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Uniform management of agricultural fields has been increasingly replaced with environ-

mentally based management, which is benefited by the identification of homogeneous

zones within crop fields. Such zones are based on the classification of field sites into groups

of homogeneous features. Multiple causative agents of variability and the response of

agricultural crops should be considered for zoning. Several correlated variables are usually

measured and georeferenced for this purpose at multiple sites within the field. This paper

presents an approach to promoting the integration of different statistical tools for identi-

fying homogeneous zones based on site covariates. The methodological innovation of this

work involves cleaning and re-scaling of spatial data, as well as multivariate and geo-

statistical analyses in a logical sequence (protocol). Statistical topics for further improve-

ment and protocol applications are noted. The analytical process has been illustrated using

a rain-fed wheat crop (60 ha) from the Argentine Pampas, with apparent electrical con-

ductivity, elevation and soil depth as master variables for zoning, and yield, soil organic

matter and clay to validate the created management zones; however, it may be applied to

other production systems using georeferenced data. The R scripts and the sample file to

run the proposed protocol are provided as electronic supplementary material.

© 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Farm machinery equipped with new technologies provides

the opportunity for a more accurate measurement of spatial

soil and terrain variability of crop fields. The recorded spatial

data is used for multivariate classification of field sites into
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groups of homogeneous features. The classification is then

used to delimit contiguous zones within the field aimed at

site-specific management in precision agriculture (PA) (Yao

et al., 2014). Management zones (MZs) are usually areas with

similar characteristics, such as texture, topography, water

status and soil nutrient levels (Moral, Terr�on, & Marques Da
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Nomenclature

AIC Akaike information criterion

ECa Apparent electrical conductivity (mS m�1)

ECa30 Apparent electrical conductivity at 30 cm depth

(mS m�1)

ECa90 Apparent electrical conductivity at 90 cm depth

(mS m�1)

KM-sPC Fuzzy k-means clustering from spatial PCA

Elev Elevation (m)

Sd Soil depth (m)

MZ Management zone

MLM Mixed Linear Model

Ii Moran's local index

PCA Principal component analysis

PA Precision agriculture

sPCA Spatial principal components analysis

SOM Soil organic matter (%)
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Silva, 2010). Physical and chemical soil properties are themost

widely reported variables used for zoning, followed by land-

scape attributes (Khosla, Westfall, Reich, Mahal, & Gangloff,

2010). In environments in which water and nutrient avail-

ability are crop limiting factors, production largely depends on

soil type, specifically, on its capacity to retain water and nu-

trients. In the last years, besides the introduction of yield

monitors, there has been an increase in the use of proximal

sensors that capture spatial data on apparent electrical con-

ductivity (ECa) as a soil attribute. The use of soil ECa has

gained attention as a good surrogate method for detecting

spatial variation in soil chemical and physical properties

(Arno, Martinez-Casasnovas, Ribes-Dasi, & Rosell, 2011; Cor-

win & Lesch, 2010; Moral et al., 2010; Peralta, Costa, Balzarini,

& Angelini, 2013; Rodrı́guez-P�erez, Plant, Lambert, & Smart,

2011; Taylor, McBratney, & Whelan, 2007). Data captured by

ECa sensors are georeferenced using high-precision GPS.

Elevation is another topographic characteristic that influences

water movement and soil development within the field,

generating yield spatial variability. Effective soil depth is also

a useful soil characteristic to delimitate MZs (Peralta, Costa,

Balzarini, & Castro Franco, 2013) because this variable af-

fects the water storage capacity and its spatial distribution,

generating yield variability.

The hypothesis that the productivity gap of crops is influ-

enced by the interaction of soil and landform characteristics

has been present in several works. Pennock (2003) and

Kravchenko, Robertson, Thelen, and Harwood (2005) related

topography to productivity. Siqueira, Marques, and Pereira

(2010) and Sanchez, Marques Jr., Siqueira, Camargo, and

Pereira (2013) used multivariate analysis and geostatistics to

analyse the potential use of site covariates to predict the

variability of important agronomic traits. The combined

application of multivariate and geostatistical analysis

together has already been proposed, but using different pro-

grams and non-spatially restricted multivariate methods. In

this work we propose a logical sequence of statistical analyses

that can be implemented using a protocol. The protocol

application is illustrated using data on ECa, elevation and
effective soil depth of a 60-ha wheat field cultivated under PA

in the southern Argentine Pampas as master variables for

zoning. Agricultural fields in the south-eastern Pampas

frequently have multiple soil map units within them, despite

their sometimes relatively small size, and wide range of soil

textures and properties, causing high soil spatial variability

(Peralta, Costa, Balzarini, & Angelini, 2013). The adoption of

ECa sensors in Argentina is increasing because the ECa signal

provides an integration of several effects at a site. In the

southern Argentine Pampas ECa measurements successfully

delimited homogeneous soil zones associated with spatial

distribution of clay, soil moisture, CEC, SOM content and pH

(Peralta, Costa, Balzarini, & Angelini, 2013).

From the analytical point of view, Taylor et al. (2007) set the

basis for a protocol to delineatemanagement zones. However,

as the computing capability increases, new statistics can be

used to handle multivariate spatial data. New statistical

techniques are available for handling spatial data at the clean-

up step, in the multivariate classification, and in predictive

and validation steps.

A first step in any quantitative protocol is the removal of

artefacts within data before analysis. Local spatial autocorre-

lation indiceswhich are particularly useful for data debugging,

such as Moran local index (Anselin, 1995) and Getis-Ord index

(Getis&Ord, 1992), can integrate analytic protocols given their

current availability in free software. On the other hand, the

availability of several types of variables requires combining

data from different sources of information and usually of

different spatial resolutions. Several spatial interpolation

techniques (Oliver & Webster, 2014) can be used to perform a

re-scaling of originalmeasurements to associate data from the

different variables from each site onto a common grid. The

issue of different scales (grid sizes) for different variables

should be taken into account to proceed with multivariate

classification. The spatial correlation structure for each vari-

able is a first guide to follow, but the spatial covariance of

variables is also meaningful. Other practical aspects as the

minimum area needed for crop management are usual con-

straints. In choosing the grid size, there is a trade-off between

maintaining spatial precision by selecting a fine grid and

reducing noise and making the data more manageable by

selecting a coarser grid (Long, 1998). Since variability may be

studied at any spatial scale, the choice of grid size depends on

the aims of the investigation. In making this choice, the

investigator is aided by knowledge of how much variability is

lost for each variable in moving from one scale to a larger one

(Roel& Plant, 2004). Grid sizes of 10- to 50-mrangeare common

for mapping in site-specific agriculture (Peralta et al., 2015;

Ping & Dobermann, 2003; Roel & Plant, 2004), and this is

because 108 variation in soil properties appears to occur at a

much near scale than the 1 ha strata (McBratney & Pringle,

1999). Choosing a coarse resolution (>16 m) for spatial inter-

polation may result in biased aggregated data sets (Ping &

Dobermann, 2003). In practice, the selection of an appro-

priate sampling cell size requires understanding of the re-

lationships between grid size, yield variability accounted for,

and the resulted spatial map fragmentation.

After re-gridding measurements for all variables the next

step, in a protocol of analysis, consists of multivariate site

classification. Several clustering algorithms (Anderberg, 1973),

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.008
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such as the ISODATA method (Fraisse, Sudduth, & Kitchen,

2001; Guastaferro et al., 2010), non-parametric approaches

developed by Aggelopooulou, Castrignan�o, Gemtos, and De

Benedetto (2013), a hierarchical approach presented by

Fleming, Westfall, Wiens, and Brodahl (2000) and the fuzzy k-

means method (Bezdek, 1981), have been widely used to

identify potential MZs in PA (Boydell & McBratney, 2002;

Davatgar, Neishabouri, & Sepaskhah, 2012; Moral et al.,

2010). The software FuzME (Minasny & McBratney, 2002) and

MZA (Fridgen et al., 2004) were especially designed to perform

clustering analysis using the fuzzy k-means algorithm. How-

ever, these cluster algorithms do not work with spatial re-

strictions. They were not developed for spatial data. A high

zone fragmentationwas observedwhen the techniques ignore

the spatial nature of the data (Frogbrook& Oliver, 2007; Ping &

Dobermann, 2003). C�ordoba, Bruno, Costa, and Balzarini (2013)

developed a method (KM-sPC) based on the use of principal

component analysis (PCA) with spatial restriction and the

posterior application of the fuzzy k-means algorithm using

the spatial principal components as input for site classifica-

tion. More contiguous classes and reduced fragmentation of

the delimited homogeneous zones can be obtained by incor-

porating spatial information in the protocol analysis. Thus,

the multivariate analysis was included in the proposed pro-

tocol with the aim of obtaining a site classification taking into

account the spatiality in the data. For this reason, the fuzzy k-

means algorithm is implemented using the spatial principal

components as input variables. Moreover, the interpretation

of the coefficients of soil variables at each spatial principal

component provides insight into the spatial correlation

among input properties.

Different statistical indices, such as partition coefficient

and classification entropy (also known as fuzziness perfor-

mance index-FPI and normalized classification entropy-NCE)

(Bezdek, 1981) can be used to determine the optimum num-

ber of clusters for site classification. Other indices, such as

Xie-Beni (Xie & Beni, 1991), Fukuyama-Sugeno (Fukuyama &

Sugeno, 1989), and proportion exponent (Windham, 1981)

might also be used to determine this number. It may occur

that none of the indices agrees in the optimum class number.

A combination of indices will be recommended for a com-

plementary use of the information provided by those indices,

thereby obtaining a single index that summarizes four indices

(Galarza, Mastaglia, Albornoz, & Martı́nez, 2013). The use of

spatial filters applied on the results of the classification is also

recommended to improve zoning contiguity (Lark, 1998; Ping

& Dobermann, 2003).

Once zoning is performed, the appropriateness of delin-

eated zones, need to be evaluated which requires determining

if there are differences among the zones in terms of yield and

other soil variables selected as validation traits. Conventional

statistical models like ANOVA are not recommended to eval-

uate mean differences among zones because independence is

not met when the dataset is spatially referenced (Lawes &

Bramley, 2012). Instead, Mixed Linear Models (MLM) (West,

Welch, & Galecki, 2015) are preferred because they account

for spatial correlation in the data. New computational inten-

sive techniques (Falivene, Cabrera, Tolosana-Delgado, & S�aez,

2010; Webster & Oliver, 2007) are available for enhance the

crucial step of validation.
Here we discuss the overall process of multivariate ho-

mogeneous zone delineation and provide technical specifica-

tions for its implementation and particularly to zoning an

agricultural field with soil data taken at a fine scale. Thewhole

protocol was developed using the freely available R software

(R Core Team, 2015) and provide online access to source code

to perform the analysis in R (Appendix A. Supplementary

Material).
2. Material and methods

2.1. Example data

Data were collected from an agricultural production field

(60 ha) under continuous agriculture with annual crop rota-

tion, located in south-eastern Pampas, Argentine. The

Argentine Humid Pampas region is one of the world's best

regions for grain crop production (Satorre & Slafer, 1999). The

major soil types in this region are Typic Argiudolls, with a

loam texture at the surface layer, loam to clay loam at sub-

surface layers, and sandy loam below 110 cm in depth, and

Petrocalcic Paleudoll, which presents discontinuous layers of

a petrocalcic horizon between 50 and 100 cm and greater clay

contents at subsurface layers than Typic Argiudolls (Peralta

et al., 2015). According to the Thornthwaite moisture index,

the climate is sub-humid/humid (Burgos & Vidal, 1951), with

annual rainfall of 880 mm and mean annual temperature of

13.3 �C.
Georeferenced measurements of apparent electrical con-

ductivity (ECa) taken at two depths: 0e30 cm (ECa30) and

0e90 cm (ECa90), as well as elevation (Elev), and soil depth

(Sd), were recorded. Soil ECa measurements were taken using

a Veris 3100 (Veris 3100, Division of Geoprobe Systems, Salina,

KS) calibrated following the manufacturer's instructions. The

sensor was pulled across the field in a series of parallel tran-

sects spaced at 15e20 m intervals, the appropriate spacing to

avoid measurement errors and information loss (Farahani &

Flynn, 2007). ECa was simultaneously measured and geore-

ferenced using a Differential Global Positioning System (DGPS)

(Trimble R3, Trimble Navigation Limited, USA) with sub-metre

measurement accuracy and set up to record position once per

second. A total of 6425 sites were measured. Terrain elevation

data were processed with a vertical accuracy of 3e5 cm. Soil

depth was measured using a hydraulic penetrometer (Gid-

ding) on a 30 � 30-m regular grid. Eight georeferenced soil

sampling points were taken within each delineated MZ to

validate the process. Each sampling point consisted of three

subsamples centred in the MZ. Soil cores were taken to a

depth of 90 cm using a 5-cm diameter hydraulically driven soil

tube (GiddingsMachine Co.,Windsor, CO). As soil profile is not

uniform through the 0e90 cm depth, soil in each core was

carefully mixed to homogenise the sample. To validate the

created MZ we used soil organic matter (SOM) content

measured from the 0e30 cm stratum (Barbieri, Echeverrı́a, &

Sainz Rozas, 2009), particle-size distribution determined

using the Bouyoucos method (Dewis & Freitas, 1970) and

wheat grain yield recorded using calibrated commercial yield

monitors mounted on combines equipped with DGPS. A

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.008
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random sample of 1000 data points was used to validate

zoning.

2.2. Protocol

2.2.1. Conversion of spatial coordinates
In geodesy, a datum is a set of reference points on the Earth's
surface that serves as the basis for measuring locations, as

well as an associated model of the Earth shape (reference

ellipsoid) to define the geographic coordinate system. Datums

have different radii and central points; hence, a point

measured with different datums can have different co-

ordinates. Hundreds of reference datums have been devel-

oped for referencing points in certain areas and suitable for

those areas. The datum WGS84 (World Geodetic System 84) is

commonly used, and is the default standard datum for co-

ordinates in the commercial GPS units. GPS users should

check the datum used because an artefact may lead to a co-

ordinate translation of several metres. For analytical pur-

poses, this geodetic coordinate system (expressed in degrees,

minutes and seconds) is projected onto another Cartesian

coordinate system (from a 3D to a 2D model) known as a

typical UTM (universal transverse Mercator) projection sys-

tem. Thus, the distances between sites within the field can be

expressed as absolute distances (metres) rather than relative

distances (degrees), therefore facilitating interpretation. In the

proposed protocol, we used the spTransform function of the

“rgdal” package (Bivand, Keitt, & Rowlingson, 2014) to convert

geographic coordinates into UTM Cartesian coordinates.

2.2.2. Removal of outliers
Outliers, or atypical values, are observations that fall outside

the general pattern or distribution of the data set. Removing

outliers before analysis is essential to ensure correct decision

making based on the analysis (Taylor et al., 2007). In our

protocol, outliers are easily removed following a process that

includes different complementary techniques and theories: 1)

the data set is constrained to a natural variation range in

which thresholds are obtained from the data distribution; 2)

the mean and standard deviation (SD) are calculated for the

data set of a variable, and the values that are outside the

mean ± 3 SD are identified and removed. According to Che-

byshev's theorem (Amidan, Ferryman, & Cooley, 2005) it is

inferred that a minimum 89% of the data is within the

mean ± 3 SD, regardless the distribution. Even though real

data could belong to this interval, the upper and lower limits

use to bemodified to obtain robust variance estimators for the

next protocol steps. This aspect could be necessary because

there are occasions where yield monitor data are negatively

skewed as the result of harvesting artefacts such as those

caused by harvesting with an incompletely-filled header or

travelling/turning over harvested areas with the header down

(Taylor et al., 2007). A reduction of the lower limit coefficient

may be warranted in such cases (e.g. mean-1.5 SD). The need

to adjust this value depending on the range of true yield

variation was noted by Simbahan, Dobermann, and Ping

(2004). Optimization of the SD parameter for a particular

field could be achieved by iteratively choosing values and

observing the effect on the resulting yield data distribution

(Sudduth & Drummond, 2007).
2.2.3. Removal of inliers
Step 2.2 is intended to remove the outer-tails extreme values

of the data set, but not the local extreme values (spatial in-

liers). Inliers are data that differ significantly from their

neighbourhood, but lie within the general range of variation of

the data set. Some PA software applications, such as Yield

Editor (Sudduth & Drummond, 2007) or the one developed by

Sun, Whelan, McBratney, and Minasny (2013), were designed

for diagnosis and cleaning of data based on combine yield

information. Here, we use spatial autocorrelation Moran's
local index (Ii) (Anselin, 1995) as a tool for identifying inliers for

each recorded variable. Because a data set belongs to different

neighbourhoods, Ii is basically a Moran's index applied indi-

vidually to each neighbourhood and suggests the degree of

similarity or difference between the value of an observation

and the neighbours' value. A spatial weights matrix should be

defined for a local spatial autocorrelation analysis. This ma-

trix can be represented graphically (as neighbourhood

graphs), in which the nodes correspond to the field sites and

the borders to non-nil spatial weights. There are different

methodological options to define the neighbourhoods

(Dray, Legendre, & Peres-Neto, 2006). In our protocol, the

neighbourhood network was defined using the Euclidean

distance.

A positive Ii value corresponds to spatial grouping of

similar (high or low) values (positive autocorrelation),

whereas a negative Ii value indicates grouping of different

values (e.g., a site with a low value of the variable is sur-

rounded by neighbours with high values) (negative autocor-

relation). In both situations, the p-value for a given indexmust

be small enough for the value of interest to be considered an

inlier. At this step, we suggest adjusting the p-values accord-

ing to Bonferroni's criterion due to the multiplicity issue in

hypothesis testing (Bland & Altman, 1995). The Bonferroni

adjustment deflates the a ¼ 0.05 applied to each test per-

formed, so the study-wide error rate remains at 0.05. Anselin

(1996) proposed visualizing Ii in a scatter plot, a useful visual

tool for the exploratory analysis of spatial data that enables

the evaluation of the similarity of an observed value with

respect to the neighbouring observations. The horizontal axis

represents observation values, whereas the vertical axis rep-

resents the spatial lag of the analysed variable. In addition,

linear or non-linear regressionmodels can be fitted and added

to this plot. In the proposed protocol, localmoran andmoran.plot

functions of the “spdep” package (Bivand, 2014) are used to

calculate Ii and perform the Moran scatter plot to identify in-

liers. Ii and its statistical significance for each observation are

obtained by applying the localmoran function. The moran.plot

function not only performs the scatter plot but also fits a linear

regression model and calculates a series of diagnostic statis-

tics. Data that depart from the 45� slope suggest sites with a

spatial autocorrelation different from that of their neigh-

bourhood values. The diagnostic criteria are: Cook Distance,

Leverage, DFFITS, DFBETAS and COVRATIO (Draper & Smith,

1998). The moran.plot function calculates these indices for

each observation and considers an observation as influential

if at least one of the diagnostic indices detects it as such. In our

protocol, the first inliers to be removed are those detected

with Local Moran’ Index (data with negative and statistically

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.008
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significant Ii) then a Moran plot is constructed because others

potentially influential observations may be identified by at

least one regression diagnostic statistics.

2.2.4. Spatial interpolation
Spatial interpolation is performed to estimate the values of a

variable of interest at sites where that variable was not

sampled. Before performing spatial interpolation, it is neces-

sary to generate a regular artificial grid, ideally with similar

arrangement on the field for all the information sources. Grid

spacing should reflect the required detail level, the capacity

for data processing and the statistical ability of the software

for the analysis. A 10 � 10 m grid is recommended to avoid

computing problems derived from a grid of a higher point

density and to maintain an appropriate resolution for data

visualization and further geostatistical analysis in PA (Taylor

et al., 2007). The selection of the spatial interpolation

method will depend on the number and density of sites from

which data were collected. Geostatistical techniques, such as

block kriging (Webster & Oliver, 2007), are common in PA.

When the database is too large or data density too high, effi-

cient methods of block kriging, such as interpolation by krig-

ing neighbourhood, are preferable due to their low

computational requirements (Oliver & Webster, 2014). There

are numerous software applications available for performing

the gridding andwithin-field spatial prediction, such as Surfer

(Golden Software, Inc.), Vesper (Minasny, McBratney, &

Whelan, 2005), and GIS software. Our protocol uses the

packages “geoR” (Ribeiro Jr. & Diggle, 2001) and “gstat”

(Pebesma, 2004) for geostatistical interpolations by means of

block kriging. First, an empirical semi-variogram is adjusted

for each variable. Then, the exponential and spherical theo-

retical models are fitted by weighted least squares, because

they are usually the ones of the best fit tomodel soil variability

(Gili, 2013). The residual sum of squares (RSS) of eachmodel is

reported as a criterion to be used for selecting the theoretical

model to fit the spatial data, and is therefore not a good

parameter to assess the precision and accuracy of interpola-

tion. Cross-validation or external validation is implemented to

validate spatial interpolation. These computing intensive

techniques provide a means of choosing among plausible

models for semi-variograms for prediction. Each and every

one of the N data points is omitted in turn from the set of data

and its value there is predicted by ordinary punctual kriging

with the proposedmodel (Oliver &Webster, 2014). Alternative

statistics can be calculated in the validation step. The pro-

posed protocol will include three of them: the mean squared

error (MSE), root mean squared (RMSE) and the mean squared

deviation ratio (MSDR), which is the mean of the squared er-

rors divided by the corresponding kriging variances. The best-

fitting model is that one that minimizes the MSE and RMSE,

while the MSDS should be equal to 1.

Site classification from a multivariate perspective requires

that the different interpolated information layers (layers of

different variables) be included in a single file. For this pur-

pose, individual files must be horizontally concatenated using

the columns corresponding to the X and Y coordinates as

concatenation criteria. This step will ensure that the data

from different sources of information are correctly linked on

the geographical space.
2.2.5. Multivariate site classification
A fuzzy k-means cluster analysis on the principal components

obtained from the spatial principal component algorithm is

included in the analytic protocol to be used after the infor-

mation of the different variables is cleaned and concatenated.

We computed the fuzzy k-means cluster analysis with the

“e1071” package (Meyer, Dimitriadou, Hornik, Weingessel, &

Leisch, 2014) using as input spatial principal components

(sPC) obtained by MULTISPATI-PCA (Dray, Saı̈d, & D�ebias,

2008). Data are standardized to eliminate the effect of the

differential unit of the variables. The same weighting matrix

used to obtain the spatial autocorrelation indices was selected

to perform MULTISPATI-PCA. Thus, the spatial correlation

between the measured soil variables is included in the anal-

ysis. The MULTISPATI-PCA is performed with the “ade4”

(Chessel, Dufour, & Thioulouse, 2004) and “spdep” packages

(Bivand, 2014). An index summarizing four indices to deter-

mine the optimum number of sites classes (Galarza et al.,

2013) was included in the protocol.

2.2.6. Smoothing of classification results
In delineating MZs, spatial filters on the clustering results can

be applied to promote contiguous zoning and reduce class

fragmentation (Lark, 1998; Ping & Dobermann, 2003). Statisti-

cal filters (non-linear spatial filters) are applied (Arce, 2005),

which respond according to the ranking of pixels contained in

a portion of the image (mask). The masks can be of different

sizes: 3� 3, 5� 5 or 7� 7 pixels. Themedian filter (Gonzalez&

Woods, 2008) is widely used and replaces the central pixel

value with the median of the values from the neighbourhood

of that pixel (the original pixel value is included in the calcu-

lation of the median). For the protocol, we implemented a

function in R to apply the median filter on the classification

obtained in step 2.5.

2.2.7. Validation of delineated zones
Conducting a soil and/or yield random stratified sampling is

recommended to validate the delineated MZs, using the po-

tential MZs as strata. Three to four samples perMZ are usually

sufficient. Taylor et al. (2007) discussed that the soil properties

measured at this stage should reflect existing local knowledge

on which soil variables are likely to be affecting yield andmay

differ between cropping regions. MLM can be used to deter-

mine between-MZ differences. A MLMwith a zone fixed effect

and spatially correlated errors is fitted for each dependent

variable. Exponential and spherical spatial correlation func-

tions with and without nugget effect are fitted for the model

error terms. Akaike information criterion (AIC) (Akaike, 1976)

is reported for model selection. Four models plus the inde-

pendent errormodel are compared. This analysis is conducted

using the function gls of “nlme” package (Pinheiro, Bates,

DebRoy, Sarkar, & R Core Team, 2014).
2.3. Protocol outline and implementation

Figure 1 shows a diagram that illustrates the proposed pro-

tocol to analysemultiple variables for the creation of MZs. The

R scripts and the sample file for running the proposed protocol

are provided as electronic supplementary material. The
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Fig. 1 e Diagram outlining an analytical protocol to

delineate MZs from site properties.
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following R packages must be installed and loaded for the

analyses: “spdep”, “rgdal”, “geoR”, “gstat”, “ade4”, “e1071” and

“nlme”. Data from ECa30 are used as an example, in the first

part of protocol illustration (3.1e3.2). These steps are repeated

for all the measured variables to be used for multivariate

classification. The initial data set requires several columns,

the first two identify the bidimensional spatial coordinates (x

and y) and the others correspond to the measured variables

(e.g. ECa30).
3. Results and discussion

3.1. Data preprocessing

For conversion of spatial coordinates, it was necessary to

specify the band or zone (in this case, Zone 21, south) and the

ellipsoid (WGS84); data with the transformed coordinates are

shown in Fig. 2. To remove outliers for ECa30we used itsmean

(23.8 mS m�1) and its total standard deviation

(SD ¼ 7.0 mS m�1). Then, data between the mean ± 3 SD were

selected for the next step of the protocol; 48 cases were

removed at this clean-up stage, representing 1% of the total of

measured sites (Fig. 3). To remove inliers, neighbour points

were defined as those contiguous points located at a distance

�25 m. The Local Moran's Index (Ii) and its statistical signifi-

cance for a ¼ 0.05 (adjusting the p-values according to Bon-

ferroni's criterion) identified 12 potential inliers (Fig. 4).

Figure 5 shows the fit of a linear regression on the Moran's
plot. The influential regression points are identified using

different diagnostic statistics, such as DFBETAS (dfb.1_ for

intercept and dfb.x for slope), DFFITS (dffit), Covratio (cov.r),

Cook's distance (cook.d) and leverage (hat). A point is regarded

as influential if it meets at least one of those statistics (fact

denoted by “*” in the output) (Fig. 6). In Fig. 5 influential points

were denoted by rhomboidal symbols and are considered in-

liers. The newdata set includes 5910 cases, i.e. 467 cases (7% of

the data) were removed with respect to the data set without

outliers.

3.2. Spatial interpolation of data

To perform geostatistical spatial interpolation, we fit an

empirical semivariogram (shown for ECa30 in Fig. 7). The RSS

(SSR_exp ¼ 2924423 vs. SSR_sph ¼ 4084724) and cross-

validation parameters (Table 1) shown that the best model

for spatial geostatistical interpolation in the case study was

the exponential one. The maximum semi-variance found be-

tween pairs of ECa30 data points was 31.05 (mS m�1)2 (sill).

This variability, expressed as an SD of 5.57 mS m�1, is

important to measure uncertainty in prediction at unsampled

locations obtained using kriging. Regarding ECa30, here it

represents 24% of the process mean. Spatial interpolation will

exhibit lower precision and accuracy, depending on the

magnitude of this variance. The range (24.92m) is the distance

at which semivariance stops increasing, interpreted as the

spatial lag at which the observations become essentially un-

correlated. In the international literature the scope or range

parameter can be interpreted as information useful for

defining the sampling plan, indicating which recommended
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Fig. 2 e Input data in geographic coordinates for the variable electrical conductivity (ECa) (left) and the corresponding output

in Cartesian coordinates (UTM WGS84, Zone 21 south) (right) (R software output).

Fig. 3 e Box-plots of apparent electrical conductivity data at 30 cm depth (ECa30) before outlier removal (left) and after outlier

removal (right).
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spacing to represent the spatial variability in a given region.

Thus, can be inferred that the protocol may be used in areas

with characteristics (geology, soil type and landscape) similar

to southeast in the Argentine pampas using pixel or soil in-

formation with resolution up to 25 m. This is possible, pro-

vided that the model exhibits a spatial correlation structure

(i.e. nugget to sill ratio lesser than 1).

Moreover, this range value could also help to plan other

protocol's steps, such as smoothing, preventing very densely

packed mascara. The nugget represents the variation at the

scale of sampling; it is the variation that remains unresolved

including any measurement error; for this example data,

nuggetwas set to 0 (mSm�1)2. For block kriging, a data setwith
Fig. 4 e Local Moran's index values (Ii), expected value (E.Ii), vari

of the first five inliers detected for ECa30 input data (R software
the georeferenced points that make up the plot polygon, i.e.

points representing the field boundaries, was required. A

regular grid (10 � 10 m) was generated on the polygon, which

enables to perform interpolations within the field boundaries

(Fig. 8). The map of spatial variability of ECa30 is shown. After

all the variables have been processed up to the spatial inter-

polation with the same prediction grid, the function cbindwas

used for concatenation of predicted values (Fig. 9).

3.3. Multivariate site classification and zoning

The graphical display obtained from MULTISPATI-PCA

allowed us to study the spatial correlation structure between
ance (Var.Ii), standardized value (Z.li) and p-value (Pr(z < 0))

output).
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Fig. 5 e Moran scatter plot for the variable apparent

electrical conductivity at 30 cm in depth (ECa30). Square

dots represent inliers.

Fig. 7 e Empirical (points) and theoretical (line)

semivariogram of the variable apparent electrical

conductivity at 30 cm in depth.

Table 1 e Interpolation accuracy of two geostatistical
models for the variable electrical conductivity at 30 cm
depth, based on mean squared errors (MSE), root mean
squared error (RMSE) and mean squared deviation ratio
(MSDR).

Model MSE RMSE MSDR

Exponential 4.42 2.10 0.63

Spherical 5.20 2.28 0.57
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the variables used for zone delineation (Fig. 10). The variables

ECa30 and Sd were positively correlated and, along with

ECa90, are themost important in explaining spatial variability

at the first axis level (sPC1, horizontal axis). Previous studies

(Fraisse et al., 2001; Sudduth, Hughes, & Drummond, 1995)

have reported that zones with higher ECa values correspond

to shallower soils where the clay horizon (Bt) is near the soil

surface, and lower ECa values correspond to deeper soils

where the Bt horizon is also deeper. Similar resultswere found

by Peralta et al. (2015), working on the same soil types of the

current work. Since sPC1 is the most important in explaining

the total spatial variability, ECa and Sd provide more infor-

mation for subsequent classification. The variable Elev was

negatively correlated with ECa90 and was more important to

explain sPC2.

For cluster analysis we selected the columns correspond-

ing to sPC1and sPC 2 such that a large amount of total varia-

tion can be explained with the first two axes (�70%). The

Euclidean distance was the similarity distance included in the

optimization function of the classification algorithm. The

fuzzy partition in this spatial component space was obtained

by setting a fuzziness weighting exponent at 1.3, as usual in
Fig. 6 e DFBETAS (dfb.1_ for intercept and dfb.x for slope), DFFI

leverage (hat) of the first five inliers detected for ECa30 input da
precision agriculture applications (Fridgen et al., 2004;

Guastaferro et al., 2010; Odeh, Chittleborough, & McBratney,

1992). There is no theoretical or computational evidence for

distinguishing an optimal fuzziness coefficient; however,

because of the smoothing produces in MULTISPATI-PCA, it is

supposed to be greater than, or at least equal to, the coefficient

used when original soil variables are the classification vari-

ables. The fuzzy k-means cluster was performed using the

“e1071” package, which also enables to obtain indices for the

selection of the number of classes. Here, we evaluate 2, 3 and 4

clusters using those indices. In all of calculated indices, except

for partition coefficient, the optimum number of classes is

obtained at the lowest index values. For a similar
TS (dffit), Covratio (cov.r), Cook's distance (cook.d) and

ta (R software output).
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Fig. 8 e Prediction grid (10 £ 10 m) (left) and map of spatial interpolation of the variable apparent electrical conductivity at

30 cm in depth (right).

Fig. 9 e Data set resulting from the application of steps 4.2 to 4.4 to the variables apparent electrical conductivity at 30

(ECa30) and 90 (ECa90) cm in depth, elevation (Elev), and soil depth (Sd). The first five rows are shown (R software output).

Fig. 10 e Graphical display of the first two axes of the

MULTISPATI-PCA analysis using the following variables:

ECa30, electrical conductivity at 30 cm; ECa90, electrical

conductivity at 90 cm; Elev, elevation; Sd, soil depth.
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interpretation of partition coefficient to those of the other

indices, the value 1 was divided into the partition coefficient

index (Fig. 11). In the present example, most of the indices,

except for Fukuyama-Sugeno, show that, following a statisti-

cal criterion, two classes should be selected. The values of the

summary index also show that two management classes

should be selected. Likewise, classification with two man-

agement classes exhibits large zones with more coherent

boundaries than those of classification with 3 and 4 classes,

which present several small and irregular zones (Fig. 12).

Thus, two classes were further processed to delineate MZs in

this field. However, it may happen that the number of MZ

indicated by indexes generated as a result several small and

irregular areas. The use of calculated indices only provides a

statistical metric but does not consider if the output is agro-

nomically sensitive. When selecting the optimum number of

management classes to be used, the ability to practically

manage the classes needs to be considered (Taylor et al., 2007).

For the smoothing of classification resultswe used themedian

filter. The masks defining the neighbourhood size (number of

pixels) needed to apply this smoothing can be of different

sizes. Here we testedmasks of 5� 5, 7� 7 and 9� 9 pixels. The

9 � 9 pixel filter (Fig. 13) was more suitable than the others
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Fig. 11 e Indices used to select the number of classes from fuzzy k-means cluster results. For each index the optimum class

number among 2, 3 or 4 classes is suggested by the lowest index value (R software output).

Fig. 12 e Map with two (left), three (centre) and four (right) within-field management classes.
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filters to achieve zoning of less abrupt boundaries and with no

fragmentation.
3.4. Comparison of delineated zones

The comparison of means for the three variables selected for

validation indicated statistically significant differences be-

tween homogeneous zones in SOM content and wheat yield

(Fig. 14). No significant differenceswere found between zones-

means for clay content. In the selection of the spatial corre-

lation model for SOM variable, AIC indicated that the model

with exponential spatial correlation function was the best one

for these data (Table 2). For clay content the model with

spherical spatial correlation function was the best one,

whereas for wheat yield the exponential model was the

selected one (Table 2).
Fig. 13 e Map with two within-field management classes

after application of a median filter of 9 £ 9 pixels.
We present all of the steps for coming up with zones that

are reasonably homogeneous for the soil characteristics that

we have used for the classification. Even stating the yields

differ, that does not mean that they optimal management

decision for these zones differ. That would be a validation that

they indeed aremanagement zones. Further studies should be

conducted to evaluate these subfield homogeneous zones to

better understand the agronomic significance of this classifi-

cation. In the study case, MZ 1 presents an SOM average of

4.60%, whereas for Zone 2 average SOM value is 4.24%. TheMZ

2 was associated with deeper soils and greater yield (Peralta,

Costa, Balzarini, & Castro Franco, 2013). In this area, there

was possibly an accumulation of erodedmaterial (Buschiazzo,

1986) and higher water accumulation and soil moisture

(Kravchenko & Bullock, 2000). In contrast, the MZ 1 showed

lower wheat grain yield, which was associated with shallower

soils. Following multivariate classification, a field experiment

involving variable rate application of inputs was carried out,

providing environmental and economic benefits by

decreasing fertilisation in the less-productive areas and

minimizing the application of chemical substances as a

strategy to obtain more cost-effective field management,

including less use of agricultural machinery (Peralta et al.,

2015).

Temporal stability of the MZs is another important issue in

site-specific agriculture, which might require the extension of

the current protocol. Further knowledge regarding the yield

variation as caused by these soil propertiesmight be gained by

adjusting predictive models. The results of the protocol will

depend on the input variables. Determining the optimumdata

layers needed to delineate management zones for a particular

field without previous information is difficult. In general,

emphasis should be given to sensors that record known or
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Fig. 14 e Mean differences of soil and yield variables for the delineated management zones. Different letters indicate

statistically significant differences (P < 0.05) between zones.
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expected yield determining factors (Taylor et al., 2007). There

is agreement however, that use of multiple layers of data is

necessary to adequately describe the spatial variability of a

field. Overall, the most promising techniques to delineate

management zones use multiple sources of data or layers for

the purpose (Khosla et al., 2008). In this paper, MZ delineation

was performed using ECa, Elev and Sd data layers. These data

were easy accessible and indicative of production potential for

the southern Argentine Pampas; hence, the protocol can be

easily extrapolated to different cropping systems. However,

this does not preclude the use of the statistical methodology

with other valid data layers that may be relevant for another

specific cropping system. If another variable is used to replace

the ECa in soils of other region, the logical sequence of the

statistical techniques recommended for multivariate homo-

geneous zone delineation will be the same as that in the

proposed protocol.
4. Concluding remarks

This work presents an analytical protocol to implement a set

of statistical techniques for the different stages of multivar-

iate homogeneous zone delineation in PA. In its current state,

the protocol integrates a number of statistical methods and

models suitable for zoning with multiple variables described

by spatial data. The implemented geostatistical and multi-

variate algorithms have been previously published and
Table 2 e AIC (Akaike Information Criterion) for model
selection. Mixed Linear Model for differences in soil
organic matter, clay content, and wheat yield among
delineated management zones.

Model SOM Clay Wheat yield

Exponential �1.52a 49.59a 1034.39a

Exponential þ Nugget 0.48 51.59 1036.39

Spherical �1.22 47.05 1088.46

Spherical þ Nugget �0.40 49.05 1041.39

Independent error 2.93 51.03 1675.30

a A lower AIC value indicates a better model fit.
validated, but they were not available in a logical sequence of

a single protocol. The development of the analytical outline as

a pipeline in R, a software package of easy access and free

distribution, might facilitate its implementation. The protocol

here presented extends that of Taylor et al. (2007) by incor-

porating specific indices for inlier removal, the spatial prin-

cipal component analysis to explore the spatial constraints of

data during multivariate classification, filters to smooth the

classification results and a mixed linear model approach to

validate MZ using data with spatial correlation.
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