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Abstract

Major histocompatibility complex (MHC) molecules play a key roll in cell-mediated immune
responses presenting bounded peptides for recognition by the immune system cells. Several in-
silico methods have been developed to predict the binding affinity of a given peptide to a specific
MHC molecule. One of current in-state-of-art methods for MHC class | is NetMHCpan, which has
as a core ingredient the representation of the MHC class | molecule using a pseudo sequence
representation of the binding cleft amino acid environment. New and large MHC-peptide binding
data sets are constantly being made available and also new structures of MHC class | molecules
with bound peptide have been published. In order to test if the NetMHCpan method can be
improved by integrating this novel information, we created new pseudo-sequence definitions for
the MHC binding cleft environment from sequence and structural analysis of different MHC data
sets including human (HLA), non-human primates and other animal alleles (cattle, mouse and
swine). From these constructs, we demonstrated that by focusing on MHC sequence positions
found to be polymorphic across the MHC molecules used to train the method, the NetMHCpan
method achieved a significant increase in predictive performance in particular for non-human
MHCs. This study hence demonstrated that an improved performance of MHC binding methods
can be achieved not only by accumulation of more MHC-peptide binding data, but also by a
refined definition of the MHC binding environment including information from non-human
species.

Introduction

Proteins are the essential immune-target structures, which in the MHC class | (MHC-I)
pathway are processed to 8-11mer peptides. In this way, peptides that bind to MHC-I
molecules are presented and potentially recognized by cytotoxic T cells, which can lead to
an immune response. The most selective step in this antigen presentation is the peptide
binding to MHC ().

Each MHC molecule has a potentially unique binding affinity motif (2) and the
characterization of this motif for each MHC molecule prevalent in a given population is a
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central aspect of rational T cell epitope discovery. Due to the immense MHC-I
polymorphism (3, 4), an exhaustive characterization of all MHC molecules is a high cost-
intensive effort, and as of today in spite of significant advances in high-throughput immune
assays only a little more than 100 MHC-I molecules, including 25 non-human molecules
have been experimentally characterized at a detail allowing to describe their binding
specificity (IEDB date 2012).

To face this problem, several in silico prediction methods have been developed in the last
decades (5-12), reviewed in (13). Of these methods, NetMHCpan is the current in state-of
the art method (14) for predicting binding affinity of peptides to any MHC-I molecule with a
know protein sequence (7). A core ingredient of the NetMHCpan method is the definition of
the so-called pseudo sequence defined from the binding cleft amino acid environment of
each MHC molecule. In the original NetMHCpan method, this pseudo-sequence was defined
from the set of polymorphic residue positions in a set of human MHC crystal structures and
sequences available at the time of the study in potential contact with the bound peptide,
comprising residues within a distance of 4.0 A between any pair of atoms from the MHC
complex and the bounded peptide. However, since the original NetMHCpan publication,
large novel data sets have become available not only for human MHC alleles but also for
non-human alleles. Furthermore, the number of crystal structures has increased for human
and non-human MHC molecules potentially expanding our definition of which MHC
positions can potentially interact with a bound peptide and which positions are polymorphic.
It hence seems very likely that the positions defining the pseudo sequence could be altered
when investigating the most recent data.

In this study, we investigate how the many novel structural and sequence data available for
MHC-I impact the definition of the NetMHCpan pseudo sequence, and how these impacts
would alter the predictive performance of the method. We proposed alternative definitions
of the pseudo-sequence by analyzing the binding cleft of MHC class | molecule with a
bound peptide in 25 different crystallized structures, including eight non-human alleles and
compared these constructs with the original pseudo-sequence from the human complex
structures used in the original definition of the pseudo-sequence (7). Next, we analyze the
impact on the predictive performance of the pan-specific method when novel polymorphic
in potential contact positions are incorporated in the pseudo-sequences, and finally evaluate
whether this impact has a bias non-human MHC molecules where the difference between the
“old” and “new” MHC data is most pronounced.

Materials and Methods

Data sets

The peptide-MHC binding data consisted of 128,935 quantitative nonameric peptide-MHC
class I binding data obtained from the IEDB Database (15) and an in-house database. In
total, 119 MHC alleles (39 HLA-A, 41 HLA-B, six HLA-C, 11 chimpanzee (Patr), one
gorilla (Gogo), 11 Rhesus macaque (Mamu), two cattle (BoLA), six mouse (H-2) and two
swine (SLA) alleles) were considered. Binding affinity measurements were obtained as ICs
values and transformed to fall in the range between 0 and 1 using the transformation 1-
log(ICgonM)/log(50,000).

HLA sequences were downloaded from the IMGT/HLA Database (3) and animal MHC
class | sequences were obtained from the IPD-MHC (4) and the Uniprot (16) databases. The
MHC-I sequences used in this study are summarized in table 1.

Available crystal structures of MHC-peptide complexes from different species were
downloaded from RCSB PDB. Only alleles containing 9-mer peptides interacting with the
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MHC were used in this study. In the case of alleles with more than one structure, one
representative structure was selected based on the crystal with the most favorable resolution
and B-factor. The structure data set is presented in table 2.

MHC class | pseudo-sequence

The MHC class | molecule was represented by pseudo-sequences consisting of selected
amino acids from the a1 and a2 subunits of the molecule. In order to construct pseudo-
sequences from the different MHC groups (see Table 3), we first identified polymorphic
residues from different multiple alignment data sets: (1) 4304 HLA sequences, (2) 5075
HLA and non-human primates (Mamu, Patr and Gogo alleles) sequences, (3) all 5235
available sequences (including human, non-human primates, BoLA, H-2 and SLA alleles),
and (4) 119 sequences for MHC molecules with peptide binding affinity data (hereafter
referred to as the training set).

MHC-I residues in potential contact with the bound peptide were identified from contact
maps generated from set of the representative crystal structures. A contact residue was
defined as a residue having a heavy atom within 4.0 A from a heavy atom of a residue of the
bound peptide and with its side chain pointing towards the peptide. Additionally, residues
118 and 158 were added in the pseudo-sequence constructs, even though not found to be in
direct contact with the peptide (distance greater than 4.0 A) as these residues might stabilize
the peptide-MHC complex through water mediated interactions (17). In total 39 residues
were found to have potential contacts with the bound peptide. Note, that this number
remained unchanged when analyzing only human peptide-MHC complexes.

The final MHC class | pseudo-sequence is constructed (figure 1) as the subset of
polymorphic residues found in potential contact with the bound peptide. The “HLA group”
consists of the polymorphic residues from the HLA alignment that are in potential contact
with the binding peptide, this group differs from the NetMHCpan pseudo-sequence
definition in excluding those residues that interact via water molecules (positions 118 and
158). The second group of pseudo-sequence constructs, referred as “Primates”, includes
contact positions found to be polymorphic in the alignment of HLA and non-human primate
sequences. In the “Primate expanded” group, positions 118 and 158 were added to measure
their impact in the performance of the method. Finally, the “Training” group is defined from
contacts and polymorphisms across the 119 MHC sequences included in the training data.
Also here the residues 118 and 158 were added, to from the “Training expanded” group. To
quantify the degree of polymorphism at the different pseudo sequence positions we for each
position calculate the Shannon information content (18) for the 1) complete set of 5235
MHC sequences, 2) the set of 119 sequences included in the training data set. The results of
these calculations are included in the two lower rows in Figure 1. The Shannon information
content has a value of 4.32 for fully conserved positions and a value of 0 for positions with
equiprobable amino acid distribution. A structural visualization of the NetMHCpan and
“Training expanded” pseudo-sequence constructs can be found in Figure 2, where the
common and unique residues for each construct are highlighted.

Artificial neural network training

Artificial Neural Networks (ANN) were trained to quantitatively predict peptide-MHC class
I biding affinities as described by Nielsen et al. (7). For each of the pseudo-sequence
constructs, we used as input the peptide sequence, the pseudo-sequence of the respective
allele and the binding affinity. The input sequences were presented to the ANN as Blosum
encoding (where the BLOSUMS50 matrix score vector encoded each amino acid as 20
values), as the conventional sparse encoding (where each amino acids is encoded as a vector
with 20 elements, one having the value 1 and 19 the value zero) and as mixture of the two
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(where the peptide was sparse encoded and the pseudo-sequence was Blosum encoded). The
final predictions were made as a simple ensemble average of the predictions with the three
encoding schemes (7). The neural network architecture used was a feed-forward network
with one hidden layer and a single output neuron. A back-propagation procedure was used to
update the weights of the network. A traditional fivefold cross-validated training was
performed, for each of the pseudo-sequence groups, using the same split of peptides for all
the pseudo-sequence definitions in order to let the pseudo-sequence be the only parameter
different between each experiment. The Pearson Correlation Coefficient (PCC) for the
correlation between the experimental (target) and predicted values, and the area under the
ROC curve (AUC) were calculated for each allele that had more than 50 data points with at
least five binder peptides for each pseudo-sequence group (see table 3).

Ligands Benchmarking

As an independent benchmark for evaluating the performance of the different predictions
methods, we used a data set consisting of 889 known 9-mer ligands with full-resolution of
the HLA restriction and 33 9-11-mers non-human primate MHC restricted T cell epitopes
together with information about the source protein sequence obtained from the SYFPEITHI
Database (19). Also, 65 8-15-mer non-human primate peptides (22 ligands and 43 T cell
epitopes) from the IEDB were analyzed in this study. The performance of the different
methods was evaluated in terms of AUC values as described in (20). In short, when
calculating the AUC value, the source protein of the given ligand was divided into
overlapping peptides of the size of the given ligand. All peptides, except the annotated
ligands were taken as negative peptides (non-ligands) and the given ligand were taken as
positive. A perfect AUC value of 1.0 corresponds to the ligand having the strongest
predicted binding value compared to all other possible peptides originating from the source
protein. The AUC values were calculated for each ligand-protein pair using the predictor for
the different pseudo sequence definitions.

Statistical Analysis

Results

The Pearson correlation coefficient (PCC) and area under the ROC curve (AUC) values
from the new methods were compared to the corresponding performance values of
NetMHCpan method using a binomial test excluding ties with a 5% significance level.

Five-fold cross validation

The different methods (based on the different definitions of the pseudo sequence) were
trained on the set of quantitative peptide-MHC class | binding data as described in Materials
and Methods. The cross-validated PCC and AUC performance values averaged over the 93
MHC molecules included in the training data are shown in table 3 (the complete list of
performance values for each MHC data set are given in supplementary material table S1).
Comparing the NetMHCpan and HLA methods demonstrated that the excluding residues
118 and 158 of the MHC molecule in the pseudo sequence leads to a significantly drop in
the predictive performance values (p<0.05 for both PCC and AUC). There was ho
significant difference in the predictive performance between the Primate and HLA groups
(p=0.300 for PCC and p=0.679 for AUC). Only when including the positions 118 and 158
for the Primates expanded group, did the predictive performance become similar to that of
NetMHCpan (p=0.300 for PCC and p=0.534 for AUC). Focusing on the pseudo sequence
definitions defined from MHC positions that are polymorphic across the training data, we
find that the predictive performance of the Training group is similar to the NetMHCpan
method, and that finally that the Training expanded group including the two residue
positions 118 and 158 achieved the highest performance of all methods, although the
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performance gain was not statistically significant compared to NetMHCpan (p=0.097 and
p=0.213, for the PCC and AUC respectively).

Ligands benchmark

Next we turned to the ligand benchmark. This benchmark was only performed for the
NetMHCpan and “Training in contact expanded” groups. For the first benchmark, 889 9-mer
HLA ligands were analyzed. Next, 32 9-11-mer non-human primate MHC class | ligands
from the same database and, 65 8-15-mers non-human primate MHC class | ligands from the
IEDB were tested. Final results are presented in table 4. No significant difference between
the two methods was found for the HLA ligand benchmark (p=0.069). However, the
predictive performance was significantly increased using the new pseudo sequence construct
(Training expanded) when predicting non-human primate ligands for both the SYFPEITHI
and IEDB benchmark data sets (p=0.024 and p=0.005 respectively).

Include/Exclude Analysis

A significant gain in the performance was found for the Training Expanded group in the
non-human primate ligand benchmark. This construct consisted in the inclusion of positions
5,22,124,155, and 170 and the exclusion of 7,84 and 159 positions compared to the
NetMHCpan pseudo sequence (see figure 1). To investigate if the gain in the performance
was due to the inclusion or exclusion of these residues, two new pseudo sequence constructs
were created: one adding the included five additional positions to the NetMHCpan pseudo-
sequence and another removing the three excluded positions. These two new pseudo
sequence constructs were analyzed using the five-fold cross validation and the three
independent ligands benchmarks. The results of the calculations are summarized in the
lower part of table 4. The five-fold cross validation showed that the PCC and AUC values
are significantly higher (p<0.01 in both cases) for the exclusion group compared to the
inclusion group. When the two groups were compared in the ligands benchmark, no
significant difference (p>0.05) was found for the SYFPEITHI human data set. For both non-
human primate data sets, did the exclusion group outperform the inclusion group. The
difference was only statistically significant for the IEDB data set (p=0.002). No significant
difference (p>0.05) was found between the Training Expanded method and these two
methods on the SYFPEITHI non-human primates benchmark. However, the Training
Expanded method did significantly (p<0.05) outperform both the inclusion and exclusion
groups when evaluated on the IEDB non-human primate data set. These results thus strongly
suggest that both the inclusion of new polymorphic positions and the exclusion of positions
that are non-polymorphic in the training data contribute to the improved predictive
performance of the Training Expanded method.

Discussion

Several prediction methods have been developed to predict the affinity of a peptide to the
MHC class | (5-12). Among these NetMHCpan is the current considered among the state-of-
the-art (14). In the construction of the NetMHCpan method, MHC molecules are represented
as so-called pseudo-sequences, consisting of polymorphic residues from the MHC protein
sequence in potential contact with bound peptide. The residue positions included in the
pseudo sequence of the original NetMHCpan method were derived from an analysis of HLA
sequences and structures. Large novel data sets have become available not only for HLA but
also for non-human MHC molecules including an extensive number of crystal structures for
human and non-human MHC molecules interacting with a bound peptide. Given this large
amount of novel information, in this work, we investigated impacts on the definition of the
MHC pseudo sequence and subsequent impacts on the predictive performance of the
NetMHCpan method.
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A key finding was obtained in the structural analysis of the MHC-peptide complexes. Here,
we found a common pattern of peptide interaction for both human and non-human
molecules, and did not find additional contact positions when including complexes of non-
human MHC molecules in the analysis. Hence, confirming that the structure of MHC
molecules is highly conserved also between different species.

Using a large extended set of MHC protein sequences, we identified five novel polymorphic
positions from the pool of positions found in potential contact with the bound peptide,
compared to the positions identified in the original NetMHCpan publication. Residues in
positions 118 and 158 of the MHC class | molecule were not found to be in direct contact
with the bound peptide. However as they have been suggested to stabilize the peptide-MHC
complex via water-mediated interactions (17), we analyzed the impact of including/
excluding these positions in the pseudo-sequence construct. Here, we found that the two
residues consistently significantly improved the predictive performance for the different
pseudo sequence constructs tested, indicating the importance of the long-range interactions
for these two positions with the bound peptide.

A novel pseudo-sequence construct (called “Training expanded”) defined from these
observations was constructed consisting of residues in potential contact with bound peptides
and polymorphic across the MHC alleles included in the training data. We tested this new
pseudo-sequence on three different benchmarks of known MHC class I ligands and
compared its performance to that of NetMHCpan, and found here a large and highly
significant improve predictive performance for non-human primate MHC molecules.

The “Training expanded” pseudo-sequence construct, compared to the original NetMHCpan
pseudo-sequence, consists of the exclusion of residues in positions 7,84 and 159, and the
inclusion of positions 5,22,124,155, and 170 (see figure 1). To explore if the gain of
predictive performance of the “Training expanded” pseudo-sequence was due to the
exclusion or the inclusion of these novel residues positions, two new constructs were made:
one excluding the three positions from the NetMHCpan pseudo-sequence and the other with
the inclusion of the five additional positions. The exclusion group consistently in all
benchmark calculation demonstrated a superior performance compared to the inclusion
group suggesting that the exclusion of the residues found to be monomorphic across the
MHC molecules used in the training was the major factor to explain the gain in performance
for the “Training Expanded” method. However, when predicting binding for non-human
primate MHC molecule, the “Training expanded group” defined from both the inclusion and
exclusion of the residues mentioned above significantly outperformed all other methods,
underlining that that both the inclusion of new polymorphic positions and the exclusion of
positions that are monomorphic in the training data contribute to the overall improved
predictive performance.

In conclusion, the results demonstrate that it is possible to achieve an improved predictive
performance for pan-specific MHC peptide binding predictions when more human and,
specially, non-human alleles are included not only in the training data as previously stated
(21-23), but also in the pseudo sequence representation of the MHC molecules

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Pseudo-sequence constructs, length and differences compared to NetMHCpan group. The
residues included in the pseudo sequence construct for each group are marked in grey. The
two additional residue positions 118 and 158 are marked in dark grey. The last column gives
the number of residues included in the given pseudo sequence construct. The Shannon Index
for the Primates Expanded and Training Expanded Groups are given in the last two rows.
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Figure2.

A structural visualization of the NetMHCpan and Training expanded pseudo-sequence
definitions in a) Mamu A*02 (PDB ID: 3JTS) and b) HLA A*02:01 (PDB ID: 3D25)
alleles. The residues shown in white sticks are found in both constructs, residues exclusive
to NetMHCpan are shown in light grey and residues only included in the “Training
expanded” set are shown in black.
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Number of MHC class | sequences from IMGT/HLA and IPC-MHC Databases.

Table 1

MHCclass| Gene Number of Alleles
A 1388
HLA B 1909
o] 1007
A 33
AL 3
B 55
Patr C 29
E 1
F 1
H 1
A 4
B 9
Gogo Cc 7
E 1
H 1
A 282
Mamu B 327
E 17
1 11
2 13
SLA
3 14
6 9
BoLA N 107
Db 1
Dd 1
kb 1
H-2
kd 1
kk 1
Ld 1
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Data set consisting of available crystal structures and the PDB ID of the representative structure per allele.

Number of available crystal

Allele structures PDB ID
HLA-A*01:01 1 3B0O8
HLA-A*02:01 48 3D25
HLA-A*03:01 1 2XPG
HLA-A*11:01 1 1X7Q
HLA-A*24:02 2 3I6L
HLA-B*14:02 1 3BXN
HLA-B*15:01 3 1XR9
HLA-B*27:05 9 10GT
HLA-B*27:09 5 1K5N
HLA-B*35:01 2 2CIK
HLA-B*44:02 8 3KPM
HLA-B*44:03 4 3KPN
HLA-B*44:05 3 1SYVv
HLA-B*53:01 2 1AIM
HLA-B*57:01 1 2RFX
HLA-C*03:04 1 1EFX
HLA-C*04:01 1 1QQD

Mamu-A*02 1 3JTS
SLA-1*0401 1 30Q3
BoLA-N*01801 1 3PWU

H-2-Db 18 3CC5

H-2-Kb 6 1G7P

H-2-Kd 1 2FWO

H-2-Kk 1 1777

H-2-Ld 2 1LD9
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Average PCC and AUC for each pseudo sequence group. The PCC and AUC values are calculated as average
over the set of 91 alleles having more than 50 data point and at least 5 binding peptides (affinity < 500 nM).

The different pseudo sequence groups are defined as described in the text.

Group PCC AUC
NetMHCpan 0.752  0.910
HLA 0.750 0.908
Primates 0.734  0.903
Primates expanded  0.752  0.910
Training 0.750 0.910
Training expanded 0.755 0.913
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Table 4

Five-fold cross validation values (PCC and AUC) of NetMHCpan, Training Expanded, Inclusion and
Exclusion methods and ligands benchmarking results for the SYFPEITHI human and non-human primates
datasets and IEDB non-human primates.

Five-fold cross

validation SYFPEITHI

Method PCC AUC Human Non-human |EDB

NetMHCpan  0.752 0.910 0.980 0.810 0.935
Training * *
Expanded 0.755 0.913 0.980 0.839 0.949
Inclusion 0.732 0.902 0.976 0.811 0.908
Exclusion  0.753"* 0.909"* 0.978 0.848 0.927°"

*
denotes a statistical difference (p<0.05) between the NetMHCpan and Training Expanded methods

* %
denotes a statistical difference between the inclusion and exclusion groups.
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