory. Because of the integra-
tion against the parton distribution functions, which are
steeply falling functions of momentum fraction, the thresh-
old region z → 0 typically makes significant contributions
to the hadronic cross section. This is particularly the case
when the kinematic boundary of the hadronic reaction is
approached, that is, when xT cosh η → 1.
As is well known, the large logarithmic corrections

arising in the threshold region are associated with the
emission of soft or collinear gluons. It is, therefore, possible
to systematically determine the structure of the corrections
to all orders and to resum the “towers” of logarithms with
m ¼ 2k − 1; 2k − 2;…. This may be used to derive
approximate beyond-NLO corrections for hadronic jet
production, by expanding the resummed result appropri-
ately to the desired order [6,7,12]. To achieve the all-order
resummation, one considers Mellin moments in ð1 − zÞ of
the partonic cross section
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Ωabðv; NÞ≡
Z

1

0

dzð1 − zÞN−1 sdσ̂ab
dvdz

. (6)

In moment space, the resummed hard-scattering function
Ωres

ab can, at large N, be written as [5,14]

Ωres
abðv; NÞ ¼

X
c;d

ΔaðNaÞΔbðNbÞJðjetÞc ðN;RÞJðrecoilÞd ðNÞ

× ΔðintÞ
ab→cdðN; vÞΔðngÞ

c ðNÞ; (7)

where Na ¼ vN, Nb ¼ ð1 − vÞN and the sum runs over the
two final-state partons c, d in an underlying ab → cd
subprocess. Here it is assumed that parton c produces the
jet (in a way that we shall clarify below), while the recoiling
parton d remains unobserved. Each of the terms is also a
function of αsðμÞ and logðμ2=sÞ, which we have not written
explicitly. Each of the functions Δa, Δb, J

ðjetÞ
c , JðrecoilÞd is an

exponential. Δa, Δb resum threshold logarithms arising
from soft or collinear radiation off the incoming hard
partons. Their expressions are very well known and may be
found in the form we need them in, for example, [14].
Likewise, also the expression for gluon radiation off the
“unobserved” recoiling parton d is standard and may be

found there. Δa, Δb, and JðrecoilÞd contain all the leading

logarithmic pieces ∝ ðlog3ðzÞ=zÞþ, ðlog2ðzÞ=zÞþ in ωð2Þ
ab .

A crucial point of our study concerns the function
JðjetÞc used for the actual jet. As was shown in [5], this
function takes different forms depending on whether one
assumes the jet to become itself massless at threshold or
not. These two forms differ even at leading logarithmic
level. For scheme (2) introduced earlier, we have to next-to-
leading logarithmic accuracy [5]

log JðjetÞc ¼
Z

s=N̄2

s

dq2

q2
αsðq2Þ

�
−
Cc

2π
log

�
p2
TR

2

s

��
; (8)

where N̄ ≡ NeγE with the Euler constant γE, and where Cc
denotes the color charge of parton c, Cq ¼ CF for a quark

and Cg ¼ CA for a gluon. As expected, J
ðjetÞ
c is a function of

R in this scheme.
The function ΔðintÞ

ab→cdðN; vÞ is obtained as a trace in color
space over hard, soft, and anomalous dimension matrices
[5]. All details have been given in [6] and need not be
repeated here. The function contributes at NLL level and is
the only function in the resummed expression that carries
explicit dependence on v.

Finally, ΔðngÞ
c ðNÞ in (7) contains the contributions from

nonglobal logarithms. These were shown [15] to arise when
an observable is sensitive to radiation in only a part of phase
space, as is the case for a jet defined by some jet “size”
parameter R. Their resummation is highly nontrivial.
Nonglobal logarithms for jet production first enter as a

term ∝ ½logðzÞ=z�þ in ωð2Þ
ab . As discussed in [16], the

nonglobal terms arise independently from the boundary
of each individual (narrow) “observed” jet. The appropriate
second-order coefficient for our case of a single-inclusive
jet cross section may, therefore, be directly obtained from
[15,16], adjusting the argument of the logarithm properly.
We note that these considerations—and in fact the general
structure of our resummed cross section—apply to the anti-
kt algorithm [16]. Finally, we also mention that the non-
global component makes a rather small contribution (a few
percent) to our numerical NNLO results presented below.
All in all, after performing the Mellin inverse to z space, the

two-loop expansion of the product ΔðintÞ
ab→cdðN; vÞΔðngÞ

c ðNÞ
in Eq. (7) takes the form

�
αs
π

�
2
�
~ωð0Þ
ab ðvÞ

�
δðzÞ þ 1

2

�
αs
π

�
2

CðngÞc

�
logðzÞ

z

�
þ

�

þ αs
π

�
T ab→cdðvÞδðzÞ þ Gð1Þ

ab→cdðvÞ
�
1

z

�
þ

�

þ
�
αs
π

�
2

Gð2Þ
ab→cdðvÞ

�
logðzÞ

z

�
þ

�
; (9)

with CðngÞc ¼ −CACcπ
2=3 for the coefficient of the non-

global term. The coefficients Gð1Þ
ab→cdðvÞ are predicted by the

resummation formalism. The coefficients T ab→cdðvÞ may
be derived by comparison to the explicit NLO results of
[11] in the narrow-jet approximation. Along with the
known resummation coefficients, knowledge of the

T ab→cdðvÞ is sufficient for determining Gð2Þ
ab→cdðvÞ

[17,18]. In this way, combining with the contributions

from Δa, Δb, J
ðjetÞ
c , JðrecoilÞd , we obtain full control over the

terms ∝ ðlog3ðzÞ=zÞþ, ðlog2ðzÞ=zÞþ, ðlogðzÞ=zÞþ in ωð2Þ
ab .

Phenomenological results and discussion.—Figure 1
shows results for the differential single-inclusive jet cross
section at the LHC, at lowest order as well as for the NLO

FIG. 1 (color online). Differential cross section for jet produc-
tion in pp collisions at the LHC at

ffiffiffi
S

p ¼ 8 TeV, using the anti-kt
algorithm with R ¼ 0.7.
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and NNLO threshold terms. Here we use the CTEQ6.6 [19]
parton distribution functions and scale μ ¼ pT . The left part
of Fig. 2 displays the corresponding “K-factors,” defined as
ratios of higher-order cross sections over the leading-order
(LO) one, while the right part of the figure is for pp̄
collisions at Tevatron at

ffiffiffi
S

p ¼ 1.96 TeV. Results are
presented for various jet parameters R. The dotted lines
show the NLO results of [11] which were obtained in the
NJA for the anti-kt algorithm. We note that these agree with
the NLO ones by the “FASTJET” code [9] (as shown in [7])
to better than 3%, even at R ¼ 0.7. The dashed lines present
the results for the NLO expansion of the threshold terms. It
is evident that the latter provide a very faithful description
of the full NLO results for much of the pT ranges relevant at
LHC and Tevatron. This holds true for each value of R,
thanks to the fact that the threshold logarithms carry R
dependence in our approach, in contrast to that in [6,7].
Finally, the solid lines display the approximate NNLO
results. These show a striking further increase of the jet
cross sections as compared to NLO, particularly so at high
pT where the threshold terms are expected to dominate.
Given the large size of the NNLO corrections observed

in Fig. 2, it is, of course, crucial to verify that the predicted
enhancements are realistic. Fortunately, recently a full
NNLO calculation for jet production in the “gluon-only”
channel was presented [3,4], corresponding to gg scattering
and to setting the number of flavors Nf ¼ 0 in the partonic
matrix elements. It is straightforward to compute our
threshold terms in this limit. The comparison is shown
in Fig. 3. One can see that the large enhancement at high pT
predicted by the NNLO threshold terms is very nicely
consistent with the full result. Judging from the compari-
son, the NNLO threshold terms become accurate at about
pT ¼ 400 GeV for the chosen rapidity interval. Additional
comparisons with the results of [4] show that this value is
representative of rapidity intervals that contain the domi-
nant region η ≈ 0. One also finds that at very forward
rapidities, η ∼ 4, our results indicate substantial NNLO K

factors of order 5 or so at pT ∼ 40 GeV. This, again,
appears to be consistent with the results shown in [4]. In
this regime, the coefficients of the threshold logarithms
become large, due to “small-x” t-channel gluon exchange
contributions. It will be important for future work to
address this region in more detail in order to derive reliable
predictions for the forward jet cross section at the LHC.
Such contributions may also be responsible in part for the
rise of the K factor toward lower pT. This rise is more
pronounced for the NNLO threshold terms, implying that
subleading contributions become relevant here. Whether
these are related to subleading logarithmic terms, or to
terms that vanish at partonic threshold z ¼ 0, will need to
be studied in more detail. In order to shed light on terms of
the latter type, the dashed line in Fig. 3 shows the NNLO
threshold result found when using a different angular
variable, v0 ≡ 1þ t=s ¼ zþ vð1 − zÞ, in Eq. (1). Clearly,
v0 ¼ vþOðzÞ. The difference between the two NNLO
threshold results indicates a typical uncertainty of the
prediction obtained from threshold resummation.
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