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Summary

Major histocompatibility complex class I (MHC-I) molecules play an

essential role in the cellular immune response, presenting peptides to

cytotoxic T lymphocytes (CTLs) allowing the immune system to scrutinize

ongoing intracellular production of proteins. In the early 1990s, immuno-

genicity and stability of the peptide–MHC-I (pMHC-I) complex were

shown to be correlated. At that time, measuring stability was cumbersome

and time consuming and only small data sets were analysed. Here, we

investigate this fairly unexplored area on a large scale compared with ear-

lier studies. A recent small-scale study demonstrated that pMHC-I com-

plex stability was a better correlate of CTL immunogenicity than peptide–
MHC-I affinity. We here extended this study and analysed a total of 5509

distinct peptide stability measurements covering 10 different HLA class I

molecules. Artificial neural networks were used to construct stability pre-

dictors capable of predicting the half-life of the pMHC-I complex. These

predictors were shown to predict T-cell epitopes and MHC ligands from

SYFPEITHI and IEDB to form significantly more stable MHC-I complexes

compared with affinity-matched non-epitopes. Combining the stability

predictions with a state-of-the-art affinity predictions NETMHCCONS signif-

icantly improved the performance for identification of T-cell epitopes and

ligands. For the HLA alleles included in the study, we could identify dis-

tinct sub-motifs that differentiate between stable and unstable peptide

binders and demonstrate that anchor positions in the N-terminal of the

binding motif (primarily P2 and P3) play a critical role for the formation

of stable pMHC-I complexes. A webserver implementing the method is

available at www.cbs.dtu.dk/services/NetMHCstab.

Keywords: cytotoxic T lymphocyte epitopes; immunoinformatics; MHC–
peptide stability; peptide immunogenicity.

Introduction

Major histocompatibility complex class I (MHC-I) mole-

cules play a pivotal role in the generation of specific

immune responses mediated by cytotoxic T lymphocytes

(CTLs). MHC-I molecules sample peptides derived from

intracellular proteins, translocate them to the cell surface,

and display them to CTLs, allowing immune scrutiny of

the ongoing intracellular metabolism leading to the detec-

tion of the presence of intracellular pathogens. It has been

estimated that only 1 in 200 peptides will bind to a given

MHC-I molecule with an affinity stronger than 500 nM.1

Given this high specificity, binding affinity to MHC-I has

naturally been a central focus when developing tools for

identification of immunogenic peptides.

Accurate and reliable in-silico methods predicting the

affinity of peptide binding to MHC-I have been devel-

oped over the last decades, supporting with great success

the rational discovery of T-cell epitopes, reviewed in refs

2,3. However, other studies4 have clearly demonstrated

that not all peptide binders are necessarily immunogenic

indicating that factors other than binding affinity are

determinants of peptide immunogenicity. To fulfil the

antigen-presenting function, MHC-I molecules must not

only bind the peptides generated inside the cell, but also

retain them at the cell surface while waiting for the arrival
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of extremely rare circulating members of one or more

CTL clones of the appropriate specificity. One factor

other than affinity that could determine peptide immuno-

genicity is therefore the stability of the peptide–MHC-I

interaction, as complexes with low stability would disas-

sociate before encountering the appropriate CTL clone.

The idea of stability being a better predictor than affinity

of immunogenicity was proposed.5–7 In a recent study,

Harndahl et al.8 showed for a set of vaccinia virus pep-

tides binding to HLA-A*02:01, that 30% of the non-

immunogenic peptides had (predicted) half-lives for the

peptide–MHC-I (pMHC-I) complex below 1 hr, whereas

all immunogenic peptides had longer half-lives. Hence, a

large proportion of peptides hitherto classified as being

non-immunogenic because of ‘holes in the T-cell reper-

toire’ were explained in terms of unstable pMHC-I

interactions.

Here, we extend the study by Harndahl et al. aiming to

demonstrate that the findings for HLA-A*02:01 are gener-

ally valid for any MHC-I molecule. Using a high-

throughput scintillation proximity assay measuring the

half-life of pMHC-I complexes,9 we generated a large

panel of individual pMHC-I stability measurements for

10 prevalent HLA-I molecules covering 8 of the 12 com-

mon human MHC-I supertypes.10,11 Based on such stabil-

ity measurements, in silico methods were generated for

the prediction of half-lives of peptide–MHC-I interactions

for the 10 HLA molecules, and the predictive models are

used to quantify if immunogenic peptides share a signa-

ture in stability different from non-immunogenic binders.

Integrating the in silico stability prediction model with

state-of-the-art affinity predictions using NETMHCCONS,12

we next evaluated the impact for stability predictions for

the rational identification of CTL epitopes.

Methods

Artificial neural network training

The data for training of the artificial neural networks were

split into five sets in a typical fivefold cross-validation

scheme, where four-fifths of the data were for training

and the last fifth was for testing and early stopping. This

was repeated five times so that all test sets (one of five)

were used for evaluation alternately. In this way, the test

sets would be independent of the training sets, minimizing

the risk of over-fitting the data. Networks were trained as

described in Nielsen et al.13 using either Blosum50 encod-

ing with a normalization factor of 5 or sparse encoded

with one of the 20 inputs being 0�95 and the remaining 19

being 0�05. The measured half-life values were trans-

formed from hours to a value falling in the range from 0

to 1. The transformation used was, s = 2�2/Th, where s is

the transformed value and Th is the half-life measured in

hours. This relation was used for all molecules except for

HLA-B*40:01, which had ‘unusual’ unstable pMHC-I

complexes. Here, the relation sB40:01 = 2�0�7/Th was used.

Using this transformation scheme, a transformed value of

0�5 corresponds to a half-life of 2 hr, except for HLA-

B*40:01, where 0�5 corresponds to 0�7 hr.

Evaluation methods

The Pearson’s correlation coefficient was used to evaluate

performances of the artificial neural networks. For epi-

tope/ligand data the AUC (area under the receiver operat-

ing characteristic curve) was used. When calculating the

receiver operating characteristic curves, the source protein

was divided into overlapping 9-mers where only the

T-cell epitope/ligand was considered positive and all oth-

ers were considered as negatives. We are aware that when

using this definition of epitope/non-epitope some predic-

tions will incorrectly be classified as false positive. How-

ever, as the binding motif of MHC class I molecules is

very specific, binding only a highly limited repertoire of

peptides,1,14 this misclassified proportion will be very

small and will not affect the evaluation in any dramatic

manner. Using such receiver operating characteristic

curves, the AUC0.1 value corresponding to a specificity of

0�9 was used as a performance measure.15 Student’s

paired t-tests were used to evaluate the significance differ-

ence between the different methods and approaches used.

Data

Artificial neural network training. The stability data were

generated using the high-throughput scintillation proxim-

ity assay, measuring the half-lives of the pMHC-I com-

plexes.9 In total, the data set consisted of 5509 9-mers

(peptides) covering 10 alleles with half-lives measured in

hours. The alleles covered are summarized in Table 1.

Seven out of the nine HLA class I supertypes defined

by Sette and Sidney11 were covered – missing supertypes

B27 and B58. Of the three additional supertypes (A26, B8

Table 1. Overview of the stability data used for training. Supertype

associations are taken from ref. 10

Allele No. of peptides Supertype

HLA-A*01:01 259 A1

HLA-A*02:01 890 A2

HLA-A*03:01 812 A3

HLA-A*11:01 335 A3

HLA-A*24:02 571 A24

HLA-A*26:01 277 A26

HLA-B*07:02 530 B7

HLA-B*15:01 1059 B62

HLA-B*35:01 470 B7

HLA-B*40:01 306 B44

Total 5509
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and B39) proposed by Lund et al.,10 only A26 was cov-

ered. As peptide binding is a prerequisite for measuring

stability in the scintillation proximity assay, the stability

data set was strongly biased towards strongly binding

peptides. As the artificial neural network learning method

requires both positive (stable) and negative (unstable)

data to perform an optimal training, each data set was

enriched with peptides with experimental binding affini-

ties weaker than 20 000 nM16 (obtained from an in-house

database of peptide–MHC affinity measurements). For

simplicity, we wanted a universal enrichment size and

based on different small-scale pilot studies (results not

shown here) 1000 negatives were added to each data set.

Each negative peptide was assigned a half-life of 0 hr.

Benchmarking. T-cell epitopes and HLA ligands were

downloaded from the SYFPEITHI database17 and the

Immune Epitope Database (IEDB).18 T-cell epitopes and

ligands from IEDB that were positive in ‘Qualitative Mea-

sure’ were selected together with all T-cell epitopes and

ligands from the SYFPEITHI database meeting the length

restriction. Only unique 9-mers were included. First, the

SYFPEITHI data were downloaded and hereafter the

IEDB data were compared against the SYFPEITHI data

and all T-cell epitopes and ligands present in both data-

bases were removed from the IEDB data. The source pro-

tein for each T-cell epitope and ligand was compiled

using the accession number for each source protein anno-

tated in the IEDB and the ‘source of peptides’ link pro-

vided in the SYFPEITHI database. A substantial subset of

the T-cell epitope and ligand data had sequences that did

not match the canonical binding motif of the claimed

HLA restriction element. In fact, > 15% of the IEDB epi-

topes were predicted to bind the claimed restriction ele-

ment with an affinity weaker than 10 000 nM. Given the

very high overall accuracy of the state-of-the-art HLA

peptide-binding prediction methods, we believe it is very

likely that such ‘non-binding’ peptides are erroneous

annotations. Similar observations were also made for data

in the SYFPEITHI database not matching the canonical

binding motifs.19 Therefore to focus the analysis on data

that, with a very high likelihood, bind the annotated HLA

restriction element, epitopes and ligands with a predicted

binding affinity weaker than both 500 nM and 2% rank

were filtered out.20 Affinity predictions were calculated

using NETMHCCONS.12 This filter removed approximately

13% of the ligands and 24% of the T-cell epitope data.

An overview of the final data sets is given in Table 2.

Results

Network performances

Figure 1 shows a bar-plot of the performances of the

different network ensembles measured in terms of the

Pearson’s correlation coefficient between predicted and

measured half-life times. Three different network ensem-

bles are showed: Blosum[10], Blosum[2,5,10] and Spar-

se+Blosum. All networks were trained and evaluated

using fivefold cross-validation. Blosum[10] indicates net-

works trained with 10 hidden neurons using Blosum

encoding, Blosum[2,5,10] a network ensemble trained

with 2, 5 and 10 hidden neurons using Blosum encoding,

and finally, Sparse+Blosum is a network-ensemble trained

using either sparse or Blosum encoding with 2, 5 and 10

hidden neurons. The combination of sparse and Blosum

encoding resulted in the highest performing networks for

all data sets. Networks trained on sparse encoding alone

were consistently inferior to Blosum encoded networks

(results not shown). Network performances ranged from

0�583 (HLA-B*07:02) to 0�815 (HLA-A*11:01). The per-

formance improved for all network ensembles when

including more networks in the ensemble. Hence the

performance order was: Blosum[10] < Blosum[2,5,10]

< Sparse+Blosum, for all data sets used for training.

Predicted stability of ligands and T-cell epitopes

Figure 2 shows the predicted half-lives of the T-cell epi-

topes and ligands in the SYFPEITHI data set. The ligands

were in general found to form more stable complexes

compared with epitopes. Similar results were found for

the IEDB data set (see Supplementary material, Fig. S1).

Affinity-balanced analysis

To investigate if ligands/epitopes were predicted to form

more stable complexes compared with other non-epitope/

ligand-binding peptides, an affinity-balanced analysis was

Table 2. SYFPEITHI and IEDB data

Allele

T-cell epitopes

SYFPEITHI

Ligands

SYFPEITHI

T-cell

epitopes

IEDB

Ligands

IEDB

HLA-A*01:01† 13 38 391 111

HLA-A*02:01 183 239 6062 842

HLA-A*03:01 133 583 433 58

HLA-A*11:01 11 21 794 167

HLA-A*24:02 385 235 785 –

HLA-A*26:01 – 45 – –

HLA-B*07:02 196 596 1036 10

HLA-B*15:01 4 46 10 394

HLA-B*35:01 10 – 407 1

HLA-B*40:01 4 258 7 –

Total 295 554 1005 674

The following serotypes are included in the data sets: 1HLA-A*01,
2HLA-A*02, 3HLA-A*03, 4HLA-A*11, 5HLA-A*24, 6HLA-B*07,
7HLA-B*35 and 8HLA-B*40.
†Only the serotype HLA-A*01 is present in the SYFPEITHI database.
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conducted. Using the NETMHCCONS method, binding

affinity was predicted for 500 000 random natural 9-mers

downloaded from UNIPROT.21 Each T-cell epitope or

ligand was paired with a randomly selected peptide

among the 500 000 natural 9-mers with a predicted bind-

ing affinity � 5% of the epitopes/ligands predicted bind-

ing affinity. The selection process was balanced, so that

approximately 50% of the affinity matched assumed that

non-epitopes/ligands had a binding affinity greater than

the epitopes/ligands and approximately 50% had a bind-

ing affinity weaker than the epitopes/ligands, ensuring no

significant difference in affinity between the two groups.

The stability was then predicted for the epitopes/ligands

and affinity matched non-epitopes/ligands and the differ-

ence was tested in a paired Student’s t-test. Figure 3

shows the results of this comparison for the ligand

(Fig. 3a) and T-cell epitope (Fig. 3b) data. The height of

the bars indicates the significance level as estimated from

the paired Student’s t-test. The two horizontal dashed

lines indicate significance levels of 0�05 (lower line) and

0�01 (upper line).

For most molecules, both ligands and T-cell epitopes

were predicted to form more stable complexes than their

affinity-matched non-epitope/ligand partner. Three data

sets HLA-A*26:01 (T-cell epitopes), HLA-B*35:01
(ligands) and HLA-B*40:01 (T-cell epitopes) are not

included in the figure because < 10 peptides were found

for these molecules in both the IEDB and SYFPEITHI da-

tabases. For the ligands, 14 of the 15 data sets had the

ligands predicted to be more stable than the non-ligands,

and in 10 of these, the difference was statistically signifi-

cant (P < 0�05, paired Student’s t-test). For the T-cell

epitopes, 14 of the 15 data sets had the epitopes predicted

to be more stable compared with the non-epitopes. How-

ever, only in six cases were the differences statistically sig-

nificant.

Combining NETMHCCONS and NETMHCSTAB

To investigate to what degree the observation that HLA

ligands/epitopes tend to form more stable complexes

compared with affinity-matched non-ligands/epitopes

could impact a prediction model for epitope/ligand

identification; we tested the performance of a simple lin-

ear model combining the two properties stability and

affinity. Affinity predictions were made using the NET-

MHCCONS method, and stability predictions made using

the method NETMHCSTAB, developed here. A simple

0·692

0·664

A*01:01 A*02:01 A*03:01 A*11:01 A*24:02 A*26:01 B*07:02 B*15:01 B*35:01 B*40:01
0·5

0·6

0·7

0·8 0·795
0·815

0·759

0·700

0·583

0·697

0·646
0·654

Blosum[10]
Blosum[2,5,10]
Sparse+BlosumFigure 1. Bar-plot showing the Pearson’s cor-

relation coefficient (PCC) for different network

ensembles. All networks were trained and eval-

uated using fivefold cross-validation. Blosum

[10], network trained using Blosum encoded

data with 10 hidden neurons. Blosum[2,5,10],

network ensemble with 2, 5 and 10 hidden

neurons trained using Blosum encoding. Spar-

se+Blosum, ensemble consisting sparse and

Blosum encoded networks with 2, 5 and 10

hidden neurons. Numbers given above bars

indicate the PCC for the ‘Sparse+Blosum’

ensemble.
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Figure 2. Predicted half-life for the SYFPEI-

THI data. Only data sets with 10 or more pep-
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errors. Alleles in brackets are included in the

‘serotype’ data set, e.g. the HLA-A*03 data

include the data from HLA-A*03:01. Numbers

below bars give the number of peptides in the

data sets (ligands | T-cell epitopes).
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weighted sum was used to combine the output from

two methods:

x ¼ a � NetMHCstabþ ð1� aÞ � NetMHCcons

where x is the combined value, a is a value ranging from

0 to 1 and NETMHCSTAB and NETMHCCONS are the out-

put values (between 0 and 1) of the two prediction meth-

ods, respectively.

The value of a resulting in the highest performance

(average AUC0.1) was estimated in fivefold cross-valida-

tion, where weights were optimized on four-fifths of the

data and evaluated on the remaining one-fifth. An allele-

balanced data set was constructed consisting of a maxi-

mum of 50 randomly selected peptides from each allele

giving a total of 374 and 355 peptides in the data sets for

T-cell epitopes and ligands, respectively. The optimal

a-value found for each data set was: a = 0�15, r = 0,

where a is the average over the five cross-validations and

r is the corresponding standard deviation. The very

low variation in optimal a values found in the five cross-

validations and the fact that the same optimal value was

found for both the T-cell and ligand data sets indicates

that the method is highly robust. This is also reflected in

the performance of the combined method (see Fig. 4).

Here, the performance increase was highly significant

when using the combined model compared with NET-

MHCCONS alone for both T-cell epitopes and ligands

(P < 0�0001, in both cases). Also, when evaluated in

terms of AUC, the combined model outperformed both

of the individual models. The difference was however

found to be statistically insignificant (P = 0�066 for both

T-cell epitopes and ligands).

The remaining 926 T-cell epitopes and 873 ligands not

included in the training data used to define the model

were used for evaluation of the combined method (see

Table 3). Also, in this benchmark the performance of

the combined model when measured in terms of

AUC0.1, was found to be significantly higher than the

NETMHCCONS and NETMHCSTAB methods alone for both

T-cell epitopes and ligands, (P = 0�0015 and P < 0�0001,
respectively). Likewise, the performance was found, when

measured in terms of AUC, to improve when using the

combined model. The performance gain however was

only significant for ligands (P < 0�0001). For T-cell

epitopes the P-value for the difference was P = 0�085.
The gain in AUC values might be hard to translate into

actual improvements in the accuracy for T-cell epitope

and ligand discovery. Here, a measure like the false-posi-

tive proportion might be more useful. We can access this

by calculating for each ligand/epitope source-protein pair

how many peptides are found with a prediction score

greater than the known epitope/ligand. Doing this, we

find an average number of false positives of 3�75 and 3�25
(a drop of 15%) for the ligand data set for NETMHCCONS

and the combined methods, respectively, and values of

7�75 and 7�50 (a drop of 3%) for the T-cell epitope data

set. Using the combined method, taking into account the

length of each source protein, these numbers translate
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tope and ligands data was 0�15.
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into 98% of the ligands being identified within the top

scoring 2�5% of the peptides within the source protein,

and for the T-cell epitope data the corresponding value

is 91%.

Motifs and sub-specificities

Finally, motifs and sub-specificities for the different HLA

molecules were analysed. We demonstrated earlier for

HLA-A*02:01 that stable HLA-binding peptides can be

separated from unstable binders in terms of sequence

motif characterizing well-defined sub-specificities.8,22 In

particular, for HLA-A*02:01 we could demonstrate that

stable binders are distinguished from unstable binders in

terms of the motif at the P2 anchor, where stable binders

have a very conserved motif compared with the motif of

unstable binders. Here, we sought to expand this analysis

identifying sub-motifs for each of the 10 HLA molecules

separating stable from unstable peptide binders.

Peptide binding to each of the 10 HLA molecules was

predicted for a set of 200 000 random natural 9-mer pep-

tides using NETMHCCONS.12 Binding stability was pre-

dicted for the 2000 highest affinity predictions (top 1%)

using NETMHCSTAB. Next, for each HLA molecule the

peptides were sorted on predicted binding affinity, and

subsequently split in a pairwise manner so that the more

stable binders were placed in one group and the least sta-

ble binders in another group. This setup ensures that the

two groups have similar predicted binding affinity and

maximal difference in stability. Given this split, we can

investigate the differences between stable and unstable

binding in a quantitative manner by a direct comparison

of the two corresponding binding motifs.

One such direct comparison is shown in Fig. 5 where

the sequence logos for stable versus unstable binders for

the HLA-A*24:02 and HLA-B*07:02 molecules are shown

(sequence logos for stable versus unstable binders for the

other eight HLA molecules are included in the Supple-

mentary material, Fig. S2). The average binding affinity of

the peptides for the two sub-motifs for HLA-*A24:02 and

HLA-B*07:02 are 60 and 94 nM, respectively. In contrast

to this, do the two sub-motifs display highly significant

differences in binding stability (P < 0�001 in both cases).

For HLA-A*24:02 the average stabilities for the two

groups are 3�90 hr versus 1�06 hr, and for HLA-B*07:02
the corresponding values are 2�64 hr versus 1�82 hr. For

both molecules it is clear that the difference between

stable and unstable binders is most pronounced in the

N-terminal part of the binding motifs. We can quan-

tify this by comparing the information content in the

N-terminal (positions 1–4) and C-terminal (positions

5–9) parts of the binding motifs. The information content

at a given position in the binding motif is calculated as

the Kullback–Leibler23 divergence between the amino acid

distribution of the peptide binders and a null model

defined from the amino acid distribution in a large set of

random natural protein sequences. Making this analysis,

we find for 8 of the 10 HLA molecules included in this

study that the N-terminal information content is higher

in the motif for stably bound peptides compared with the

motif for unstably bound peptides, whereas no consistent

difference was observed in the C-terminal part of the

binding motifs (in five cases the stable motifs had higher

C-terminal information content, and in five cases the

unstable binders had the highest C-terminal information

content). Note, that even though the enrichment in

N-terminal information content for the motif for stably

bound peptides is consistent (8 out of 10 molecules) it is

not statistically significant for this small data set (P = 0�1,
binomial test). The only two molecules not displaying an

increased information content in the N-terminal binding

motif for stable binders were HLA-A*01:01 and HLA-

A*03:01. For HLA-A*01:01, however, a significant differ-

ence in the information content at the P3 anchor was

observed in the motif for the stable binders (data not

shown), hence also suggesting the importance of the

N-terminal anchor positions for stabilization of the

peptide–HLA complex.

Discussion

The single most selective step in the MHC class I anti-

gen-processing and presentation pathway is the binding

of the peptide to the MHC-I molecule. In the earliest

works on characterizing this binding event, significant

focus was dedicated to the investigation of both the sta-

bility and affinity of the peptide–MHC interactions.24,25

However, due to the cumbersome and low-throughput

nature of the biochemical methods currently used to

measure the dissociation of pMHC complexes, the

amount of data that has accumulated for the stability of

peptide–MHC class I interactions is modest. By way of

example, the IEDB contains more than 150 000 distinct

peptide-binding affinity measurements to MHC-I mole-

cules with full allelic resolution, whereas the number of

stability data is < 3300 (data taken from the IEDB May

Table 3. Results from the evaluation sets. Performance is given as

average AUC0.1 and AUC (areas under the receiver operating char-

acteristic curve) for each data set. The data sets ‘T-cell epitopes’ and

‘Ligands’ contained 926 and 873 peptides, respectively. The model

parameter a used for the T-cell epitope and ligands data was 0�15

Method

T-cell epitopes

(AUC0.1)

Ligands

(AUC0.1)

T-cell

epitopes

(AUC)

Ligands

(AUC)

Combination 0�893 0�939 0�991 0�995
NETMHCCONS 0�888 0�926 0�991 0�994
NETMHCSTAB 0�848 0�922 0�986 0�994
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2013). The stability of peptide–MHC-I interactions is

therefore a fairly unexplored area and to the best of our

knowledge the BIMAS predictor by Parker et al.26 is up

to this date the only prediction method available capable

of predicting peptide–MHC-I stability. The BIMAS

method has not, however, been updated since 1997.

In a recent paper, Harndahl et al.9 proposed a high

throughput assay based on a scintillation proximity prin-

ciple allowing online, real-time monitoring of the dissoci-

ation of 125I-labelled b2-microglobulin from recombinant

MHC-I heavy chains. In a subsequent publication, the

authors demonstrated, using this assay to measure stabil-

ity of a large set of HLA-A*02:01 binding peptides, that

peptide–MHC class I stability was a better predictor than

peptide affinity of CTL immunogenicity.8

In this study, we extended the Harndahl study to cover

10 HLA molecules (six HLA-A and four HLA-B alleles)

covering 8 of the 12 common HLA supertypes. From a

large set of stability data, a NETMHCSTAB method was

constructed covering 10 pMHC-I stability predictors

based on artificial neural networks. The performance of

NETMHCSTAB measured in a fivefold cross-validation set

up ranged from 0�6 to 0�8 for the 10 networks when

evaluated in term of the Pearson’s correlation coefficient.

Using T-cell epitope and ligands data downloaded from

the SYFPEITHI and IEDB databases, the NETMHCSTAB

method was shown to predict both T-cell epitopes and

ligands to form very stable peptide–HLA complexes with

predicted half-lives > 2 hr. When comparing epitopes

and ligands to affinity-matched non-epitopes/non-ligands,

we find that epitopes and ligands are predicted to form

significantly more stable complexes with the HLA

molecules.

Next, we combined affinity (as predicted by NETMHCCONS)

and stability (as predicted by NETMHCSTAB) to empower

accurate T-cell epitope and ligand predictions. Again

based on a large benchmark data set, the combined

method integrating both affinity and stability prediction

was found to significantly outperform any of the individ-

ual methods. The optimal relative weight in the combined

method was found to be 15% on stability and 85% on

affinity. Hence, NETMHCCONS alone has a higher perfor-

mance than NETMHCSTAB. However, a direct comparison

of the performances of the two methods is not at this
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Figure 5. Logos for HLA-B*07:02 (upper panel) and HLA-A*24:02 (lower panel). Left panel: Sequence logo representation of the stable binding

motifs. Right panel: Sequence logo representation of the unstable binding motifs. The logo-plots were generated using SEQ2LOGO excluding

sequence weighting and pseudo count correction for few observations.27
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point straightforward. Both methods are constructed in a

data-driven manner and NETMHCCONS is trained on more

than 150 000 data points whereas NETMHCSTAB is trained

only on the 5509 data points described here. It is hence

expected that NETMHCCONS will achieve the higher per-

formance. Nevertheless, the fact the combined method

outperforms the affinity prediction alone clearly demon-

strates that stability provides additional information not

captured by the affinity predictor, NETMHCCONS, and

that this information empowers the overall predictive

performances.

The gain in predictive performance as measured in

terms of the reduction in the number of false predictions

when identifying known epitopes/ligands was found to be

significant for both T-cell epitopes and HLA ligands when

combining stability predictions with prediction of binding

affinity. However, in absolute values, the gain for T-cell

epitopes was very modest (3%). Many possible explana-

tions for this low gain in predictive performance for

T-cell epitopes can be invoked. In our view, one plausible

reason is that a large proportion of the T-cell epitope

data most likely have been identified using approaches that

include (in silico or experimental) screening for high HLA

affinity, thereby imposing a strong bias on the data that

are being entered into the databases; a bias, that is skewed

in favour of peptides that match already established affin-

ity motifs of the individual HLA molecules. Investigating

this in more detail indeed reveals that > 50% of the refer-

ences containing 25 or more epitopes in the IEDB applied

MHC affinity screening (measured or predicted) to

identify epitope candidates. Such a bias is not a priori

present in the ligand data set, as these data have been

derived using mass spectrometry without previous screen-

ing for HLA affinity. We therefore believe that as more

stability data become available and the accuracy of in silico

stability predictions improves, this situation will change.

Investigating what discriminates stable from unstable

peptide binders, Harndahl et al.8 found for HLA-A*02:01
that one anchor residue may be sufficient for binding but

insufficient for making stable peptide–MHC-I interac-

tions. Here, we extended this analysis and investigated if

similar observations could be made for other HLA mole-

cules. Using a large set of natural peptides, we could

demonstrate the presence of two binding sub-motifs for

all of the HLA molecules included in the study, with one

motif corresponding to stable binders and one motif

corresponding to unstable binding. Comparing the two

sub-motifs for each molecule revealed that especially the

presence of amino acids matching the anchor positions in

the N-terminal of the binding motif (primarily P2 and

P3) was found to have an important role for stable

peptide–MHC-I interactions.

In conclusion, we believe that we have demonstrated

the significant importance of including pMHC stability

predictions in the pathway for rational identification of

T-cell epitopes. A webserver implementing the method is

available at www.cbs.dtu.dk/services/NetMHCstab.
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