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ABSTRACT: The hybrid simulation tools (QM/MM)
evolved into a fundamental methodology for studying chemical
reactivity in complex environments. This paper presents an
implementation of electronic structure calculations based on
density functional theory. This development is optimized for
performing hybrid molecular dynamics simulations by making
use of graphic processors (GPU) for the most computationally
demanding parts (exchange-correlation terms). The proposed
implementation is able to take advantage of modern GPUs
achieving acceleration in relevant portions between 20 to 30
times faster than the CPU version. The presented code was
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extensively tested, both in terms of numerical quality and performance over systems of different size and composition.

1. INTRODUCTION

The simulation of chemical properties in complex systems
(solution, proteins, etc.) with electronic detail generally
requires treatment by means of computationally expensive
methods. One approach consists of treating these systems using
hybrid (QM/MM) methods. In this approach, the system is
divided into a subsystem treated with a Hamiltonian based on
quantum mechanics whereas the rest is modeled with a classical
Hamiltonian. This methodology allows for the treatment of
complex systems with many degrees of freedom. However, the
computational cost associated with the resolution the self-
consistent electronic problem remains a major constraint when
applying this type of model.

Nevertheless, given the immense computing capabilities of
the current graphics processing units (GPU), these appear as
attractive alternatives in the area of high-performance
computing. In particular, the use of GPUs in quantum
chemistry has allowed us to obtain interesting results. There
are several works that employ GPUs in diverse electronic-
structure calculations,'”” and there is even a commercial
software developed exclusively for this kind of hardware.® A
particularly relevant work is Yasuda’s,” in which an algorithm
for the exchange-correlation calculations related to self-
consistent field iterations (SCF) is presented. It is important
to take into consideration that the possibility of obtaining
efficient algorithms depends strongly, aside from the hardware
to be used, on the type of system that have to be solved (size,
type of atoms, basis-functions, etc.).

In our case, the use of hybrid simulation techniques (QM/
MM) is of great interest to study bio-molecules’ active sites: the
presented implementation is oriented toward these systems,
which usually are not bigger than 50 or 100 atoms and may
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include relatively heavy elements such as iron, sulfur, copper,
etc.'”"” Molecular dynamics simulations involve performing
complete density functional theory (DFT) calculations a large
number of times, each with only a few iterations. This implies
that the initialization time has a greater relative weight in this
kind of calculation than in a single-point SCF computation.

In summary, we propose a GPU implementation oriented
toward QM/MM molecular dynamics calculations focused on
the most computationally demanding steps of a DFT
calculation with Gaussian basis. This work is based on the
code Molecole' and includes novel approaches having a
positive impact on parallelization and performance without
affecting numerical quality. One of these differences consists of
including a new partitioning strategy for the set of quadrature
points, which results in a more efficient grouping of
computational batches in terms of performance and significative
functions. Another aspect involves using a low-cost classi-
fication criteria for determining these significative functions,
which does not require computin§ the actual function values.
Although other implementations™ proposed the recalculation
of function values several times at each iteration, in our
implementation, we precompute these, obtaining notable
performance improvements.

A CPU implementation was also developed and compared to
the GPU version. The CPU version is not simply a translation
of the GPU implementation because specific CPU features (like
SSE4.1/4.2 or AVX) were used to obtain the best performance
possible. Finally, we present and test a hybrid code made by the
coupling of our DFT implementation with AMBER 12.*°
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2. METHOD

In the DFT approach, the energy is written as a functional of
the density:

1 p(Rp(R) .
Elp] = Tlp] + V. [p] + 5 ‘//‘Tdrldr2

+ E[p] (1)

where the first term is the kinetic energy associated with the
density, the second is the interaction between the density and
the nuclei, the third one is the Coulombs repulsion of the
densitylezvith itself and the last is the exchange and correlation
energy.

The global exchange-correlation portion is the most
expensive in terms of computational cost. The energy
corresponding is calculated by the integral of the local
exchange-correlation energy as the following:

Exe = [p()elp(r))dr o
Equation 2 can be computed as a discrete sum over a grid:*>

Exc = Z p(r}-)é‘xc(p(rj))
j (3)

where the electronic density p over each grid point j is defined
from the molecular orbitals y; as the following:

p(rj) = z |l//i(r]-)|2
i (4)
with

w(x, y, 2) = Z M,
k=1 (5)

where c; are the variational coefficients, and the orbitals y; are
constructed by expanding them in a basis of contracted
Cartesian Gaussian functions as the following:
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where
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An alternative way to compute the electronic density is using
the density matrix:

p(F) = 23 D px (P (7)

i=1 j>i (8)

where m is the number of basis functions (or basis functions
with a non negligible value) and

_ k k
p=Ycixg
k=1

where 7 is the number of occupied orbitals.

The computation of the exchange and correlation energy
(and the corresponding Khon—Sham matrix elements) involves
several steps, for all of which a linear-scaling algorithm exists.
Still, all steps exhibit a degree of parallelism inherent to their
mathematical formulation. Exploiting this aspect gives a notable
advantage over sequential procedures. Nevertheless, there is not
a well-established parallel implementation because the
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computation can be resolved in different ways. One possible
solution consists in parallelizing these steps independently and
determining the most adequate parallelization strategy for each
one. In relation with the diagram shown in Figure 1, the main
computational steps are (a) quadrature-point positions, (b)
quadrature-point weights, (i) function values, (j) density at
each point and (k) Kohn—Sham matrix elements.
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Figure 1. Calculations steps. The white box inside Kohn—Sham matrix
construction module is the optimized code for GPU.

To achieve a linear-scaling implementation, Stratman et al.
propose several strategies.”> The main idea consists in grouping
quadrature-points instead of solving the computation for each
one. This grouping allows determining which basis-functions
have a significative contribution to the final computation, which
are referred to as significative functions. Given the rapid decay
of Gaussian functions, the size of the set of significative
functions associated with each group of quadrature points does
not depend on the number of atoms of the system. In other
words, this size has constant order in terms of computational
complexity. As a consequence, it is possible to subdivide the
complete DFT calculation by computing each of these groups
independently.

A simplified scheme of the calculation procedure is shown in
Figure 1. The steps (a) to (e) correspond to the initialization
stage; they are computed once at the start of simulation. The
SCF iteration is composed of steps (f) to (l); this cycle is
repeated until the density matrix changes less than a previously
established tolerance. The selected steps parallelized to be run
in GPU are (b), (i), (j) and (k), which are the most
computationally expensive parts of the code.

2.1. Grid. An important aspect of the calculation is the
shape of the grid on which eq 3 is applied. The usual practice is
to generate a grid for the molecule via atomic overlapping grids.
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These atomic grids come from the superposition of layers
derived by scaling a reference layer (see Figure 2).

Figure 2. Schematic atomic grid. Layers are not equidistant but are
most concentrated close to the nuclei.

These layers are not equidistant but are most concentrated
close to the nuclei (see Figure 3), where the electron density
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Figure 3. Radii in Angstroms of the grid layers for the oxygen atom.

changes more abruptly, and are more spaced away from them.
In a molecule the overlap of atomic grids causes that the
relative weight of a given point depends on the position of the
grid points from other atoms, making the calculation scale
quadratically.”> However algorithms that scale linearly have
been developed.”

2.2. Partitioning and Function Selection Criteria. The
simplest partitioning scheme consists of dividing the whole
system volume into fixed-size cubes, therefore grouping
neighboring points. However, the distribution of points in
space is not homogeneous as a result of the grid shape, which
concentrates a large number of points near the nuclei where the
electronic density changes more (see Figure 3).

These spheres occupy a small space, so there are a reduced
amount of significative functions to compute despite having a
large quantity of points. This produces a reduction in the
computational cost, both in GPU and CPU. Then, after
excluding these already grouped points from the complete
point cloud, the traditional cube-based partitioning is applied.
Using this hybrid partitioning, the cube sizes can be
incremented, producing fewer groups. The result of this hybrid
partitioning scheme is a more homogeneous distribution of
points in terms of computational cost due to having fewer
significative functions in the sphere groups (see Figure 4).

Figure 4. Grid partition. Combining spheres and cubes (hybrid
partition) produces fewer groups and a more homogeneous
distribution of points in terms of computational cost.

Another optimization implemented in this work consists of a
simpler selection criteria for significative functions similar to
other packages (for example, Gaussian). Independent of the
shape of a group, the selection criteria determines which
functions are to be computed over the contained points. A
simple criteria consists of determining, for each basis function,
if the value for that point is greater than a specific threshold 6.
However, this gives the partitioning and selection criteria a
considerable computational cost, because it implies computing
all the function values for all points. Even further, the cost of
computing a basis-function value is not negligible because it
involves calculating several Gaussian functions.

The used selection criteria is based on finding a distance of
influence for each Gaussian function. Outside this radius of
influence the function has a negligible value (lower than a
parameter: e °). The distance between the Gaussian function
center and the group border is calculated, and if the function
has a radius of influence larger than this distance the function is
discarded.

This condition simplifies the computation by not requiring
the actual function value on every point in the group. It should
be noted that this inclusion condition is only sufficient and not
necessary. This means that some basis functions not meeting
this exclusion criteria are still computed but contribute with a
negligible value to the calculation. Although, the number of
these functions is small and do not impact on the resulting
computational cost.

As a consequence, with this selection method the
computation time for an iteration can be slightly higher than
with a more rigorous method but the grid generation time is
considerable lower.

2.3. Computation Kernels. During group partitioning, the
positions of the points have to be computed to determine in
which group they will be contained. After the partition is
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obtained, the list of significative functions of each group is
computed. These steps (a and c in Figure 1) are computed in
the CPU, because the corresponding execution time is
negligible in both cases.

The weights of the grid points are computed by a GPU
kernel (b in Figure 1), because this is the most computational
demanding portion of the grid generation step. This kernel
maps one thread to one grid point. Shared memory is used as a
cache to store the atom positions and other relevant
parameters.

The exchange-correlation calculation in the SCF cycle starts
with computing the function values (i in Figure 1) in GPU.
Again, one thread is mapped to a single grid point. The
necessary Gaussian parameters are first loaded into shared
memory because these do not depend on the grid point
position. The function values and their first and second
derivatives are stored in GPU global memory to be used during
the remaining steps of the calculation for each group. The size
of the memory present in the current GPUs allows storing a
great part of these function values (or even all of them) in GPU
memory during all the SCF iterations. This allows reusing them
and drastically diminishes the time of this calculation for the
successive steps. When the next group of points is computed,
the value of the functions (and its gradients and Hessians) are
recalculated only for the groups that do not have them already
stored in GPU global memory.

This approach falls between a fully caching algorithm, where
all functions are precalculated and stored for all groups, and a
fully recalculating algorithm, where none of the function values
are stored but instead are computed on demand for every
iteration. The latter approach corresponds to Yasuda’s work,’
where it was shown that the raw processing power of GPUs
could be applied in such way to gain significant performance
improvements. In our case, we took advantage of newer GPU
boards, which feature faster memory access and increased
memory capacity.

The next step of the algorithm consists of computing the
density value, the gradient and the Hessian of the density (j in
Figure 1). These steps are the most intensive in terms of
floating points operations. For this reason, a more detailed
explanation of the algorithm is presented.

The calculation performed by this kernel is for all points in
the grid using the eq 8. The gradient and Hessian are obtained
using a similar expression.

p(point) = Z;{ (point) Z B, (point)

jzi (10)

where m is the number of significative functions, p; is the
reduced density matrix and y; ()() are the values of the i (j)
function on the considered point. The values of the functions
(%;) are shared for each point, but the density matrix (p;) is
different for every pair of functions.

In the development of GPU scientific applications, reusing
data reads from global memory as much as possible is desirable
to minimize latency. The dependence of the terms in eq 10
makes it difficult to do so. There are two possible approaches
for implementing step j from Figure 1: a point-based
parallelization that may share elements of the density matrix
but not the function values and its derivatives (see strategy 1 in
Figure S) or a function-based parallelization that can share the
function values but not the density matrix elements. Initially, a
point-based parallelization was implemented, in which each
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Figure 5. Two possible approaches for implementing step j (Figure 1).
Strategy 1: point-based parallelization (shares elements of the density
matrix but not the function values and its derivatives). Strategy 2:
function-based parallelization (shares the function values but not the
density matrix elements).

thread computes the entire calculation for a single point.
However, the performance of this method was not sufliciently
acceptable and was discarded.

In the second approach (see Strategy 2 in Figure S), each
thread computes two terms )(i(point)Zj’"Zpi}-)(j(point), corre-
sponding to the eq 10; these threads are grouped in an optimal
parameter named DENSITY BLOCK SIZE (DBS, for the
current GPU generation the optimal value is 32). A two-
dimensional block grid was used, where the x-dimension gives
the point in the grid and in the y-dimension the number of
groups of size DBS needed to compute all significative
functions. Finally, a different kernel performs the summation
(ie., the reduction) over the groups for the same point and
computes the contribution to the energy and gradients for that
point.

This approach has several advantages. Each value of a
function, which is shared for all i for the same point, is read
only once from global memory to shared memory (in a
coalesced form) and is used 2 X DBS times without bank

dx.doi.org/10.1021/ct400308n | J. Chem. Theory Comput. XXXX, XXX, XXX—XXX



Journal of Chemical Theory and Computation

a

Figure 6. Schematic representation of the systems used to test the implementations: (a) heme group without any lateral chains and bound to carbon
monoxide (FeC,;N¢H,4,CO), (b) Taxol (C,;Hs;NO,,) and (c) valinomycin (Cgs,HgoNgO ).

conflicts. The density matrix elements, which depend on both i
and j, are accessed using texture memory (the texture memory
is a specialized cache that allows efficient access to global
memory following a tile pattern). This allows fast retrieval of
the density matrix elements for close enough i and j (depending
on the size of available texture memory).

The Kohn—Sham matrix contribution is computed using a
different kernel, which is necessary during convergence of the
main SCF algorithm (step k in Figure 1). In this kernel, a
bidimensional grid of threads is used, where each one is
mapped to a single matrix element. Because the matrix is
symmetric, half of these threads would remain idle. However,
because the computation is actually subdivided in blocks of
threads, blocks completely contained in the lower-left triangle
of the matrix are discarded without computational cost. For the
blocks laying over the matrix diagonal, dummy computation is
performed for the unnecessary threads to minimize branch
divergence. In this step, precision is of key importance (mainly
for the GGA based calculations), double-precision variables are
internally used in this kernel. The rest of the GPU kernels can
use single-precision variables without significative impact on the
final result. As a result a mixed precision code are used.

2.4. Coulomb Integrals. Another highly CPU demanding
part of the electronic-structure calculations corresponds to the
Coulomb integrals, which account for the repulsive interaction
between electrons (ERIs, third term in eq 1 and step f in Figure
1). Previous works have proposed the use of GPU for
computing these integrals."”® In medium size systems, storing
ERIs in RAM memory drastically reduces the calculation time
of this term compared with the exchange and correlation.
Therefore, in our code, this contribution is computed in CPU
and stored in main memory.

In principle, this integral depends on four centers. This
would imply a complexity of O(m*) (see eq 8). However, this
complexity can be easily reduced.

In particular, we use two approaches to reduce the
complexity. The first one consists in rewriting the density as
a linear combination of Gaussian functions (instead of a
product of Gaussians) by employing auxiliary basis functions.
This reduces the complexity by one, while also reducing the
pre-exponential factor (in general, the number of necessary
functions is much lower than the number of products
associated with the original basis). The second approach for

reducing the complexity without compromising the numerical
quality consists in employing the Gaussian Product Theorem™
to discard negligible terms. By using these techniques, a great
reduction in the number of terms to compute is achieved. The
obtained complexity is O(m X m’), where m’ is the number
auxiliary basis functions. Then, other optimization are applied.
Using the same criteria based on Gaussian product theorem,
the coulomb integrals can be classified in two groups depending
of its absolute value, the group with the smaller values can be
stored using single precision with a negligible loss of accuracy.
The second group (corresponding to the larger absolute values)
is stored using double precision. This optimization reduces the
size of the storage needed for this terms.

All these optimizations allows to precompute and store these
terms in memory (for example, the valinomycin
(Cg4HgoNgO,g) with the DZVP basis uses only 5 GB of
memory). As a consequence, the time consumed by this
portion of the calculation is drastically reduced resulting
considerable less than the time involved in the exchange-
correlation integral computation.

2.5. QM/MM Implementation. The DFT GPU based
code developed in our group was coupled with the AMBER
12*° (and AMBER 11) molecular dynamics package. The
periodic boundary conditions were treated with a simple cutoff
scheme. Minor changes on the AMBER code were performed,
in particular, the possibility of uncoupling the temperature
control for the QM and MM subsystems. The coupling was
made as external program adapting the routines written by
Andrea Gotz and Ross Walker.”* This implementation was
already used in the determination of the free energy profile of
the oxidation of cisteine by peroxinitrite.”®

3. RESULTS

Two main aspects are analyzed in the present work:
performance and numerical quality. In terms of performance,
the scalability of the exchange-correlation computation, the
overall DFT iteration and grid generation times are considered.
Comparisons are performed using GPU and CPU implementa-
tions.

The CPU and GPU versions are compared over three
different systems of moderate size: Taxol (C,,H;NO,,),
valinomycin (Cs,HgoNgO1s); and a heme group without any
lateral chains and bound to carbon monoxide
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(FeC,3NgH,4CO), see Figure 6. The first two molecules are
commonly used in performance measurements,”*® and the
third is a typical example of a system that is studied using
hybrid techniques.'”'® For all cases, we employs the DZVP
basis set with a DGAI auxiliary basis set. Computations are
performed using a high-density grid (194 angular points and 30
to 35 shells). The PBE* functional was adopted for all the
calculations.

3.1. Technical Details. The graphical processor used for
the tests is NVIDIA GeForce GTX 780, implementing the
Kepler architecture and having 3GB of DDRS graphical
memory. This GPU was installed on a desktop PC with an
Intel Core i5-3330 processor (3.0 GHz clock speed and 6MB
cache size) and 8GB of memory. The CPU based
implementation is tested in the same desktop PC.

The GPU implementation uses CUDA (Compute Unified
Device Architecture), which is a parallel computing platform
and programming model created by NVIDIA. The GPU
Computing SDK used is the CUDA Toolkit Version 5.5, which
is bundled with the driver version 319.60, which includes the
necessary run time libraries and compiler.

Both CPU and GPU implementations are specifically
optimized for the corresponding architecture. In the case of
the CPU version, it consisted in a sequential version using
Floating-point vector library (fvec, developed by Intel)
producing SSE2 type instructions.

The parallelized version of Math Kernel Library (MKL,
developed by Intel) is used for certain steps that are solved in
both implementations in CPU (for example matrix diagonaliza-
tion).

3.2. Numerical Quality. Two aspects mainly affect the
numerical quality: the parameter ¢ and the use of mixed
precision in the exchange correlation terms. Table 1 shows the

Table 1. Final Energy (in kcal/mol) and Differences
Showing That Using a Full Double Precision or a Mixed
Precision and Discarding Negligible Functions Produces
Equivalent Results

heme Taxol valinomycin
CPU“ —1625197.143 —1835014.862 —2378314.553
GrU® —1625197.125 —1835014.764 —2378314.264
diff 0.018 0.098 0.288

“With full double precision and without discarding any function.
bWith 6 = 10 and using mixed precision.

final energy and differences for two set of parameters on the
systems presented in Figure 6. In the first one, the computation
is done using a CPU version without discarding any functions
and exclusively using double precision. The second one is based
on a GPU version with 6 = 10 and mixed precision. These
results show, in all cases, a difference less than 1 kcal/mol
(“chemical accuracy”), concluding that they are equivalent.
After determining 0, the sizes of the cubes and the shells
included in the spheres should be optimized. The optimal
parameters found for maximizing performance on GPU and
CPU are different. Both cases share the same percentage of
shells in the spherical groups (60%), but the size of the cubes
are significantly different (CPU: la.u., GPU: 8a.u.). The cube
size is strongly related with the total computational cost. The
selection of functions to be dropped is more effective with
smaller cubes, reducing the number of functions and points in
each one. For CPU, having large quantities of groups with small

computational cost is a desirable scenario, being only limited by
the available memory. In GPU, where a large amount of
processing cores is available (e.g, the Nvidia GTX 780 has
2304 CUDA cores), this situation results in less efficient
computation. For this reason, is normally preferred having
larger cubes in despite of increasing the computational cost.
3.3. Scalability Analysis. One important aspect to verify is
the linear scalability of this implementation with respect to the
number of atoms (Figure 7). Execution times for the exchange-
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Figure 7. Scalability analysis. Best times obtained for high density grids
for the water clusters systems.

correlation calculation were measured for the GPU implemen-
tation. This was done on systems consisting of a series of water
clusters of growing size (1—24 molecules) with a DZVP basis
set and an auxiliary DGAI basis set. The quadrature grids of
tested have the following:****** 194 angular points and 30 to
35S shells (depending on the element). The DFT-GGA
functional PBE was used.

3.4. Performance. 3.4.1. Group Partitioning. The use of a
hybrid group partitioning scheme based on spheres surround-
ing the atoms and cubes for the rest of the points have a
positive impact on performance. In Table 2, we show the
exchange and correlation execution time with the best
parameter with and without the spheres groups, for the heme
and valinomycin (both with DZVP basis set).

Table 2. Execution Times (in s) for Exchange-Correlation
Terms for Different Partition Schemes in GPU“

heme Taxol valinomycin
hybrid partition 0.55 1.40 2.55
cubes only 0.82 221 3.90
speedup 33% 37% 35%

“The use of hybrid partition presents a speedup of near 35% in the
considered systems.

In all cases, the impact is similar, and the execution time is
decreased by 33 to 37% without loss of accuracy in GPU (in
CPU have similar results) implementation. The best results are
obtained using a value between 50 and 70% of the grid points
for the spheres.

In the hybrid partition scheme and using the presented
parameters for GPU, the number of significative functions per
group varies from only a few to more than 800 (using
valinomycine as an example). However the total time is
strongly dominated by the groups with more than 256
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Table 3. GPU and CPU Performance Comparison for Selected Systems for One SCF Iteration®

GPU

heme grid gen 0.304
SCF 1.021

exc-corr 0.549

Taxol grid gen 0.868
SCF 4.246

exc-corr 1.395

valinomycin grid gen 1.637
SCF 10.566

exc-corr 2317

cpruU,? CPU,* CPU,/GPU CPU,/GPU
6.782 8.438 22 28
25.822 16.551 25 16
25.474 16.094 46 29
30.775 25.503 35 29
72.562 40028 17 9
69.077 36433 50 26
72247 43.042 44 26
133.99 62.605 13 6
125350 53.019 54 23

“Times are in seconds. "With the same parameter as GPU. “With the best parameters for CPU.

significative functions. Those groups consume more than 90%
of the total computing time.

3.4.2. Performance Considerations. The available GPU
cards present an impressive theoretical computing power, for
example the GeForce GTX 780 can process 4 TFLOPS (peak
performance) in single precision. However, real applications
have several limitations to achieving this outstanding perform-
ance. Examples of limitations include the need of synchroniza-
tion and acceding data from memory.

One of the paradigmatic applications in scientific computing
is matrix computation. The NVIDIA CUDA Basic Linear
Algebra Subroutines (cuBLAS) library is a GPU-accelerated
version of the complete standard BLAS library.*

The different matrix operations show a strong variation in
terms of obtained performance. For example, SGEMM obtains
2779 GFLOPS whereas the symmetric version SSYMM only
performs 876 GFLOPS (data taken from Nvidia Performance
Report®') using K20X board with cuBLAS 5.0. This reveals the
variations even in testbed scenarios focused on operations with
large matrices.

In our application, the most demanding kernel corresponds
to computing the density (gradient and Hessian) on each point.
The number of terms to compute the eq 8 are given by the
following:

1
#terms =7 z #points#fcts X (#fcts + 1)
2
groups (11)

Where #,,;, is the number of points in the group and #, is
the number of significative functions for this group. In the
larger case (valinomycin with DZVP basis set), the number of
such terms is 4.40 X 10'. The number of floating points
operation for computing each term has a minimum of two (one
multiplication plus one accumulation), discarding the reading
from local, texture and shared memory, dummy computation,
etc. The time needed to compute these terms in a GeForce
GTX 780 is 1.37 s, leading to a result of 640 GFLOPS. This
performance is similar to that achieved by the CUBLAS
SSYMM in a Tesla K20x GPU,*" a powerful board.

3.4.3. GPU vs CPU. Table 3 includes a comparison of
execution times for an iteration of the SCF calculation for
heme, Taxol and valinomycin with a DZVP basis set and DGA1
auxiliary basis set.

The overall performance is similar to the well-known ORCA
package (version 2.9.1). Using this package, the time for an
iteration using exactly the same basis, auxiliary set and a similar
number of grid points is 23.53 s for heme, 65.30 s for Taxol and
122.39 s for valinomycin. Despite that the computation is not
exactly the same (for example, ORCA does not store ERIs in

memory) and ORCA uses more grid points (40% more in
Heme, 30% more in Taxol and 20% more in valinomycin), this
comparison reveals that the used CPU implementation is
comparable with the state on the art in the quantum chemistry
field.

For the CPU case, two sets of parameters are used: CPU,
uses the same parameters as GPU, and CPU, is computed with
optimized parameters for the CPU. On both cases, only one
core is used for the execution. The application is compiled
using the available specific compiler optimizations for the
current processor architecture.

Using the best parameters for CPU (CPU, case) lowers the
number of significative functions and thus the number of
floating point operations performed. In spite of measuring
different workloads, this procedure results in a fair comparison
of the two computing platforms, each one with its best available
scenario.

On the other hand, the use of the same set of parameters
(CPU; case) allows us to compare the two computing
platforms performing exactly the same operations.

In Table 3, the first row of each considered system
corresponds to the grid generation stage. For the CPU; case,
the speedup ranges between 22 and 44 times, showing an
increment with the system size. For the other case, the obtained
speedup is near 28 times in all the considered systems.

For all considered systems, the exchange-correlation part of
SCEF iteration represents a large part of its total computing time
in both CPU cases. For example, Taxol (in the CPU, case)
represents more than 90% of the SCF iteration.

When the same amount of operations are performed in each
platform (CPU, case), the obtained speedup for the GPU
implementation (column CPU;/GPU in Table 3) for the
exchange-correlation part ranges between 46 and 54 times. For
the CPU, case, this speedup (column CPU,/GPU) is 23 times
for valinomycin and 29 times for heme.

These results show that use of the GPU implementation
produces a drastic reduction in the computing time for the
exchange-correlation part of the SCF iteration.

3.5. QM/MM Simulations. In this section, the impact of
the new implementation on a QM/MM simulation is evaluated.
The system used is the soluble domain of CopA ATPase from
Archaeoglobus fulgidus. This protein couples the energy of ATP
hydrolysis to Cu" translocation across cellular membranes.** In
the reaction mechanism, a phosphorylated metastable inter-
mediate is generated. This particular autophosphorylation
reaction results in a interesting example of a system that can
be studied using QM/MM techniques.

In the QM/MM simulation, the QM subsystem is defined by
the atoms in the reactive region. This includes the phosphates
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of the ATP, one Mg“, the aspartic 424 (which is
phosphorylated) and some of the atoms of lysine 600, totaling
34 atoms (see Figure 8). The MM subsystem is formed by the

Figure 8. QM/MM system. The water molecules are not show, the
QM region are shown in CPK representation.

rest of the protein, the rest of ATP, explicit water molecules
and Na* counterions. The initial coordinates are taken from the
3A1C structure of the Protein Data Bank (PDB)** and relaxed
using classical simulation for 2 ns.

Figure 9 shows the relative times for the one step of
molecular dynamics, taking 8 SCF iterations to converge.
Figure 9a includes the results for CPU based implementation
using the best available parameters whereas Figure 9b is
centered on the GPU version.

As was previously mentioned and can be immediately seen in
Figure 9a, the exchange-correlation calculus in the SCF cycle is
one of the most demanding parts in terms of computational
cost. On the other hand, Figure 9b shows that this stage is
notoriously diminished in the GPU version, reaching a speedup
of 20X. As a consequence, the relative weight of the exchange-
correlation calculus in SCF cycle is bellow QM/MM
initialization, QM/MM forces and Coulomb forces. The grid
generation stage and the exchange-correlation forces also
present a remarkable speedup. Figure 9b shows that the
relative impact of these two terms in the GPU version is minor.

4. CONCLUSIONS

The hybrid simulation tools (QM/MM) evolved into a
fundamental methodology for studying chemical reactivity in
complex environments. The aim of this work is to devise an

electronic-structure simulation software based on DFT as
efficiently as possible to be applied to hybrid molecular
dynamic simulations. In this sense, two particularities of these
type of calculations were considered due to their importance:
the size of the systems (which usually consist of a moderate
number of atoms, on the order of 100) and the nearness to
convergence of the wave function at the first SCF iteration
(which minimizes the number of required iterations).

In the SCF iteration part, the use of an hybrid partitioning
scheme reduces the computational cost by 35% and the use of
GPU contributes in an additional 20 to 30X factor (compared
with the best implementation in CPU using a single core).

Although, the reduction in the time consumed by the
exchange-correlation calculus reveals other parts that acquire
relevance in the GPU version. As is shown in Figure 9b, some
of the steps that should be considered to further optimization
are QM/MM force, Coulomb force, and, to a lesser degree,
other terms (basis changes, matrix diagonalization, etc).

The obtained results show a successful implementation of the
exchange-correlation part of the DFT calculation that can
measure up to the state of the art of the field. This new version
also presents optimal characteristics to be included as part of a
molecular dynamics simulation software.
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