BEST SIMULTANEOUS APPROXIMATION ON SMALL REGIONS BY RATIONAL FUNCTIONS

H. H. CUENYA, F. E. LEVIS, AND A. N. PRIORI

Abstract

We study the behavior of best simultaneous (l^{q}, L^{p})-approximation by rational functions on an interval, when the measure tends to zero. In addition, we consider the case of polynomial approximation on a finite union of intervals. We also get an interpolation result.

1. Introduction

Let $x_{j} \in \mathbb{R}, 1 \leq j \leq k, k \in \mathbb{N}$, and let B_{j} be pairwise disjoint closed intervals centered at x_{j} and radius $\beta>0$. Let $n, m \in \mathbb{N} \cup\{0\}$ and we suppose that

$$
n+m+1=k c+d, \quad c, d \in \mathbb{N} \cup\{0\}, \quad d<k
$$

We denote $\mathcal{C}^{s}(I), s \in \mathbb{N} \cup\{0\}$, the space of real functions defined on $I:=\cup_{j=1}^{k} B_{j}$, which are continuously differentiable up to order s on I. For simplicity we write $\mathcal{C}(I)$ instead of $\mathcal{C}^{0}(I)$. We also denote $\operatorname{co}(I)$ the convex hull of I. Let Π^{n} be the class of algebraic polynomials of degree at most n, and ∂P the degree of $P \in \Pi^{n}$. We consider the set of rational functions

$$
\mathcal{R}_{m}^{n}:=\left\{\frac{P}{Q}: P \in \Pi^{n}, Q \in \Pi^{m}, Q \neq 0\right\}
$$

Clearly, we can assume $\frac{P}{Q} \in \mathcal{R}_{m}^{n}$ with L^{2}-norm of Q equal to one on I. Recall that $\frac{P}{Q} \in \mathcal{R}_{m}^{n}$ is called normal if this expression is irreducible and either $\partial P=n$ or $\partial Q=m$, and the null function is called normal if $m=0$ (see [10).

If $h \in \mathcal{C}(I)$, we put

$$
\|h\|:=\left(\int_{I}|h(t)|^{p} \frac{d t}{|I|}\right)^{1 / p}, \quad 1 \leq p<\infty
$$

where $|I|$ is the Lebesgue measure of I. If $p=\infty$, as it is usual, $\|\cdot\|$ will be the supreme norm. For each $0<\epsilon \leq 1$, we also put $\|h\|_{\epsilon}=\left\|h^{\epsilon}\right\|$, where $h^{\epsilon}(t)=$ $h\left(\epsilon\left(t-x_{j}\right)+x_{j}\right), t \in B_{j}$.

[^0]If $\chi_{B_{j}}$ is the characteristic function of the set B_{j}, we write $\|h\|_{B_{j}}=\left\|h \chi_{B_{j}}\right\|$. We denote $I_{\epsilon}=\cup_{j=1}^{k}\left[x_{j}-\epsilon \beta, x_{j}+\epsilon \beta\right]$.

Let $f_{1}, \ldots, f_{l} \in \mathcal{C}(I)$ and $1 \leq q<\infty$. The rational function $u_{\epsilon} \in \mathcal{R}_{m}^{n}, 0<\epsilon \leq 1$, is called a best simultaneous $\left(l^{q}, L^{p}\right)$-approximation $\left(\left(l^{q}, L^{p}\right)\right.$-b.s.a.) of f_{1}, \ldots, f_{l} from \mathcal{R}_{m}^{n} on I_{ϵ} if

$$
\begin{equation*}
\left(\sum_{i=1}^{l}\left\|f_{i}-u_{\epsilon}\right\|_{\epsilon}^{q}\right)^{1 / q}=\inf _{u \in \mathcal{R}_{m}^{n}}\left(\sum_{i=1}^{l}\left\|f_{i}-u\right\|_{\epsilon}^{q}\right)^{1 / q} \tag{1}
\end{equation*}
$$

For $q=\infty$, we need to consider in (1) the supreme norm on \mathbb{R}^{l}.
If a net $\left\{u_{\epsilon}\right\}$ has a limit in \mathcal{R}_{m}^{n} as $\epsilon \rightarrow 0$, it is called a best simultaneous local (l^{q}, L^{p})-approximation of f_{1}, \ldots, f_{l} from \mathcal{R}_{m}^{n} on $\left\{x_{1}, \ldots, x_{k}\right\}\left(\left(l^{q}, L^{p}\right)\right.$-b.s.l.a. $)$.

A pair $(P, Q) \in \Pi^{n} \times \Pi^{m}$ is a Padé approximant pair of f on $\left\{x_{1}, \ldots, x_{k}\right\}$ if $Q \neq 0$ and

$$
(Q f-P)(x)=o\left(\left(x-x_{j}\right)^{c-1}\right), \quad \text { as } x \rightarrow x_{j}, 1 \leq j \leq k
$$

If $\left(f-\frac{P}{Q}\right)(x)=o\left(\left(x-x_{j}\right)^{c-1}\right)$, as $x \rightarrow x_{j}, 1 \leq j \leq k$, then $\frac{P}{Q}$ is called a Padé rational approximant of f on $\left\{x_{1}, \ldots, x_{k}\right\}$. This rational approximant may not exist. If $d=0$ there is at most one, and we denote it by $\mathrm{Pa}(f)$ when it exists.

In [6] the author studied properties of interpolation of best rational approximation to a single function with respect to an integral norm, which includes the L^{p}-norm, $1 \leq p<\infty$. In [7] the authors proved that the best approximation to $l^{-1} \sum_{j=1}^{l} f_{j}$ from an arbitrary class of functions, S, is identical with the $\left(l^{2}, L^{2}\right)$ b.s.a. of f_{1}, \ldots, f_{l} from S. However it is known that the $\left(l^{q}, L^{p}\right)$-b.s.a., in general, does not match with the best approximation to the mean of the functions f_{1}, \ldots, f_{l} when $S=\Pi^{n}$ (see [8]). The (l^{∞}, L^{p})-b.s.l.a. from Π^{n} was studied in [4] and [5]. In [2], the authors showed that the $\left(l^{q}, L^{p}\right)$-b.s.l.a. to two functions is the average of their Taylor polynomials.

In this paper, we prove an interpolation property of any $\left(l^{q}, L^{p}\right)$-b.s.a. to two functions from \mathcal{R}_{m}^{n}. As a consequence, we prove the existence and characterization of the $\left(l^{q}, L^{p}\right)$-b.s.l.a. when $q>1$ and $k=1$. Analogous results over $\left(l^{q}, L^{p}\right)$-b.s.l.a. were obtained, for $m=0$, in several intervals. All our theorems generalize previous results for a single function.

2. Preliminary results

Henceforward we suppose that $1<p<\infty$ and $1 \leq q<\infty$, except in Lemma 4.3 and Theorem 4.4 where we assume $q>1$. First, we establish an existence theorem for the $\left(l^{q}, L^{p}\right)$ - b.s.a.

Theorem 2.1. Let $f_{1}, f_{2} \in \mathcal{C}(I)$ and $0<\epsilon \leq 1$. Then there exists a $\left(l^{q}, L^{p}\right)$ - b.s.a. of f_{1}, f_{2} from \mathcal{R}_{m}^{n} on I_{ϵ}.

Proof. Let $\left\{v_{r}=\frac{P_{r}}{Q_{r}} \in \mathcal{R}_{m}^{n}: r \in \mathbb{N}\right\}$ be such that

$$
\sum_{i=1}^{2}\left\|f_{i}-v_{r}\right\|_{\epsilon}^{q} \rightarrow \inf _{v \in \mathcal{R}_{m}^{n}} \sum_{i=1}^{2}\left\|f_{i}-v\right\|_{\epsilon}^{q}:=b \quad \text { as } r \rightarrow \infty
$$

It is easy to see that $\left\{\left\|v_{r}\right\|_{\epsilon}: r \in \mathbb{N}\right\}$ is a bounded set. As the sequence $\left\{Q_{r}\right\}_{r \in \mathbb{N}}$ is uniformly bounded on compact sets, $\left\{\left\|P_{r}\right\|_{\epsilon}: r \in \mathbb{N}\right\}$ is a bounded set. Now, following the same patterns of the proof of existence for best rational approximation to a single function (see [11, Theorem 2.1]), we can find a subsequence $v_{r^{\prime}}$ which converges to $v \in \mathcal{R}_{m}^{n}$ verifying $\sum_{i=1}^{2}\left\|f_{i}-v\right\|_{\epsilon}^{q}=b$, i.e., v is a $\left(l^{q}, L^{p}\right)$ - b.s.a.

The following two lemmas can be proved analogously to [6, p. 88] and [1, p. 236], respectively.
Lemma 2.2. Let $f_{1}, f_{2} \in \mathcal{C}(I)$ and $0<\epsilon \leq 1$. Suppose that $u_{\epsilon}=\frac{P_{\epsilon}}{Q_{\epsilon}} \in \mathcal{R}_{m}^{n}$ is a $\left(l^{q}, L^{p}\right)$-b.s.a. of f_{1}, f_{2}, from \mathcal{R}_{m}^{n} on I_{ϵ}, and $f_{j} \neq u_{\epsilon}$ on $I_{\epsilon}, 1 \leq j \leq 2$. Then

$$
\begin{equation*}
\sum_{j=1}^{2} \beta_{j}\left(\int_{I_{\epsilon}}\left|f_{j}-u_{\epsilon}\right|^{p-1} \operatorname{sgn}\left(f_{j}-u_{\epsilon}\right) \frac{P_{\epsilon} Q-P Q_{\epsilon}}{Q_{\epsilon}^{2}}\right) \geq 0, \quad \frac{P}{Q} \in \mathcal{R}_{m}^{n} \tag{2}
\end{equation*}
$$

where $\beta_{j}=\beta_{j}(\epsilon):=\frac{q}{p}\left\|f_{j}-u_{\epsilon}\right\|_{\epsilon}^{p\left(\frac{q}{p}-1\right)}$.
Remark 2.3. If $q \geq p$, the constraints $f_{j} \neq u_{\epsilon}$ on $I_{\epsilon}, 1 \leq j \leq 2$, are not necessary. Moreover, if $q=p$ we observe that $\beta_{j}=1,1 \leq j \leq 2$.
Lemma 2.4. Let $\gamma \in \mathcal{C}(\operatorname{co}(I))$ be a strictly monotone function. If $f \in \mathcal{C}(I)$ and $\int_{I} f \gamma^{n}=0$ for all $n \in \mathbb{N} \cup\{0\}$, then $f=0$.
Lemma 2.5. Let $f_{1}, f_{2} \in \mathcal{C}(I)$ and $0<\epsilon \leq 1$. Suppose that $u_{\epsilon}=\frac{P_{\epsilon}}{Q_{\epsilon}} \in \mathcal{R}_{m}^{n}$ is a $\left(l^{q}, L^{p}\right)$-b.s.a. of f_{1}, f_{2}, from \mathcal{R}_{m}^{n} on I_{ϵ} and $f_{j} \neq u_{\epsilon}$ on $I_{\epsilon}, 1 \leq j \leq 2$. If u_{ϵ} is not normal then

$$
\sum_{j=1}^{2} \beta_{j}\left|f_{j}-u_{\epsilon}\right|^{p-1} \operatorname{sgn}\left(f_{j}-u_{\epsilon}\right)=0 \quad \text { on } I_{\epsilon}
$$

where β_{j} was introduced in Lemma 2.2.
Proof. Suppose that u_{ϵ} is not normal. Let $\mathcal{S}=\left\{S \in \Pi^{1}: S(x)=x-a, a \in\right.$ $\mathbb{R} \backslash \operatorname{co}(I)\}$. For $\lambda \in \mathbb{R}$ and $S \in \mathcal{S}$, let $P=P_{\epsilon} S-\lambda$ and $Q=Q_{\epsilon} S$. Since $u_{\epsilon}=\frac{P_{\epsilon} S}{Q_{\epsilon} S}$ is a $\left(l^{q}, L^{p}\right)$-b.s.a., by Lemma 2.2 .

$$
\sum_{j=1}^{2} \beta_{j}\left(\int_{I_{\epsilon}}\left|f_{j}-u_{\epsilon}\right|^{p-1} \operatorname{sgn}\left(f_{j}-u_{\epsilon}\right) \frac{\lambda}{Q_{\epsilon} S}\right) \geq 0
$$

Since λ is arbitrary, then $\sum_{j=1}^{2} \beta_{j}\left(\int_{I_{\epsilon}}\left|f_{j}-u_{\epsilon}\right|^{p-1} \operatorname{sgn}\left(f_{j}-u_{\epsilon}\right) \frac{1}{Q_{\epsilon} S}\right)=0$.
Let $h:=\sum_{j=1}^{2} \beta_{j}\left|f_{j}-u_{\epsilon}\right|^{p-1} \operatorname{sgn}\left(f_{j}-u_{\epsilon}\right) \frac{1}{Q_{\epsilon}} \in \mathcal{C}(I)$. Then

$$
\begin{equation*}
\int_{I_{\epsilon}} h \frac{1}{S}=0, \quad S \in \mathcal{S} \tag{3}
\end{equation*}
$$

Let $\alpha<\min \operatorname{co}(I)$ and $\gamma(x)=\frac{a}{x-\alpha}, a>0$. We choose a sufficiently small such that $|\gamma(x)|<1, x \in I$. For each $\lambda \in[-1,0)$ let $S(x)=(x-\alpha)-\lambda a$. We observe that $\sum_{n=0}^{\infty}[\lambda \gamma(x)]^{n}$ uniformly converges to $\frac{1}{1-\lambda \gamma(x)}$ on I. Since

$$
\begin{aligned}
\int_{I_{\epsilon}} h(x) \frac{1}{S(x)} d x & =\int_{I_{\epsilon}} \frac{h(x)}{(x-\alpha)(1-\lambda \gamma(x))} d x \\
& =\sum_{n=0}^{\infty} \lambda^{n} \int_{I_{\epsilon}} \frac{h(x)}{x-\alpha} \gamma^{n}(x) d x
\end{aligned}
$$

from (3) we conclude that $\int_{I_{\epsilon}} \frac{h(x)}{x-\alpha} \gamma^{n}(x) d x=0, n \in \mathbb{N} \cup\{0\}$. As $h \in \mathcal{C}\left(I_{\epsilon}\right)$, using Lemma 2.4 for I_{ϵ} instead of I we get the desired result.

The following result was proved in [6, Theorem 2] for a single function.
Theorem 2.6. Let $0<\epsilon \leq 1$ and $f_{1}, f_{2} \in \mathcal{C}(I)$. Let $u_{\epsilon} \in \mathcal{R}_{m}^{n}$ be a non normal rational function. Then u_{ϵ} is a $\left(l^{p}, L^{p}\right)$-b.s.a. of f_{1} and f_{2} from \mathcal{R}_{m}^{n} on I_{ϵ} if and only if $u_{\epsilon}=\frac{f_{1}+f_{2}}{2}$ on I_{ϵ}.
Proof. By Remark 2.3, $\beta_{j}=1, j=1,2$. Lemma 2.5 implies

$$
\left|f_{1}-u_{\epsilon}\right|^{p-1} \operatorname{sgn}\left(f_{1}-u_{\epsilon}\right)+\left|f_{2}-u_{\epsilon}\right|^{p-1} \operatorname{sgn}\left(f_{2}-u_{\epsilon}\right)=0 \quad \text { on } I_{\epsilon} .
$$

If $\operatorname{sgn}\left(f_{1}-u_{\epsilon}\right)(x)=-\operatorname{sgn}\left(f_{2}-u_{\epsilon}\right)(x)$, then $u_{\epsilon}(x)=\frac{\left(f_{1}+f_{2}\right)(x)}{2}$. Otherwise, $u_{\epsilon}(x)=$ $f_{1}(x)=f_{2}(x)=\frac{\left(f_{1}+f_{2}\right)(x)}{2}$ on I_{ϵ}. Reciprocally, suppose $u_{\epsilon}=\frac{f_{1}+f_{2}}{2}$ on I_{ϵ} and let $u \in \mathcal{R}_{m}^{n}$. Then

$$
\begin{aligned}
\left\|f_{1}-u_{\epsilon}\right\|_{\epsilon}^{p}+\left\|f_{2}-u_{\epsilon}\right\|_{\epsilon}^{p} & =2 \int_{I}\left|\frac{\left(f_{1}-f_{2}\right)^{\epsilon}(x)}{2}\right|^{p} \frac{d x}{|I|} \\
& \leq 2 \int_{I}\left(\left|\frac{\left(f_{1}-u\right)^{\epsilon}(x)}{2}\right|+\left|\frac{\left(u-f_{2}\right)^{\epsilon}(x)}{2}\right|\right)^{p} \frac{d x}{|I|} \\
& \leq 2\left(\int_{I} \frac{\left|\left(f_{1}-u\right)^{\epsilon}(x)\right|^{p}}{2} \frac{d x}{|I|}+\int_{I} \frac{\left|\left(f_{2}-u\right)^{\epsilon}(x)\right|^{p}}{2} \frac{d x}{|I|}\right) \\
& =\left\|f_{1}-u\right\|_{\epsilon}^{p}+\left\|f_{2}-u\right\|_{\epsilon}^{p} .
\end{aligned}
$$

The proof is complete.

3. An interpolation property

Next, we introduce some notation to prove an interpolation result. Let $f_{1}, f_{2} \in$ $\mathcal{C}(I)$ and $0<\epsilon \leq 1$. We write

$$
y_{i}=y_{i}(\epsilon):=x_{i}+\epsilon \beta, \quad y^{i}=y^{i}(\epsilon):=x_{i+1}-\epsilon \beta, \quad 1 \leq i \leq k-1 .
$$

If $g \in \mathcal{C}\left(I_{\epsilon}\right)$, we denote

$$
\mathcal{A}(g)=\left\{i: g\left(y_{i}(\epsilon)\right) g\left(y^{i}(\epsilon)\right)<0,1 \leq i \leq k-1\right\}
$$

and $k^{\star}(g)$ the cardinal of $\mathcal{A}(g)$. If $k=1$, we put $k^{\star}(g)=0$.

Let $\tilde{f}_{1}, \tilde{f}_{2} \in \mathcal{C}(\operatorname{co}(I))$ be extensions of f_{1} and f_{2}, respectively. Now, we suppose that $\beta_{j}, 1 \leq j \leq 2$, introduced in Lemma 2.2 , is well defined. For a) $m=0$ or b) $m \geq 1, k=1$, the function

$$
\begin{equation*}
\widetilde{h_{\epsilon}}:=\beta_{1}\left|\widetilde{f}_{1}-u_{\epsilon}\right|^{p-1} \operatorname{sgn}\left(\widetilde{f}_{1}-u_{\epsilon}\right)+\beta_{2}\left|\widetilde{f}_{2}-u_{\epsilon}\right|^{p-1} \operatorname{sgn}\left(\widetilde{f}_{2}-u_{\epsilon}\right) \tag{4}
\end{equation*}
$$

is well defined on $\operatorname{co}\left(I_{\epsilon}\right)$. We write

$$
\begin{equation*}
\alpha_{j}(\epsilon)=\left(\beta_{j}\right)^{\frac{1}{p-1}}\left(\sum_{l=1}^{2} \beta_{l}^{\frac{1}{p-1}}\right)^{-1} . \tag{5}
\end{equation*}
$$

Now, we establish the main result of this section.
Theorem 3.1. Let $f_{1}, f_{2} \in \mathcal{C}(I)$ and $0<\epsilon \leq 1$. Suppose that $u_{\epsilon} \in \mathcal{R}_{m}^{n}$ is a $\left(l^{q}, L^{p}\right)$-b.s.a. of f_{1} and f_{2} from \mathcal{R}_{m}^{n} on I_{ϵ}. If $f_{j} \neq u_{\epsilon}$ on $I_{\epsilon}, 1 \leq j \leq 2$, and a) or b) holds, then u_{ϵ} interpolates to $\alpha_{1}(\epsilon) \widetilde{f}_{1}+\alpha_{2}(\epsilon) \widetilde{f}_{2}$, in at least $n+m+1$ different points of $\operatorname{co}\left(I_{\epsilon}\right)$, where at least $n+m+1-k^{\star}\left(\widetilde{h}_{\epsilon}\right)$ of them belong to I_{ϵ}.
Proof. Since $f_{j} \neq u_{\epsilon}$ on $I_{\epsilon}, 1 \leq j \leq 2$, the function $\widetilde{h_{\epsilon}}$ is defined. We consider two cases. First, suppose that u_{ϵ} is not normal, then Lemma 2.5 implies $\widetilde{h_{\epsilon}}=0$ on I_{ϵ}. Now, we assume that $u_{\epsilon}:=\frac{P_{\epsilon}}{Q_{\epsilon}}$ is normal. It is well known that $P_{\epsilon} \Pi^{m}+Q_{\epsilon} \Pi^{n}=$ Π^{n+m} (see [1, p. 240]). Therefore by Lemma 2.2, we have

$$
\begin{equation*}
\int_{I_{\epsilon}} \frac{\widetilde{h_{\epsilon}}}{\left(Q_{\epsilon}\right)^{2}} v=0, \quad v \in \Pi^{n+m} \tag{6}
\end{equation*}
$$

Suppose that $\widetilde{h_{\epsilon}}$ exactly changes of sign in $z_{1}, \ldots, z_{s} \in I_{\epsilon}$, with $s<n+m+$ $1-k^{\star}\left(\widetilde{h_{\epsilon}}\right)$. We can choose $r_{1}, \ldots, r_{k^{\star}\left(\widetilde{h_{\epsilon}}\right)}$, with $r_{i} \in\left(y_{i}, y^{i}\right)$ such that $\widetilde{h_{\epsilon}}\left(r_{i}\right)=0$, $i \in \mathcal{A}\left(\widetilde{h_{\epsilon}}\right)$. Let $v:=\eta \Pi_{i=1}^{s}\left(x-z_{i}\right) \Pi_{i \in \mathcal{A}\left(\widetilde{\left.h_{\epsilon}\right)}\right.}\left(x-r_{i}\right), \eta:= \pm 1$ be such that v satisfies $\widetilde{h_{\epsilon}} v \geq 0$ on I_{ϵ} and $\widetilde{h_{\epsilon}} v>0$ on a positive measure subset of I_{ϵ}. This contradicts (6), so $s \geq n+m+1-k^{\star}\left(\widetilde{h_{\epsilon}}\right)$. In this way we have proved that $\widetilde{h_{\epsilon}}$ has at least $n+m+1$ different zeros in $\operatorname{co}\left(I_{\epsilon}\right)$, where at least $n+m+1-k^{\star}\left(\widetilde{h_{\epsilon}}\right)$ of them belong to I_{ϵ}.

Let $x \in \operatorname{co}\left(I_{\epsilon}\right)$ be such that $\widetilde{h_{\epsilon}}(x)=0$, i.e.

$$
\begin{aligned}
0= & \beta_{1}\left|\left(\widetilde{f}_{1}-u_{\epsilon}\right)(x)\right|^{p-1} \operatorname{sgn}\left(\left(\widetilde{f}_{1}-u_{\epsilon}\right)(x)\right) \\
& +\beta_{2}\left|\left(\widetilde{f}_{2}-u_{\epsilon}\right)(x)\right|^{p-1} \operatorname{sgn}\left(\left(\widetilde{f}_{2}-u_{\epsilon}\right)(x)\right) .
\end{aligned}
$$

Now, the proof follows analogously to the first part in the proof of Theorem 2.6
We denote $l_{j}(\epsilon), 1 \leq j \leq k$, the cardinal of the set of points of B_{j}, where u_{ϵ} interpolates to the function $\alpha_{1}(\epsilon) \widetilde{f}_{1}+\alpha_{2}(\epsilon) \widetilde{f}_{2}$, whenever $\alpha_{j}(\epsilon), 1 \leq j \leq 2$, are defined. The following corollary can be proved similarly to [5, Corollary 9].

Corollary 3.2. Under the same hypotheses of Theorem 3.1, there exists $j, 1 \leq$ $j \leq k$, such that $l_{j}(\epsilon) \geq c$.

4. Existence of $\left(l^{q}, L^{p}\right)$-B.S.L.A. from \mathcal{R}_{m}^{n}

First, in this section we obtain a general result about the asymptotic behavior of the error

$$
\mathcal{E}_{\epsilon}:=\left\|f_{1}-u_{\epsilon}\right\|_{\epsilon}^{q}+\left\|f_{2}-u_{\epsilon}\right\|_{\epsilon}^{q} .
$$

Theorem 4.1. Let $f_{1}, f_{2} \in \mathcal{C}(I), 0<\epsilon \leq 1, u_{\epsilon} \in \mathcal{R}_{m}^{n} a\left(l^{q}, L^{p}\right)$-b.s.a. of f_{1} and f_{2} from \mathcal{R}_{m}^{n} on I_{ϵ}. If there exists a Padé rational approximant of $\frac{f_{1}+f_{2}}{2}$ on $\left\{x_{1}, \ldots, x_{k}\right\}$, then

$$
\mathcal{E}_{\epsilon}^{1 / q}=2^{\frac{1-q}{q}}\left\|f_{1}-f_{2}\right\|_{\epsilon}+o\left(\epsilon^{c-1}\right), \text { as } \epsilon \rightarrow 0
$$

Proof. Let R be a Padé rational approximant of $\frac{f_{1}+f_{2}}{2}$ on $\left\{x_{1}, \ldots, x_{k}\right\}$. Consider the semi-norm on $\mathcal{C}(I) \times \mathcal{C}(I)$ defined by

$$
\left\|\left(g_{1}, g_{2}\right)\right\|_{\epsilon}=\left(\left\|g_{1}\right\|_{\epsilon}^{q}+\left\|g_{2}\right\|_{\epsilon}^{q}\right)^{1 / q}
$$

By the triangle inequality we have

$$
\begin{align*}
\left\|f_{1}-u_{\epsilon}\right\|_{\epsilon}^{q}+ & \left\|f_{2}-u_{\epsilon}\right\|_{\epsilon}^{q} \leq\left\|\left(f_{1}-R\right)\right\|_{\epsilon}^{q}+\left\|\left(f_{2}-R\right)\right\|_{\epsilon}^{q} \\
& =\left\|\left(\frac{f_{1}-f_{2}}{2}, \frac{f_{2}-f_{1}}{2}\right)+\left(\frac{f_{1}+f_{2}}{2}-R, \frac{f_{1}+f_{2}}{2}-R\right)\right\|_{\epsilon}^{q} \\
& \leq\left(2^{1 / q}\left\|\frac{f_{1}-f_{2}}{2}\right\|_{\epsilon}+2^{1 / q}\left\|\frac{f_{1}+f_{2}}{2}-R\right\|_{\epsilon}\right)^{q} \tag{7}\\
& \leq 2\left(\frac{\left\|f_{1}-f_{2}\right\|_{\epsilon}}{2}+o\left(\epsilon^{c-1}\right)\right)^{q} \\
& =\frac{1}{2^{q-1}}\left(\left\|f_{1}-f_{2}\right\|_{\epsilon}+o\left(\epsilon^{c-1}\right)\right)^{q}
\end{align*}
$$

Since

$$
\begin{equation*}
(a+b)^{q} \leq 2^{q-1}\left(a^{q}+b^{q}\right), a, b \geq 0 \tag{8}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left\|f_{1}-u_{\epsilon}\right\|_{\epsilon}^{q}+\left\|f_{2}-u_{\epsilon}\right\|_{\epsilon}^{q} \geq \frac{1}{2^{q-1}}\left\|f_{1}-f_{2}\right\|_{\epsilon}^{q} \tag{9}
\end{equation*}
$$

From (7) and (9) we obtain the theorem.
Remark 4.2. If $m=0$ and $f_{1}, f_{2} \in \mathcal{C}^{c}(I)$, with an analogous proof we have

$$
\mathcal{E}_{\epsilon}^{1 / q}=2^{\frac{1-q}{q}}\left\|f_{1}-f_{2}\right\|_{\epsilon}+O\left(\epsilon^{c}\right), \text { as } \epsilon \rightarrow 0 .
$$

For $c>0$ and $h \in \mathcal{C}^{c-1}(I)$, we consider the set

$$
\mathcal{H}(h)=\left\{P \in \Pi^{n}: P^{(i)}\left(x_{j}\right)=h^{(i)}\left(x_{j}\right), 0 \leq i \leq c-1,1 \leq j \leq k\right\}
$$

We define

$$
A_{j}=\left\{i: 0 \leq i \leq c-1, f_{1}^{(i)}\left(x_{j}\right) \neq f_{2}^{(i)}\left(x_{j}\right)\right\}, \quad 1 \leq j \leq k
$$

Let $m_{j}=\min A_{j}-1$ if $A_{j} \neq \emptyset$, and $m_{j}=c-1$ otherwise. Set

$$
\begin{equation*}
\bar{m}=\min \left\{m_{j}: 1 \leq j \leq k\right\} . \tag{10}
\end{equation*}
$$

For $c=0$, we put $\mathcal{H}(h)=\Pi^{n}$, and $\bar{m}=-1$. With these notations, we obtain the following lemma.

Lemma 4.3. Let $q>1$ and assume $c>0, f_{1}, f_{2} \in \mathcal{C}^{c-1}(I)$ and $-1 \leq \bar{m} \leq$ $c-2$. Under the same hypotheses of Theorem 4.1, $f_{j} \neq u_{\epsilon}$ on $I_{\epsilon}, 1 \leq j \leq 2$, for small ϵ. Then $\alpha_{1}(\epsilon)$ and $\alpha_{2}(\epsilon)$ (see (5) above) are defined for small ϵ and $\lim _{\epsilon \rightarrow 0} \alpha_{1}(\epsilon)=\lim _{\epsilon \rightarrow 0} \alpha_{2}(\epsilon)=\frac{1}{2}$.

Proof. For simplicity all subnets $\epsilon \rightarrow 0$ will be denoted in the same way. Let $g=\frac{1}{2}\left(f_{1}+f_{2}\right), H=\frac{1}{2}\left(H_{1}+H_{2}\right)$ with $H_{l} \in \mathcal{H}\left(f_{l}\right), l=1,2$, and $u_{\epsilon}=\frac{P_{\epsilon}}{Q_{\epsilon}}$. Then $(g-H)(x)=o\left(\left(x-x_{j}\right)^{c-1}\right)$, as $x \rightarrow x_{j}, 1 \leq j \leq k$, and

$$
\left(f_{1}-u_{\epsilon}\right)(x)=\left(\frac{1}{2}\left(f_{1}-f_{2}\right)+(g-H)+H-\frac{P_{\epsilon}}{Q_{\epsilon}}\right)(x) .
$$

Hence

$$
\begin{align*}
\frac{Q_{\epsilon}\left(f_{1}-u_{\epsilon}\right)}{\left\|Q_{\epsilon}\right\|_{\epsilon} \epsilon^{\bar{m}+1}}(x)= & \frac{Q_{\epsilon}(x)}{\left\|Q_{\epsilon}\right\|_{\epsilon}}\left(\frac{\frac{1}{2}\left(f_{1}-f_{2}\right)(x)+(g-H(x)}{\bar{\epsilon}^{\bar{m}+1}}\right) \tag{11}\\
& +\frac{Q_{\epsilon}(x) H(x)-P_{\epsilon}(x)}{\left\|Q_{\epsilon}\right\|_{\epsilon} \epsilon^{\bar{m}+1}}
\end{align*}
$$

for $x \in B_{j}, 1 \leq j \leq k$. By Theorem 4.1 and the definition of \bar{m} we obtain $\frac{\left\|f_{1}-u_{\epsilon}\right\|_{\epsilon}}{\epsilon^{\bar{m}+1}} \leq \frac{\mathcal{E}_{\epsilon}^{1 / q}}{\epsilon^{m}+1}=O(1)$. Since $Q_{\epsilon}^{\epsilon} \in \Pi^{m}$ on each B_{j}, and $\|\cdot\|$ can be also considered as a norm in $\left(\Pi^{m}\right)^{k}$, the equivalence of norms in this space implies that there exists $K>0$ such that $\left\|Q_{\epsilon}^{\epsilon}\right\|_{\infty}:=\max _{1 \leq j \leq k} \max _{B_{j}}\left|Q_{\epsilon}^{\epsilon}\right| \leq K\left\|Q_{\epsilon}^{\epsilon}\right\|$. As $\bar{m} \leq c-2$, by (11) we get

$$
\begin{align*}
\left\|\frac{Q_{\epsilon} H-P_{\epsilon}}{\left\|Q_{\epsilon}\right\|_{\epsilon}}\right\|_{\epsilon} & \leq \frac{\left\|Q_{\epsilon}^{\epsilon}\right\|_{\infty}}{\left\|Q_{\epsilon}^{\epsilon}\right\|}\left(\left\|f_{1}-u_{\epsilon}\right\|_{\epsilon}+\left\|\sum_{j=1}^{k}\left(\frac{1}{2}\left(f_{1}-f_{2}\right)+(g-H)\right) \chi_{B_{j}}\right\|_{\epsilon}\right) \\
& \leq \frac{\left\|Q_{\epsilon}^{\epsilon}\right\|_{\infty}}{\left\|Q_{\epsilon}^{\epsilon}\right\|}\left(\mathcal{E}_{\epsilon}^{1 / q}+\left\|\sum_{j=1}^{k}\left(\frac{1}{2}\left(f_{1}-f_{2}\right)+(g-H)\right) \chi_{B_{j}}\right\|_{\epsilon}\right) \tag{12}\\
& =O\left(\bar{\epsilon}^{\bar{m}+1}\right) .
\end{align*}
$$

From 12 we have a subnet such that $\frac{\left(Q_{\epsilon} H-P_{\epsilon} e^{\epsilon}\right.}{\left\|Q_{\epsilon}\right\|_{\epsilon} \epsilon^{m+1}} \rightarrow R$. Moreover, we can choose the subnet such that $\frac{Q_{\epsilon}^{\epsilon}}{\left\|Q_{\epsilon}\right\|_{\epsilon}} \rightarrow S$. Here, R and S are polynomials on each B_{j}. We denote

$$
\lambda(x)=\sum_{j=1}^{k} \frac{\left(f_{1}-f_{2}\right)^{(\bar{m}+1)}\left(x_{j}\right)}{(\bar{m}+1)!}\left(x-x_{j}\right)^{\bar{m}+1} \chi_{B_{j}}(x) \quad \text { and } \quad T(x)=\frac{R(x)}{S(x)} .
$$

As $-1 \leq \bar{m} \leq c-2, \lambda \neq 0$. Since $\frac{(g-H)^{e}}{\epsilon^{\bar{m}+1}} \rightarrow 0$, from 11 we obtain

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \frac{\left(f_{1}-u_{\epsilon}\right)^{\epsilon}}{\epsilon^{\bar{m}+1}}=\frac{1}{2} \lambda+T \tag{13}
\end{equation*}
$$

on I except possibly by the zeros of S. Similarly, we have

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \frac{\left(f_{2}-u_{\epsilon}\right)^{\epsilon}}{\epsilon^{\bar{m}+1}}=-\frac{1}{2} \lambda+T \tag{14}
\end{equation*}
$$

By Fatou's Lemma, (13) and (14), there exists a subnet such that

$$
\left\|\frac{1}{2} \lambda+T\right\| \leq \lim _{\epsilon \rightarrow 0} \frac{\left\|f_{1}-u_{\epsilon}\right\|_{\epsilon}}{\epsilon^{\bar{m}+1}} \quad \text { and } \quad\left\|\frac{1}{2} \lambda-T\right\| \leq \lim _{\epsilon \rightarrow 0} \frac{\left\|f_{2}-u_{\epsilon}\right\|_{\epsilon}}{\epsilon^{\bar{m}+1}} .
$$

Therefore, from (8) we have

$$
\begin{aligned}
\|\lambda\|^{q} & =\left\|\frac{1}{2} \lambda+T+\frac{1}{2} \lambda-T\right\|^{q} \leq\left(\left\|\frac{1}{2} \lambda+T\right\|+\left\|\frac{1}{2} \lambda-T\right\|\right)^{q} \\
& \leq 2^{q-1}\left(\left\|\frac{1}{2} \lambda+T\right\|^{q}+\left\|\frac{1}{2} \lambda-T\right\|^{q}\right) \\
& \leq 2^{q-1} \lim _{\epsilon \rightarrow 0} \frac{\left\|f_{1}-u_{\epsilon}\right\|_{\epsilon}^{q}+\left\|f_{2}-u_{\epsilon}\right\|_{\epsilon}^{q}}{\epsilon^{(\bar{m}+1) q}}=\|\lambda\|^{q},
\end{aligned}
$$

where the last equality holds by Theorem 4.1. So,

$$
\begin{equation*}
\left\|\frac{1}{2} \lambda+T+\frac{1}{2} \lambda-T\right\|=\left\|\frac{1}{2} \lambda+T\right\|+\left\|\frac{1}{2} \lambda-T\right\| \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left\|\frac{1}{2} \lambda+T\right\|^{q}+\left\|\frac{1}{2} \lambda-T\right\|^{q}}{2}=\left(\frac{\left\|\frac{1}{2} \lambda+T\right\|+\left\|\frac{1}{2} \lambda-T\right\|}{2}\right)^{q} . \tag{16}
\end{equation*}
$$

As $\|\cdot\|$ is strictly convex, from (15) there exists $a \geq 0$ such that

$$
\begin{equation*}
\frac{1}{2} \lambda+T=a\left(\frac{1}{2} \lambda-T\right) \tag{17}
\end{equation*}
$$

i.e., $T=\frac{(a-1) \lambda}{2(1+a)}$. Also, as x^{q} is strictly convex, from 16 we get

$$
\begin{equation*}
\left\|\frac{1}{2} \lambda+T\right\|=\left\|\frac{1}{2} \lambda-T\right\| \tag{18}
\end{equation*}
$$

If $\frac{1}{2} \lambda-T=0$, then $\frac{1}{2} \lambda+T=0$ and $\|\lambda\|=0$, a contradiction. Therefore $\frac{1}{2} \lambda-T \neq 0$, so (17) and (18) imply $a=1$. Therefore $T=0$. Now, from (13) and (14), we have

$$
\lim _{\epsilon \rightarrow 0} \frac{\left(f_{1}-u_{\epsilon}\right)^{\epsilon}}{\epsilon^{\bar{m}+1}}=\frac{\lambda}{2} \quad \text { and } \quad \lim _{\epsilon \rightarrow 0} \frac{\left(f_{2}-u_{\epsilon}\right)^{\epsilon}}{\epsilon^{\bar{m}+1}}=-\frac{\lambda}{2}
$$

on I except possibly by the zeros of S. Again, an application of Fatou's Lemma implies $\frac{\|\lambda\|}{2} \leq \lim _{\epsilon \rightarrow 0} \frac{\left\|f_{1}-u_{\epsilon}\right\| \epsilon}{\epsilon^{m+1}}$ and $\frac{\|\lambda\|}{2} \leq \lim _{\epsilon \rightarrow 0} \frac{\left\|f_{2}-u_{\epsilon}\right\|_{\epsilon}}{\epsilon^{m+1}}$ for some subnet. Theorem 4.1 implies

$$
\lim _{\epsilon \rightarrow 0}\left(\frac{\left\|f_{1}-u_{\epsilon}\right\|_{\epsilon}^{q}}{\epsilon^{(\bar{m}+1)^{q}}}+\frac{\left\|f_{2}-u_{\epsilon}\right\|_{\epsilon}^{q}}{\epsilon^{(\bar{m}+1) q}}\right)=\frac{\|\lambda\|^{q}}{2^{q-1}}
$$

So,

$$
\begin{equation*}
\frac{\|\lambda\|}{2}=\lim _{\epsilon \rightarrow 0} \frac{\left\|f_{1}-u_{\epsilon}\right\|_{\epsilon}}{\epsilon^{\bar{m}+1}}=\lim _{\epsilon \rightarrow 0} \frac{\left\|f_{2}-u_{\epsilon}\right\|_{\epsilon}}{\epsilon^{\bar{m}+1}} . \tag{19}
\end{equation*}
$$

Note that there exists $\epsilon_{0}>0$, such that for all $0<\epsilon \leq \epsilon_{0}$, we have $\left\|f_{j}-u_{\epsilon}\right\|_{\epsilon} \neq 0, j=1,2$, because $\lambda \neq 0$. So, $f_{j} \neq u_{\epsilon}$ on $I_{\epsilon}, 1 \leq j \leq 2$, for
$0<\epsilon \leq \epsilon_{0}$, and $\alpha_{1}(\epsilon)$ and $\alpha_{2}(\epsilon)$ are defined for $0<\epsilon \leq \epsilon_{0}$. Finally, from (5) and 19. we conclude that $\lim _{\epsilon \rightarrow 0} \alpha_{1}(\epsilon)=\lim _{\epsilon \rightarrow 0} \alpha_{2}(\epsilon)=\frac{1}{2}$.

Next, we prove the main result of this section, which extends [10, Theorem 1].
Theorem 4.4. Let $q>1$ and assume $k=1$. Let $f_{1}, f_{2} \in \mathcal{C}^{n+m}(I), 0<\epsilon \leq 1$, and $u_{\epsilon}=\frac{P_{\epsilon}}{Q_{\epsilon}} \in \mathcal{R}_{m}^{n}$ a $\left(l^{q}, L^{p}\right)$-b.s.a. of f_{1} and f_{2} from \mathcal{R}_{m}^{n} on I_{ϵ}. Suppose that there exists $\mathrm{Pa}\left(\frac{f_{1}+f_{2}}{2}\right)$. Then there exists a subnet $\epsilon^{\prime} \rightarrow 0$ such that $P_{\epsilon^{\prime}} \rightarrow P_{0}$, $Q_{\epsilon^{\prime}} \rightarrow Q_{0}$, and $\left(P_{0}, Q_{0}\right)$ is a Padé approximant pair of $\frac{f_{1}+f_{2}}{2}$ on $\left\{x_{1}\right\}$. In addition, if the Padé approximant pair is unique, then u_{ϵ} converges pointwise to $\frac{P_{0}}{Q_{0}}$ as $\epsilon \rightarrow 0$, in a neighborhood of x_{1} except possibly at x_{1}. Moreover, if $\mathrm{Pa}\left(\frac{f_{1}+f_{2}}{2}\right)$ is normal then u_{ϵ} uniformly converges to $\mathrm{Pa}\left(\frac{f_{1}+f_{2}}{2}\right)$, in a neighborhood of x_{1}.
Proof. Lemma 4.3 and Theorem 3.1 imply that for small ϵ there are $n+m+1$ points in $\operatorname{co}\left(I_{\epsilon}\right)=I_{\epsilon}$, say $z_{0}(\epsilon), \ldots, z_{n+m}(\epsilon)$, such that

$$
P_{\epsilon}\left(z_{i}(\epsilon)\right)=Q_{\epsilon}\left(z_{i}(\epsilon)\right)\left(\alpha_{1}(\epsilon) f_{1}\left(z_{i}(\epsilon)\right)+\alpha_{2}(\epsilon) f_{2}\left(z_{i}(\epsilon)\right)\right), \quad 0 \leq i \leq n+m
$$

Consider $g_{\epsilon}=\alpha_{1}(\epsilon) f_{1}+\alpha_{2}(\epsilon) f_{2}$. By the uniqueness of the interpolation polynomial of degree at most $n+m$, we get

$$
P_{\epsilon}=H_{\left\{z_{0}(\epsilon), \ldots, z_{n+m}(\epsilon)\right\}}\left(Q_{\epsilon} g_{\epsilon}\right),
$$

where the right-hand side denotes the interpolation polynomial of $Q_{\epsilon} g_{\epsilon}$ of degree $n+m$ on $\left\{z_{0}(\epsilon), \ldots, z_{n+m}(\epsilon)\right\}$. For a subnet $\epsilon^{\prime} \rightarrow 0$, we have

$$
Q_{\epsilon^{\prime}} \rightarrow Q_{0} \quad \text { and } \quad P_{\epsilon^{\prime}} \rightarrow T_{n+m, x_{1}}\left(Q_{0} g\right)=: P_{0}
$$

where g is the limit of $g_{\epsilon^{\prime}}$, and $T_{n+m, x_{1}}(h)$ represents the Taylor polynomial of h of degree $n+m$ at x_{1}. First, we assume that $-1 \leq \bar{m} \leq c-2$. By Lemma 4.3, $g=\frac{f_{1}+f_{2}}{2}$ and

$$
\left(Q_{0} \frac{f_{1}+f_{2}}{2}-P_{0}\right)^{(i)}\left(x_{1}\right)=0, \quad 0 \leq i \leq n+m
$$

Now, we suppose that $\bar{m}=c-1$. Theorem 4.1 implies $\left\|f_{1}-\frac{P_{\epsilon}}{Q_{\epsilon}}\right\|_{\epsilon}=o\left(\epsilon^{n+m}\right)$. As a consequence $\left\|Q_{\epsilon} f_{1}-P_{\epsilon}\right\|_{\epsilon}=o\left(\epsilon^{n+m}\right)$, so

$$
\left\|Q_{\epsilon} T_{n+m, x_{1}}\left(f_{1}\right)-P_{\epsilon}\right\|_{\epsilon}=o\left(\epsilon^{n+m}\right)
$$

By definition of \bar{m} we can replace f_{1} by $\frac{f_{1}+f_{2}}{2}$, and from a Pólya type inequality (see [3, Theorem 3]) we have

$$
\left(Q_{0} \frac{f_{1}+f_{2}}{2}-P_{0}\right)^{(i)}\left(x_{1}\right)=0, \quad 0 \leq i \leq n+m
$$

In any case, we conclude that $\left(P_{0}, Q_{0}\right)$ is a Padé approximant pair of $\frac{f_{1}+f_{2}}{2}$ on $\left\{x_{1}\right\}$. On the other hand, if $\mathrm{Pa}\left(\frac{f_{1}+f_{2}}{2}\right)$ is normal, then $\left(P_{0}, Q_{0}\right)$ is the unique Padé approximant pair of $\frac{f_{1}+f_{2}}{2}$ on $\left\{x_{1}\right\}$ and $Q_{0}\left(x_{1}\right) \neq 0$ (see [10, Lemma 3]). Therefore
$\operatorname{Pa}\left(\frac{f_{1}+f_{2}}{2}\right)=\frac{P_{0}}{Q_{0}}$ and u_{ϵ} uniformly converges to $\operatorname{Pa}\left(\frac{f_{1}+f_{2}}{2}\right)$ on a neighborhood of x_{1}.

5. Existence of $\left(l^{q}, L^{p}\right)$-b.s.L.A. from Π^{n}

Next, we prove a result about uniform boundedness of a net of best simultaneous approximations from Π^{n}.
Theorem 5.1. Let $f_{1}, f_{2} \in \mathcal{C}^{n}(I), 0<\epsilon \leq 1$, and let $P_{\epsilon} \in \Pi^{n}$ be a $\left(l^{q}, L^{p}\right)$-b.s.a. to f_{1} and f_{2} from Π^{n} on I_{ϵ}. Then the net $\left\{P_{\epsilon}\right\}$ is uniformly bounded on compact sets as $\epsilon \rightarrow 0$.
Proof. Without loss of generality we can assume that the extensions $\tilde{f}_{1}, \widetilde{f}_{2}$ considered in page 61 belong to $\mathcal{C}^{n}(\operatorname{co}(I))$. By Theorem 3.1 there exists $z_{0}(\epsilon)<\cdots<$ $z_{n}(\epsilon)$ in $\operatorname{co}(I)$ such that $P_{\epsilon}=H_{\left\{z_{0}(\epsilon), \ldots, z_{n}(\epsilon)\right\}}\left(\gamma_{1}(\epsilon) \widetilde{f}_{1}+\gamma_{2}(\epsilon) \widetilde{f}_{2}\right)$, where as before $H_{\left\{z_{0}(\epsilon), \ldots, z_{n}(\epsilon)\right\}}\left(\gamma_{1}(\epsilon) \widetilde{f}_{1}+\gamma_{2}(\epsilon) \widetilde{f_{2}}\right)$ denotes the interpolation polynomial of $\gamma_{1}(\epsilon) \widetilde{f}_{1}+$ $\gamma_{2}(\epsilon) \widetilde{f}_{2}$ of degree n on $\left\{z_{0}(\epsilon), \ldots, z_{n}(\epsilon)\right\}, \gamma_{1}(\epsilon), \gamma_{2}(\epsilon) \geq 0$ and $\gamma_{1}(\epsilon)+\gamma_{2}(\epsilon)=1$. Since the nets $\left\{\left(z_{0}(\epsilon), \ldots, z_{n}(\epsilon)\right)\right\}$ and $\left\{\left(\gamma_{1}(\epsilon), \gamma_{2}(\epsilon)\right)\right\}$ are bounded, we can find convergent subnets. Suppose that $\gamma_{j}\left(\epsilon^{\prime}\right) \rightarrow \gamma_{j}, j=1,2$, and $z_{i}\left(\epsilon^{\prime}\right) \rightarrow t_{i}, 0 \leq i \leq n$, as $\epsilon^{\prime} \rightarrow 0$. Clearly $t_{0} \leq \cdots \leq t_{n}$. Using Newton's divided difference formula and the continuity of the divided differences we get $P_{\epsilon^{\prime}} \rightarrow H_{\left\{t_{0}, \ldots, t_{n}\right\}}\left(\gamma_{1} \widetilde{f}_{1}+\gamma_{2} \widetilde{f}_{2}\right)$, as $\epsilon^{\prime} \rightarrow 0$. Therefore the net $\left\{P_{\epsilon}\right\}$ is uniformly bounded on compact sets as $\epsilon \rightarrow 0$.

Now, we state results about the convergence of b.s.a. We consider a basis of Π^{n}, $\left\{u_{s v}\right\}_{\substack{1 \leq v \leq k \\ 0 \leq s \leq c-1}} \cup\left\{w_{e}\right\}_{1 \leq e \leq d}$ which satisfies

$$
u_{s v}^{(i)}\left(x_{j}\right)=\delta_{(i, j)(s, v)}, \quad w_{e}^{(i)}\left(x_{j}\right)=0, \quad 0 \leq i \leq c-1, \quad 1 \leq j \leq k
$$

where δ is the Kronecker delta function.
In the next theorem we need to recall the number \bar{m} which was defined in 10).
Theorem 5.2. Assume $f_{1}, f_{2} \in \mathcal{C}^{c}(I), 0<\epsilon \leq 1$. Let $P_{\epsilon} \in \Pi^{n}$ be a $\left(l^{q}, L^{p}\right)$-b.s.a. to f_{1} and f_{2} from Π^{n} on I_{ϵ}, and let A be the cluster point set of the net $\left\{P_{\epsilon}\right\}$ as $\epsilon \rightarrow 0$. Then:
a) A is contained in $\mathcal{M}\left(f_{1}, f_{2}\right)$, the set of solutions of the following minimization problem:

$$
\begin{equation*}
\min _{P \in \Pi^{n}}\left(\sum_{l=1}^{2}\left(\sum_{j=1}^{k}\left|\left(f_{l}-P\right)^{(\bar{m}+1)}\left(x_{j}\right)\right|^{p}\right)^{q / p}\right) \tag{20}
\end{equation*}
$$

with the constraints $P^{(i)}\left(x_{j}\right)=\frac{\left(f_{1}+f_{2}\right)^{(i)}\left(x_{j}\right)}{2}, 0 \leq i \leq \bar{m}, 1 \leq j \leq k$.
b) If $f_{1}, f_{2} \in \mathcal{C}^{n}(I)$, then $A \neq \emptyset$. In particular, if $\mathcal{M}\left(f_{1}, f_{2}\right)$ is unitary, there exists a unique $\left(l^{q}, L^{p}\right)$-b.s.l.a. of f_{1} and f_{2} from Π^{n} on $\left\{x_{1}, \ldots, x_{k}\right\}$.
Proof. a) Let $P_{0} \in A$. By definition of A, there is a net $\epsilon \downarrow 0$ such that $P_{\epsilon} \rightarrow P_{0}$. We denote $U_{\epsilon}=\frac{H_{1}-P_{\epsilon}}{2}$ and $V_{\epsilon}=\frac{H_{2}-P_{\epsilon}}{2}$, where $H_{l} \in \mathcal{H}\left(f_{l}\right), l=1,2$. Clearly,

$$
\mathcal{E}_{\epsilon} \geq\left(\frac{\left\|f_{1}-P_{\epsilon}\right\|_{\epsilon}+\left\|f_{2}-P_{\epsilon}\right\|_{\epsilon}}{2}\right)^{q}
$$

Since $\left(H_{l}-f_{l}\right)(x)=O\left(\left(x-x_{j}\right)^{c}\right)$, as $x \rightarrow x_{j}, l=1,2,1 \leq j \leq k$, we obtain

$$
\begin{equation*}
\left\|U_{\epsilon}\right\|_{\epsilon}+\left\|V_{\epsilon}\right\|_{\epsilon} \leq \mathcal{E}_{\epsilon}^{1 / q}+O\left(\epsilon^{c}\right) \tag{21}
\end{equation*}
$$

By Remark 4.2,

$$
\begin{equation*}
\frac{\mathcal{E}_{\epsilon}^{1 / q}}{\epsilon^{\bar{m}+1}}=2^{\frac{1-q}{q}}\left\|\frac{f_{1}-f_{2}}{\epsilon^{\bar{m}+1}}\right\|_{\epsilon}+O(1) \tag{22}
\end{equation*}
$$

Expanding $\left(f_{1}-f_{2}\right)^{\epsilon}$ by its Taylor polynomial at $x_{j}, 1 \leq j \leq k$, up to order \bar{m}, we have

$$
\begin{align*}
& \lim _{\epsilon \rightarrow 0}\left\|\frac{f_{1}-f_{2}}{\epsilon^{\bar{m}+1}}\right\|_{\epsilon} \\
& \quad=\frac{1}{(\bar{m}+1)!}\left(\sum_{j=1}^{k}\left|\left(f_{1}-f_{2}\right)^{(\bar{m}+1)}\left(x_{j}\right)\right|^{p}\left\|\left(t-x_{j}\right)^{\bar{m}+1}\right\|_{B_{j}}^{p}\right)^{1 / p}=: L \tag{23}
\end{align*}
$$

From 22 and 23 we obtain that $\frac{\mathcal{E}_{\epsilon}^{1 / q}}{\epsilon^{m+1}}$ is bounded as $\epsilon \rightarrow 0$. So, 21 implies that $\left\|\frac{U_{\epsilon}^{\epsilon}}{\epsilon^{\bar{m}+1}}\right\|_{B_{j}}$ and $\left\|\frac{V_{\epsilon}^{\epsilon}}{\epsilon^{m+1}}\right\|_{B_{j}}, 1 \leq j \leq k$, are bounded. Since $\frac{U_{\epsilon}^{\epsilon}}{\epsilon^{m+1}}, \frac{V_{\epsilon}^{\epsilon}}{\epsilon^{m+1}} \in \Pi^{n}$ on B_{j}, then $\frac{\left(U_{\epsilon}^{\epsilon}\right)^{(i)}\left(x_{j}\right)}{\epsilon^{m+1}+1}=\frac{\left(f_{1}-P_{\epsilon}\right)^{(i)}\left(x_{j}\right)}{2} \epsilon^{i-\bar{m}-1}$ and $\frac{\left(V_{\epsilon}^{\epsilon}\right)^{(i)}\left(x_{j}\right)}{\epsilon^{m+1}}=\frac{\left(f_{2}-P_{\epsilon}\right)^{(i)}\left(x_{j}\right)}{2} \epsilon^{i-\bar{m}-1}$ are bounded for all $0 \leq i \leq c-1,1 \leq j \leq k$. Therefore there exists $d_{i j}$ such that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left(f_{l}-P_{\epsilon}\right)^{(i)}\left(x_{j}\right) \epsilon^{i-\bar{m}-1}=d_{i j}, \quad 0 \leq i \leq \bar{m}, 1 \leq j \leq k, l=1,2 \tag{24}
\end{equation*}
$$

for some subnet, that we again denote by ϵ. For $t \in B_{j}$ we have

$$
\begin{aligned}
\frac{\left(f_{1}-P_{\epsilon}\right)^{\epsilon}(t)}{\epsilon^{\bar{m}+1}}= & \sum_{i=0}^{\bar{m}} \frac{\left(f_{1}-P_{\epsilon}\right)^{(i)}\left(x_{j}\right)}{i!} \epsilon^{i-(\bar{m}+1)}\left(t-x_{j}\right)^{i} \\
& +\frac{\left(f_{1}-P_{\epsilon}\right)^{(\bar{m}+1)}\left(\epsilon\left(\xi_{j}(t)-x_{j}\right)+x_{j}\right)}{(\bar{m}+1)!}\left(t-x_{j}\right)^{\bar{m}+1}
\end{aligned}
$$

where $\xi_{j}(t)$ belongs to the segment with ends t and x_{j}. From (24) we get

$$
\lim _{\epsilon \rightarrow 0} \frac{\left(f_{1}-P_{\epsilon}\right)^{\epsilon}(t)}{\epsilon^{\bar{m}+1}}=\sum_{i=0}^{\bar{m}} \frac{d_{i j}}{i!}\left(t-x_{j}\right)^{i}+\frac{\left(f_{1}-P_{0}\right)^{(\bar{m}+1)}\left(x_{j}\right)}{(\bar{m}+1)!}\left(t-x_{j}\right)^{\bar{m}+1}
$$

uniformly on B_{j}. Therefore

$$
\begin{align*}
\lim _{\epsilon \rightarrow 0} & \left\|\frac{\left(f_{1}-P_{\epsilon}\right)^{\epsilon}}{\epsilon^{\bar{m}+1}}\right\|^{p} \\
& =\sum_{j=1}^{k}\left\|\sum_{i=0}^{\bar{m}} \frac{d_{i j}}{i!}\left(t-x_{j}\right)^{i}+\frac{\left(f_{1}-P_{0}\right)^{(\bar{m}+1)}\left(x_{j}\right)}{(\bar{m}+1)!}\left(t-x_{j}\right)^{\bar{m}+1}\right\|_{B_{j}}^{p} \tag{25}\\
& \geq \sum_{j=1}^{k}\left|\frac{\left(f_{1}-P_{0}\right)^{(\bar{m}+1)}\left(x_{j}\right)}{(\bar{m}+1)!}\right|^{p} J_{j}^{p},
\end{align*}
$$

where $J_{j}=\inf _{Q \in \Pi^{m}}\left\|\left(t-x_{j}\right)^{\bar{m}+1}-Q(t)\right\|_{B_{j}}$. Clearly 25 holds for f_{2} instead of f_{1}. From (24) we can assume $P_{0}^{(i)}\left(x_{j}\right)=f_{1}^{(i)}\left(x_{j}\right)$ for $1 \leq j \leq k, 0 \leq i \leq \bar{m}$, so we can write

$$
P_{0}=\sum_{v=1}^{k} \sum_{s=0}^{\bar{m}} f_{1}^{(s)}\left(x_{v}\right) u_{s v}+\sum_{e=1}^{d} \bar{b}_{e} w_{e}+\sum_{v=1}^{k} \sum_{s=\bar{m}+1}^{c-1} \bar{c}_{s v} u_{s v}
$$

for some real numbers $\left\{\bar{b}_{e}\right\}_{1 \leq e \leq d}$ and $\left\{\bar{c}_{s v}\right\}_{\substack{1 \leq v \leq k \\ 0 \leq s \leq c-1}}$. Given two sets of real numbers (independent of ϵ), say $\left\{c_{s v}\right\}_{\substack{1 \leq v \leq k \\ 0<s<c-1}}$ and $\left\{b_{e}\right\}_{1 \leq e \leq d}$, consider the following net of polynomials in Π^{n},

$$
R_{\epsilon}=\sum_{v=1}^{k} \sum_{s=0}^{\bar{m}}\left(f_{1}^{(s)}\left(x_{v}\right)-c_{s v} \epsilon^{\bar{m}+1-s}\right) u_{s v}+\sum_{e=1}^{d} b_{e} w_{e}+\sum_{v=1}^{k} \sum_{s=\bar{m}+1}^{c-1} c_{s v} u_{s v}
$$

We observe that $R_{\epsilon}^{(i)}\left(x_{j}\right)=f_{1}^{(i)}\left(x_{j}\right)-c_{i j} \epsilon^{\bar{m}+1-i}, 1 \leq j \leq k, 0 \leq i \leq \bar{m}$.
Let $h=\sum_{v=1}^{k} \sum_{s=0}^{\bar{m}} f_{1}^{(s)}\left(x_{v}\right) u_{s v}+\sum_{e=1}^{d} b_{e} w_{e}+\sum_{v=1}^{k} \sum_{s=\bar{m}+1}^{c-1} c_{s v} u_{s v}$. Expanding $\left(f_{1}-R_{\epsilon}\right)^{\epsilon}$ by its Taylor polynomial at x_{j} up to order \bar{m}, we obtain

$$
\begin{aligned}
& \frac{\left(f_{1}-R_{\epsilon}\right)^{\epsilon}(t)}{\epsilon^{\bar{m}+1}} \\
& \quad=\sum_{i=0}^{\bar{m}} \frac{c_{i j}}{i!}\left(t-x_{j}\right)^{i}+\frac{\left(f_{1}-h\right)^{(\bar{m}+1)}\left(\epsilon\left(\xi_{j}(t)-x_{j}\right)+x_{j}\right)}{(\bar{m}+1)!}\left(t-x_{j}\right)^{\bar{m}+1} \\
& \quad+\sum_{v=1}^{k} \sum_{s=0}^{\bar{m}} \frac{c_{s v} \epsilon^{\bar{m}+1-s} u_{s v}^{(\bar{m}+1)}\left(\epsilon\left(\xi_{j}(t)-x_{j}\right)+x_{j}\right)}{(\bar{m}+1)!}\left(t-x_{j}\right)^{\bar{m}+1}, \quad t \in B_{j}
\end{aligned}
$$

where $\xi_{j}(t)$ belongs to the segment with ends t and x_{j}. Since $\lim _{\epsilon \rightarrow 0} \frac{\left(f_{1}-R_{\epsilon}\right)^{\epsilon}(t)}{\epsilon^{\bar{m}+1}}=$ $\sum_{i=0}^{\bar{m}} \frac{c_{i j}}{i!}\left(t-x_{j}\right)^{i}+\frac{\left(f_{1}-h\right)^{(\bar{m}+1)}\left(x_{j}\right)}{(\bar{m}+1)!}\left(t-x_{j}\right)^{\bar{m}+1}$, uniformly on B_{j}, we have

$$
\lim _{\epsilon \rightarrow 0}\left\|\frac{\left(f_{1}-R_{\epsilon}\right)^{\epsilon}}{\epsilon^{\bar{m}+1}}\right\|^{p}=\sum_{j=1}^{k}\left\|\sum_{i=0}^{\bar{m}} \frac{c_{i j}}{i!}\left(t-x_{j}\right)^{i}+\frac{\left(f_{1}-h\right)^{(\bar{m}+1)}\left(x_{j}\right)}{(\bar{m}+1)!}\left(t-x_{j}\right)^{\bar{m}+1}\right\|_{B_{j}}^{p}
$$

Let $c_{i j}, 1 \leq j \leq k, 0 \leq i \leq \bar{m}$, be such that $\sum_{i=0}^{\bar{m}} \frac{c_{i j}}{i!}\left(t-x_{j}\right)^{i}$ is the best approximation to $\frac{\left(f_{1}-h\right)^{(\bar{m}+1)}\left(x_{j}\right)}{(\bar{m}+1)!}\left(t-x_{j}\right)^{\bar{m}+1}$ with respect to $\|\cdot\|_{B_{j}}$. Then

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left\|\frac{\left(f_{1}-R_{\epsilon}\right)^{\epsilon}}{\epsilon^{\bar{m}+1}}\right\|^{p}=\sum_{j=1}^{k}\left|\frac{\left(f_{1}-h\right)^{(\bar{m}+1)}\left(x_{j}\right)}{(\bar{m}+1)!}\right|^{p} J_{j}^{p}, \tag{26}
\end{equation*}
$$

and similarly we get

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left\|\frac{\left(f_{2}-R_{\epsilon} \epsilon^{\epsilon}\right.}{\epsilon^{\bar{m}+1}}\right\|^{p}=\sum_{j=1}^{k}\left|\frac{\left(f_{2}-h\right)^{(\bar{m}+1)}\left(x_{j}\right)}{(\bar{m}+1)!}\right|^{p} J_{j}^{p} \tag{27}
\end{equation*}
$$

From 25-27) and the continuity of the function $|x|^{\frac{q}{p}}+|y|^{\frac{q}{p}}$, we have

$$
\begin{align*}
& \sum_{l=1}^{2}\left(\sum_{j=1}^{k}\left|\frac{\left(f_{l}-P_{0}\right)^{(\bar{m}+1)}\left(x_{j}\right)}{(\bar{m}+1)!}\right|^{p} J_{j}^{p}\right)^{q / p} \\
& \quad \leq \liminf _{\epsilon \rightarrow 0} \frac{\mathcal{E}_{\epsilon}}{\epsilon^{(\bar{m}+1) q}} \leq \sum_{l=1}^{2}\left(\sum_{j=1}^{k}\left|\frac{\left(f_{l}-h\right)^{(\bar{m}+1)}\left(x_{j}\right)}{(\bar{m}+1)!}\right|^{p} J_{j}^{p}\right)^{q / p} \tag{28}
\end{align*}
$$

for all $h=\sum_{v=1}^{k} \sum_{s=0}^{\bar{m}} f_{1}^{(s)}\left(x_{v}\right) u_{s v}+\sum_{e=1}^{d} b_{e} w_{e}+\sum_{v=1}^{k} \sum_{s=\bar{m}+1}^{c-1} c_{s v} u_{s v}$.
For all $1 \leq j \leq k, J_{j}=\inf _{Q \in \Pi^{m}}\left(\int_{-\beta}^{\beta}\left|y^{\bar{m}+1}-Q(y)\right|^{p} \frac{d y}{|I|}\right)^{\frac{1}{p}} \neq 0$. Then J_{j} does not depend on j. So, from (28) we obtain

$$
\sum_{l=1}^{2}\left(\sum_{j=1}^{k}\left|\left(f_{l}-P_{0}\right)^{(\bar{m}+1)}\left(x_{j}\right)\right|^{p}\right)^{q / p} \leq \sum_{l=1}^{2}\left(\sum_{j=1}^{k}\left|\left(f_{l}-h\right)^{(\bar{m}+1)}\left(x_{j}\right)\right|^{p}\right)^{q / p}
$$

In addition, as $f_{1}^{(i)}\left(x_{j}\right)=f_{2}^{(i)}\left(x_{j}\right), 0 \leq i \leq \bar{m}, 1 \leq j \leq k$, then $P_{0}^{(i)}\left(x_{j}\right)=$ $\frac{\left(f_{1}+f_{2}\right)^{(i)}\left(x_{j}\right)}{2}$. The proof of a) is complete.
b) If $f_{1}, f_{2} \in \mathcal{C}^{n}(I)$, by Theorem 5.1 the net $\left\{P_{\epsilon}\right\}$ is uniformly bounded on compact sets, then there exists $P_{0} \in A$. From a), $P_{0} \in \mathcal{M}\left(f_{1}, f_{2}\right)$. In particular, if $\mathcal{M}\left(f_{1}, f_{2}\right)$ is unitary, there exists a unique $\left(l^{q}, L^{p}\right)$-b.s.l.a. of f_{1} and f_{2} from Π^{n} on $\left\{x_{1}, \ldots, x_{k}\right\}$.

The following theorem gives sufficient conditions for $\mathcal{M}\left(f_{1}, f_{2}\right)$ to be a unitary set. Its proof is analogous to that of [5, Theorem 12].

Theorem 5.3. Let $f_{1}, f_{2} \in \mathcal{C}^{c}(I)$ and $q>1$. If either a) $\bar{m}=c-2, d=0$ or b) $\bar{m}=c-1$, then $\mathcal{M}\left(f_{1}, f_{2}\right)$ is a unitary set.

The next theorem shows that there always exists a unique $\left(l^{2}, L^{2}\right)$-b.s.l.a. of f_{1} and f_{2} from Π^{n} on $\left\{x_{1}, \ldots, x_{k}\right\}$.
Theorem 5.4. Let $f_{1}, f_{2} \in \mathcal{C}^{c}(I)$. Then there exists a unique $\left(l^{2}, L^{2}\right)$-b.s.l.a. of f_{1} and f_{2} from Π^{n} on $\left\{x_{1}, \ldots, x_{k}\right\}$, and it is the best local approximation of $\frac{f_{1}+f_{2}}{2}$ from Π^{n} on $\left\{x_{1}, \ldots, x_{k}\right\}$ with respect to the norm L^{2}.
Proof. Let $0<\epsilon \leq 1$ and let $\left\{P_{\epsilon}\right\}$ be a net of $\left(l^{2}, L^{2}\right)$-b.s.a. of f_{1} and f_{2} from Π^{n} on I_{ϵ}; then it is well known that P_{ϵ} is the best approximation to $\frac{f_{1}+f_{2}}{2}$ with respect to the norm L^{2} (see [12, Theorem 3]). Hence, we deduce that $\left\{P_{\epsilon}\right\}$ converges to the best local approximation of $\frac{f_{1}+f_{2}}{2}$ (see [9, Theorem 4]).

Acknowledgement

The authors thank the referee by their suggestions for improving the readability of this paper.

References

[1] E.W. Cheney, A.A. Goldstein. Mean-square approximation by generalized rational functions. Math. Z. 95 (1967), 232-241. MR 0219952
[2] H.H. Cuenya, F.E. Levis. Interpolation and best simultaneous approximation. J. Aprox. Theory 162 (2010), 1577-1587. MR 2718886
[3] H.H. Cuenya, F.E. Levis. Pólya-type polynomial inequalities in L^{p} spaces and best local approximation. Numer. Funct. Anal. Optim. 26 (2005), 813-827. MR 2192023
[4] H.H. Cuenya, F.E. Levis, M.D. Lorenzo. Best simultaneous approximation on small regions. Numer. Funct. Anal. Optim. 30 (2009), 245-258. MR 2514216
[5] H.H. Cuenya, F.E. Levis, A.N. Priori. Best simultaneous L^{p}-approximation on small regions. Numer. Funct. Anal. Optim. 36 (2015), 55-71. MR 3265633
[6] C.B. Dunham. Best mean rational approximation. Computing (Arch. Elektron. Rechnen) 9 (1972), 87-93. MR 0315330
[7] A.S.B. Holland, B.N. Sahney. Some remarks on best simultaneous approximation. Theory of approximation with applications (Proc. Conf., Univ. Calgary, Calgary, Alta., 1975), pp. 332337. Academic Press, New York, 1976. MR 0412694.
[8] Y. Karakus. On simultaneous approximation. Note Mat. 21 (2002), 71-76. MR 1969350
[9] M. Marano. Mejor aproximación local, Ph.D. dissertation, Universidad Nacional de San Luis, 1986.
[10] M. Marano, H. Cuenya. Multipoint Padé approximants and rational functions of best L^{p} approximation on small intervals. Progress in Aproximation Theory, 693-701. Academic Press, Boston, 1991. MR 1114806
[11] P.P. Petrushev, V.A. Popov. Rational approximation of real functions. Encyclopedia of Mathematics and its Applications, 28. Cambridge University Press, Cambridge, 1987. MR 0940242
[12] G.M. Phillips, B.N. Sahney. Best simultaneous approximation in L^{1} and L^{2} norms. Theory of approximation with applications (Proc. Conf., Univ. Calgary, Calgary, Alta., 1975), pp. 213219. Academic Press, New York, 1976. MR 0412693

H. H. Cuenya
Departamento de Matemática, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Argentina hcuenya@exa.unrc.edu.ar
F. E. Levis ${ }^{\boxtimes}$
Departamento de Matemática, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Argentina flevis@exa.unrc.edu.ar
A. N. Priori
Departamento de Matemática, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Argentina apriori@exa.unrc.edu.ar

Received: October 2, 2014
Accepted: April 23, 2015

[^0]: 2010 Mathematics Subject Classification. 41A65, 41A10.
 Key words and phrases. Simultaneous approximation, Rational functions, L^{p}-norm, Padé approximant.

 This work was supported by Universidad Nacional de Río Cuarto and CONICET.

