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Hairy black holes sourced by a conformally coupled scalar field in D dimensions
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There exist well-known no-hair theorems forbidding the existence of hairy black hole solutions
in general relativity coupled to a scalar conformal field theory in asymptotically flat space. Even
in the presence of cosmological constant, where no-hair theorems can usually be circumvented and
black holes with conformal scalar hair were shown to exist in D ≤ 4 dimensions, no-go results
were reported for D > 4. In this paper we prove that these obstructions can be evaded and we
answer in the affirmative a question that remained open: Whether hairy black holes do exist in
general relativity sourced by a conformally coupled scalar field in arbitrary dimensions. We find the
analytic black hole solution in arbitrary dimension D > 4, which exhibits a backreacting scalar hair
that is regular everywhere outside and on the horizon. The metric asymptotes to (Anti-)de Sitter
spacetime at large distance and admits spherical horizon as well as horizon of a different topology.
We also find analytic solutions when higher-curvature corrections O(Rn) of arbitrary order n are
included in the gravity action.

PACS numbers: 11.10.Kk, 11.15.Yc, 11.25.Hf

I. INTRODUCTION

There exist well-known no-hair theorems forbidding
the existence of hairy black holes in general relativity
(GR) conformally coupled to a scalar field theory, in
asymptotically flat spacetime. More precisely, in the par-
ticular instance of a scalar field conformally coupled to
GR with vanishing cosmological constant inD = 4 space-
time dimensions black hole solutions do exist [2, 3], but
they exhibit a scalar field configuration that diverges at
the horizon. In dimension D > 4, black hole solutions
of this type simply do not exist at all [4, 5]. In the case
of non-vanishing cosmological constant, in which the no-
hair theorems can usually be circumvented, black hole
solutions with conformal scalar field configurations that
are regular everywhere outside and on the horizon were
found both in D = 3 and D = 4 dimensions [6–9]; how-
ever, the situation is quite different for D > 4 where
no-go results have been reported [10]. In this paper,
we prove that these restrictions are circumvented if the
scalar field theory is coupled to higher-order Euler den-
sities in a conformally invariant manner. In this way, we
answer in the affirmative a question that remained open:
Whether hairy black holes do exist in GR sourced by a
conformally coupled scalar field in arbitrary dimensions.

The paper is organized as follows: In section II we in-
troduce the generalized conformal couplings. The theory
obtained by adding such terms, which was introduced by
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two of us in Ref. [1], is the most general theory of its
sort yielding second order field equations, and hence is
the natural extension of conformal couplings to higher-
dimensions. In section III we present a hairy black hole
solution in GR in arbitrary dimensions D > 4. The solu-
tion asymptote to locally (Anti-)de Sitter spacetime and
admit spherical horizon as well as horizon of a different
topology. In section IV we extend our solutions to the
theory whose action also includes higher-order curvature
terms O(Rn) for arbitrary n. For the latter theory, we
also find analytic black hole solutions with a backreacting
conformal scalar hair that is regular everywhere outside
and on the horizon. We briefly comment on a duality
symmetry that the theory exhibits and how it acts on
the black hole solution.

II. CONFORMAL FIELD THEORY

We will be concerned with the special class of theory
defined in Ref. [1], which consists of scalar matter con-
formally coupled to gravity through a non-minimal cou-
pling between a real scalar field and the dimensionally ex-
tended Euler densities. This yields a theory whose equa-
tions of motion are of second order and presents quite
interesting properties such as self-duality. In four dimen-
sions this theory reduces to Einstein theory with a confor-
mally coupled scalar field with potential V (ϕ) = (λ/4!)ϕ4

and non-minimal coupling with the space-time curvature
−(1/12)Rϕ2. In higher dimensions, however, the theory
admits more general couplings which can be conveniently
written by defining a four-rank tensor Sµ

νλδ made out of
the Riemann curvature tensor Rµ

νλδ and derivatives of
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the scalar field. More precisely, one defines

S γδ
µν = φ2R γδ

µν − 4φδ
[γ
[µ∇ν]∇δ]φ+ 8δ

[γ
[µ∇ν]φ∇δ]φ−

2δ
[γ
[µδ

δ]
ν]∇ρφ∇ρφ (1)

which, indeed, can be seen to transform covariantly under
local Weyl rescaling gµν → Ω2gµν and φ → Ω−1φ. Note
that, by construction, the tensor Sµ

νλδ has the same alge-
braic symmetries as those of the Riemann tensor Rµ

νλδ.
With tensor (1) one can easily write down the general

action of the theory as

I =

∫
dDx

√
−g

[D−1
2 ]∑

k=0

1

2k
δ(k)

(
akR

(k) + bkφ
D−4kS(k)

)

(2)
where δ(0)R(0) = δ(0)S(0) = 1, the symbol δ(k) stands for
the skew-symmetric Kronecker tensor

δ(k) = k! δµ1

[α1
δν1β1

...δµk

αk
δνkβk]

,

while for k ≥ 0, R(k) and S(k) represent the 4k-rank ten-
sors

R(k) =

k∏

r=1

Rαrβr

µrνr , S(k) =

k∏

r=1

Sαrβr

µrνr . (3)

ak and bk in (2) represent coupling constants that are
in principle arbitrary. The theory will, however, exhibit
special features for special relations between these con-
stants.
The upper limit of the sum in (2) is the integer part

of (D − 1)/2. When all the couplings bk in (2) vanish,
the theory reduces to Lovelock theory of gravity and, in
particular, if ak 6=1 = 0, it reduces to general relativity.
The field equations coming from (2) can be written as

Gµν = Tµν , (4)

where the symmetric tensors Gµν and Tµν are

Gν
µ = −

[D−1
2 ]∑

k=0

ak
2k+1

δνλ1...λ2k
µρ1...ρ2k

Rρ1ρ2

λ1λ2
...R

ρ2k−1ρ2k

λ2k−1λ2k
,

(5)

T ν
µ =

[D−1
2 ]∑

k=0

bk
2k+1

φD−4kδνλ1...λ2k
µρ1...ρ2k

Sρ1ρ2

λ1λ2
...S

ρ2k−1ρ2k

λ2k−1λ2k
.

In addition, the equation for the scalar field gives

[D−1
2 ]∑

k=0

(D − 2k) bk
2k

φD−4k−1δ(k)S(k) = 0. (6)

The theory defined by action (2) is the most general
theory of gravity conformally coupled to a scalar field
theory yielding second order field equations. As it should

be for a conformal field with non-zero conformal weight,
the trace of its associated energy-momentum tensor, T ν

µ ,
vanishes on-shell (i.e. after Eq. (6) is imposed). To
illustrate the structure of the action (2), let us write down
the first terms explicitly: Up to terms that are linear in
the Riemann tensor, the action reads

I =

∫
dDx

√
−g(a0 + a1R + b0φ

D + b1φ
D−2

(R + (D − 1)(D − 2)φ−2 (∂φ)
)2
) + ... (7)

Then, redefining the scalar field as φ → ϕ = φ(D−2)/2,
action (7) reduces to the familiar canonically normalized
scalar conformal field theory

I =

∫
dDx

√
−g

(
1

16πG
R− Λ

8πG
− 1

2
(∂ϕ)2 −

D − 2

8(D − 1)
ϕ2R− λ

D!
ϕ

2D
(D−2) )

)
+ ... (8)

where we have conveniently denoted a0 ≡ −Λ/(8πG),
a1 ≡ 1/(16πG), and b0 ≡ −λ/D!. The important fea-
ture here is that the conformal coupling (ξ/2)ϕ2R with
ξ = −(D − 2)/(4D − 4) appears automatically once
the kinetic term for the field ϕ is chosen to be canon-
ically normalized, which in turn amounts to choosing
b1 = −(D − 2)/(8(D − 1)). This is because both terms
actually come from the same contribution φD−4S(1) in
(2).

The quadratic terms in the action take the form
(a2+b2φ

D−4)
(
R2 − 4RµνR

µν +RµνλδR
µνλδ

)
+ ... where

the ellipses stand for terms that contain up to second
powers of the second derivative of φ. This coupling be-
tween a real scalar field and the quadratic Gauss-Bonnet
term resembles the next-to-leading contribution to the
low energy effective action of string theory. The explicit
form of the S(2) terms can be found in [1]. The complex-
ity of the action increases notably1 with k.

For the theory (2) we will show that, remarkably, ana-
lytic hairy black hole solutions can be found in arbitrary
dimension D > 4. As a particular case we will find hairy
black holes in GR coupled to scalar conformal field the-
ory (CFT) in asymptotically (Anti-)de Sitter spacetime
((A)dS). The existence of such solutions is remarkable
because, as we discussed above, there are stringent no-
go results reported in the search for conformal hairs in
D > 4. Our result shows which is the appropriate cou-
pling needed for the black hole configurations to be sup-
ported by scalar conformal matter.

1 It can, however, be somewhat simplified by resorting to the first
order formalism.
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III. HAIRY BLACK HOLES

Let us first consider GR coupled to the CFT defined
by the matter content of action (2). That is, consider
first the particular case ak = 0 for k > 1 in (2). Up to
quadratic terms in the matter part, the action reads

I =

∫
dDx

√
−g

(
1

16πG
R− Λ

8πG
+ b0φ

D + b1φ
D−4S+

b2φ
D−8

(
SµναβS

µναβ − 4SµνS
µν + S2

))
+ ... (9)

where Sµν = Sρ
µρν and S = S µ

µ .

Generally, in D dimensions one can include S(k) terms
for k = 0, 1, 2, ...[(D − 1)/2] and there exist static black
hole solutions, provided the couplings of such terms sat-
isfy certain relations. Their metrics take the form

ds2 = −f dt2 + f−1dr2 + r2dΣ2
D−2,γ (10)

where dΣ2
D−2,γ is the metric of a (D − 2)-dimensional

Euclidean space of constant curvature γ = (0,±1) with
radius one and volume V olΣ, and where the metric func-
tion f is given by

f(r) = γ − 16πGM

(D − 2)V olΣrD−3
− 16πGQ

(D − 1)(D − 2)rD−2
−

2Λ

(D − 1)(D − 2)
r2, (11)

where a0 = −Λ/(8πG), a1 = 1/(16πG), M is an arbi-
trary constant ultimately associated to the mass of the
solution, and Q is given in terms of the couplings bk by
the relation

Q =

[D−1
2 ]∑

k=0

(D − 2k − 1) b̃kγ
kND−2k , (12)

where b̃k = bk(D − 1)!/(D − 2k − 1)!, and where N is
a dimensionful constant that appears in the scalar field
configuration

φ (r) =
N

r
(13)

and satisfies the following constraints

[D−1
2 ]∑

k=1

k b̃kγ
k−1N2−2k = 0, (14)

[D−1
2 ]∑

k=0

(
D (D − 1) + 4k2

)
b̃kγ

kN−2k = 0 . (15)

The couplings bk have to obey the above constraints
for the solution (10)-(11) to exist in D > 4. This implies
in particular, that in D = 5 dimensions, for example, one
needs to have b0 6= 0, b1 6= 0, and also b2 6= 0.

Provided γ 6= 0 and the metric function f(r) has least
one positive root2, solution (10)-(11) represents a hairy
black hole with only one parameter, M . Indeed, the met-
ric exhibits a scalar hair: The scalar field configuration
(13) turns out to be regular everywhere outside and on
the horizon; it only diverges at the origin, r = 0, where
the geometry develops a curvature singularity (cf. [3–
5]). The intensity of the scalar hair, given by N , cannot
be changed and is governed by the quotients of coupling
constants bk. If the black hole has locally flat horizon
(γ = 0), the hair disappears from the metric. In the case
γ = ±1, in contrast, the scalar hair induces a contri-
bution to the gravitational potential that damps off like
∼ Q/r(D−2), which is consistent with the fact that mat-
ter is conformally coupled. In fact, the fall-off condition
∼ 1/rD is the expected one for the T 0

0 (r) component of
the CFT stress-tensor, which is the one that couples to
gravity in the static spherically symmetric ansatz. Since
the scalar field configuration is an actual hair in the sense
that it falls off more rapidly than the Newtonian term
∼ M/rD−3, the solution happens to have a finite mass,
which is given by M. The fall-off of φ ∼ 1/r in (13) in
terms of the canonically normalized field translates into
ϕ ∼ 1/r(D−2)/2. All these imply that the asymptotics
remains locally (A)dS as in the non-hairy solution φ = 0,
Q = 0.

Solution (10)-(11) shares some properties with the
D = 4 black hole solution3 found in Ref. [8]. In the
four-dimensional case, however, if Λ < 0 then the only
possible horizon geometry has negative constant curva-
ture (γ = −1), corresponding to a topological black hole
with a Reissner-Nordström type contribution to the po-
tential. In D > 4 dimensions, in contrast, spherical hori-
zons (γ = 1) are admitted and scalar CFT matter con-
tributes differently relative to gauge fields.

There is a lesson to learn from our finding, which is the
following: When trying to naively extend the D ≤ 4 hairy
black holes to D > 4 dimensions, the solutions obtained
do not exhibit a horizon but develop a naked singularity
[10]. It turns out that if what one really wants is the
horizon to persist together with a conformal scalar hair
in D > 4, then one has to add conformal couplings of
the form ϕ(2D−4k)/(D−2)R(k) + ... with k > 1 and not
only the usual term ϕ2R(1); the latter is only sufficient
in D = 3 and D = 4 where terms S(k) with k > 1 do not
contribute. The non-canonical kinetic terms for ϕ coming
from S(k) are also necessary, and this is the reason why

2 It is easy to verify that f admits positive roots for special range of
the parameter M and coupling constants, so horizon does exist.
For instance, consider the example inD = 5 (k ≤ 2), with a0 > 0,
a1 > 0 (Λ < 0), γ = 1, b2 > 0 and M large enough.

3 Nevertheless, it is worth pointing out that the solutions we found
for D > 4 do not exist in D = 4. In this sense, our solutions
are not a generalization of the D = 4 solutions, but belong to a
different class. It may be the case that there exists a larger set of
solutions to theory (2) that would include both as special cases.
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previous attempts to find such a solution failed. Once
one realizes this, the black hole solution found above can
be easily generalized even to the case where O(Rk) terms
for arbitrary k are also included in the gravity action, i.e.
to the case ak≥2 6= 0. Let us discuss the general case in
the next section.

IV. HIGHER-CURVATURE CORRECTIONS

In D dimensions, consider the action that includes
both higher-curvature terms of the form R(k) in the grav-
ity Lagrangian and terms of the form S(k) in the matter
Lagrangian with k > 1; namely consider the full action
(2). It turns out that this generalized theory also admits
the following solution

ds2 = −f dt2 + f−1 dr2 + r2dΣ2
D−2,γ , (16)

where, again, the scalar field configuration is given by
(13), while the metric function f now fulfills the polyno-
mial equation

[D−1
2 ]∑

k=0

ak
(D − 1)!

(D − 2k − 1)!

(
γ − f (r)

r2

)k

=
M(D − 1)

V olΣ rD−1
+

Q

rD
,

(17)
where M is an arbitrary integration constant, and Q is
fixed to be

Q =

[D−1
2 ]∑

k=0

(D − 2k − 1) b̃kγ
kND−2k . (18)

As it happens in GR, constraints (14)-(15) between
couplings have to be imposed. Equations (14)-(15) fix
the value of N as well the relation between the couplings
bk of the matter part.
Equation (17) is a polinomial of degree k in f . It gives

the solution for f , which can be explicitly expressed in
terms of elementary operations only for D < 10. Ex-
pression (17) is the analogue of Wheeler polynomial of
Lovelock theory of pure gravity [11]. As in the GR case
discussed in Section III, the solution has a single integra-
tion constant M , and for generic values of the couplings
in the gravity action (i.e. ak being generic enough) there
is always one Schwarzschild branch, for which M turns
out to be the mass of the solution. Constant Q is fixed
in terms of N through (18), and the latter is fixed by
(14)-(15). Therefore, the scalar field can be thought of
as a secondary hair, as in the case in the three- and four-
dimensional solutions previously reported in the litera-
ture.

V. DISCUSSION

In this paper we have proven that hairy black hole so-
lutions in general relativity sourced by a conformally cou-

pled scalar field do exist in arbitrary dimensions. This
result provides an answer in the affirmative to a ques-
tion that remained open and for which no-go results had
been reported. The backreacting solutions we found here
represent geometries that asymptote to (Anti-)de Sitter
spacetime at large distances and admit both spherical
horizons and horizons of a different topology. We have
also shown how such black hole solutions extend to the-
ories of gravity with higher-curvature corrections O(Rn)
of arbitrary order n, for which we also found exact solu-
tions.

Before concluding, let us comment that theory (2) ex-
hibits other interesting properties such as self-duality. In
fact, for special relations between couplings ak and bk,
the action of the theory is symmetric under the inter-
change of the pure gravity part of action (2) (i.e. the
terms R(k) in I) with the matter part of it (i.e. the
terms S(k) in I), accompanying this commutation with
the inversion φ → 1/φ of the scalar field. The symme-
try under the interchange R(k) ↔ φD−4kS(k) is clearly
understood once one remembers that tensor S γδ

µν trans-
forms covariantly under local Weyl transformations. In
fact, this symmetry transformation can be realized by
rescaling the metric as gµν → φ2gµν . To gain intuition
and see how this duality symmetry acts on the space of
solutions of the theory one can consider the spherically
symmetric solution (10)-(11), (13) derived above. Since,
according to (13), φ = N/r and the duality transforma-
tion is given by the rescaling gµν → φ2gµν ∼ r−2gµν , one
finds that the black hole metric gets transformed into
a metric that is a direct product of a two-dimensional
space with coordinates (t, r) and the space of constant
curvature ΣD−2,γ . This duality symmetry and its action
on the space of solutions of the theory will be studied in
more detail in a future work. Let us just mention here
that it corresponds to a type of ultraviolet/infrared cor-
respondence which maps the large distance behavior of
some solutions into the short distance limit4.
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4 Up to terms R(1) and S(1) this correspondence has been explored
in [12] for AdS wave solutions of the system in three dimensions.

[1] J. Oliva and S. Ray, Class. Quant. Grav. 29 (2012)
205008.

[2] N. Bocharova, K. Bronikov and V. Melnikov, Vestn.

Mosk. Univ. Fiz. Astronom. 6 (1970) 706.
[3] D. Bekenstein, Ann. Phys. 82 (1974) 535; ibid 91 (1975)

72.
[4] B. Xanthopoulos and T. Dialynas, J. Math. Phys. 33

(1992) 1463.
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