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Abstract. We study the dynamical response under local noise of an excitable ring of FitzHugh-Nagumo
units coupled through nearest-neighbor phase-repulsive electric synapses. The system is externally, adia-
batically driven by a weak subthreshold periodic signal and independent Gaussian white noises. By varying
the coupling strength and the noise intensity, two routes to noise-sustained synchronization are numerically
observed and elucidated in terms of the system’s non-equilibrium potential. In particular, the threshold
noise intensity for synchronization is theoretically predicted and numerically confirmed.

1 Introduction

The constructive effect of noise on the dynamics of com-
plex systems is a subject of high current interest and
activity [1–3]. Examples include phenomena like coher-
ence resonance [4], stochastic resonance (SR) [5–8] or
noise-sustained synchronization in nonlinear dynamical
systems [9,10]. Of particular relevance is the study of syn-
chronization processes in populations of interacting non-
linear oscillators as a means to understand some key issues
in neuroscience, where a number of modeling approaches
have been based on the description of single neurons as
relaxation oscillators [11].

A single neuron displays excitable behavior, in the
sense that small perturbations to its quiescent state (sta-
ble stationary state of the cross-membrane potential) can
lead to a large excursion of its potential before return to
its rest state. This leads to unexpected nonlinear response
to noise and induces in turn nontrivial behavior in the
networks they may constitute. A simple example is co-
herence resonance, found almost two decades ago in the
FitzHugh-Nagumo (FHN) model [4]. A more physiolog-
ically relevant example is the intrinsic stochastic coher-
ence (or system size SR), first reported in reference [12],
wherein the noise intensity is controlled by the system size.
Important follow-up works are its application to coupled
FHN-models [13] and Hodgkin-Huxley neurons [14,15].
An overview of the whole this subject can be found in
reference [16].

a e-mail: matiasdellerba@gmail.com

In fact, it is well established that noise leads
to various key effects in neuronal dynamics [17–19],
like SR [5,12,20–22] and noise-assisted synchroniza-
tion [11,23–26]. While most of the existing works have
focused on the noise effects in networks connected through
global or local diffusive couplings, lesser attention has
been paid to phase-repulsive coupling [27–30], where the
cells tend to have a phase opposite to their nearest neigh-
bors. Antiphase coupling plays an important role in circa-
dian oscillation in the brain [31], synthetic genetic oscilla-
tors [32], the dynamics of astrocyte cultures [33], and has
been used to investigate several aspects in the dynamics
of neuronal and FHN coupled models [29,30,33–35] as well
as Hodgkin-Huxley neurons [36,37].

In a previous study [38] we have characterized a noise-
sustained synchronization of a ring of autonomous units
with excitable FHN dynamics, coupled to first neighbors
in a phase-repulsive way. In particular, we have theoret-
ically estimated the noise thresholds for activation and
synchronization of an extended antiphase structure. The
analysis was done in terms of the non-equilibrium poten-
tial (NEP) [39], a non equilibrium analog of a free energy
which provides deep insight on the dynamical mechanisms
leading to pattern formation and other phenomena where
fluctuations play a constructive role [2]. More recently,
a novel type of spatiotemporal SR of the antiphase state
has been reported in reference [35] for a bistable FHN ring
with phase-repulsive coupling, under the influence of both
local and global noises. In references [35,38] ‘contact’-type
antiphase coupling was considered between activator com-
ponents. More realistic models of synapses call to consider
the (anti)diffusive ‘electric’ one. In this sense, it is relevant
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to know to what the extent can the coupling strengths and
connectivity synapses be varied so that the synchronized
state remains stable. In others words, to generalize the
analysis to models with more feasible couplings is a chal-
lenging problem that we try to consider here. We show
that the same kind of resonance, featured with both the
antiphase regular structure and the enhancement of the
system’s output, can be developed in a less restrictive sce-
nario closer to the neuronal case: excitable dynamics, local
noises and electrical-like synapses. In particular, we prove
that the resonant dynamics can be explained in terms
of noise-sustained transitions between attractors, being
the adiabatic change in the attractor’s relative stability –
ruled by the NEP – the fundamental ingredient that drives
the dynamics and determines the relevant noise scales.

The paper is organized as follows: Section 2 briefly re-
views the dynamical equations of the model. Section 3 in-
troduces the system’s NEP and their limit of applicability.
In Section 4 we give numerical evidence of noise-sustained
synchronization and we characterize the constructive role
of noise in this process. In Section 5 we elucidate the ob-
served dynamics in terms of the corresponding NEP. The
conclusions are summarized in Section 6.

2 The model

We concentrate on the physical behavior of a network of
excitable elements with electrical antiphase coupling. We
particularize the analysis to a FitzHugh-Nagumo (FHN)
cell [4,40,41], an archetypal model of activator-inhibitor
systems capable of displaying periodic oscillations, stable
fixed points, and excitability [42]. This model – a two com-
ponent reduction of the Hodgkin Huxley one – has been
extremely useful in understanding the dynamics of some
neural [43] and cardiac tissues [44], to cite a few examples
of biomedical relevance. We consider a ring of N iden-
tical excitable FHN cells with electrical phase-repulsive
nearest-neighbor coupling, and submitted to a common
subthreshold signal and independent additive Gaussian
white noises. The equations for the model are:

u̇i = b ui

(
1 − u2

i

) − vi + S(t) − E [(ui+1 − ui)

+ (ui−1 − ui)] + r1 ξ
(u)
i (t) + r2 ξ

(v)
i (t)

v̇i = ε (β ui − vi + C) + r3 ξ
(u)
i (t) + r4 ξ

(v)
i (t), (1)

where the activator ui is the fast variable which mim-
ics the action potential off cell i and the inhibitor vi is
the slow – or recovery – variable which is related to the
time dependent conductance of the potassium channels
in the membrane [45]. Here i = 1, . . . , N ; uN+1 ≡ u1,
u0 ≡ uN , S = A0 sin Ωt is the external signal, ε is the
activator-inhibitor time scales ratio, while E > 0 is the
coupling strength. Throughout the work the following val-
ues have been adopted: N = 256, ε = β = 0.01, b = 0.035,
C = 0.02, A0 = 0.011, Ω = 0.002, ε r1 = r3 = cos 0.05
and ε r2 = r4 = sin 0.05. The values of the parame-
ters are not totally arbitrary: Ω is such that the period

T = 2π/Ω remains larger than the typical determinis-
tic time (i.e. the turnaround time of a single spike), so
that the signal can be regarded as an adiabatic pertur-
bation. Similarly, some parameters were selected in such
a way that they satisfy an integrability condition re-
quired by the theoretical characterization of the dynamics
(see next section). Finally, for the statistical properties of
the Gaussian noises ξ

(u,v)
i we assume 〈ξ(p)

i (t)〉 = 0 and
〈ξ(p)

i (t) ξ
(q)
j (t′)〉 = η δi,j δp,q δ(t − t′), where η is the com-

mon noise intensity and p, q ∈ {u, v}.
Equations (1) include a direct electrical connection be-

tween cells (gap junction). Note that the coupling term is
inhibitory-like: when neuron i fires, neuron i ± 1 are less
likely to fire. Inhibitory coupling is a basic ingredient in
the dynamics of neocortical pyramidal neurons [46], cor-
tical networks [47] and play a major role in the dynamics
of synchronous neural firing [48].

3 The non-equilibrium potential

The NEP Φ can be considered as the nonequilibrium ana-
log of a free energy. It is an appropriate Lyapunov func-
tional of the deterministic dynamics that provides infor-
mation on the local and global properties of attractors.
It characterizes their (linear and nonlinear) stability and
also determines the height of the barriers separating at-
traction basins, which in turn define the transition rates
among the different attractors. For Langevin-type dynam-
ics, Graham [39] has defined Φ through the zero-noise limit
of the logarithm of the stationary probability density func-
tion

lim
η→0

P stat (W, η) = Z (W) exp
[
−Φ(W)

η
+ O(η)

]
, (2)

where W are the variables of the problem. From a techni-
cal point of view, this definition presents an advantage
over the purely deterministic Lyapunov function: since
noise is present from the outset, the extra freedom in the
choice of the transport matrix can render in some cases the
problem integrable [49]. That is precisely the case for some
versions of the FHN model in the bistable and excitable
regimes [50,51]. For adiabatic external signal and linear
coupling in the activator variables, we have shown that the
NEP is the sum of two terms: the first one is determined
by the potential of the isolated nodes – a local component
that includes the driving – while the second one (non-
local) is determined by the topology of the network and
results to be a quadratic form in the network’s activator
variables, with the adjacency matrix as kernel [52]. Inte-
grability conditions – arising from the NEP’s derivation –
restrict the range of validity of the NEP’s expression. In
particular, the linear coupling is restricted to be symmet-
ric. Nevertheless, we remark that bistable and excitable
dynamics can be reached within the aforementioned re-
striction. For electrical antiphase coupling the NEP takes

http://www.epj.org


Eur. Phys. J. B (2014) 87: 82 Page 3 of 7

Fig. 1. Time-evolution of the u-component for a subset of
100 cells, for different noise intensities η and phase repulsive
coupling E. Time runs on the vertical direction, for approxi-
mately 11 signal periods. White represents activated neurons,
and black inhibited ones. (a) E = 0.006 and η = 2 × 10−7,
4×10−7, 6×10−7, 1.2×10−6 (from left to right); (b) E = 0.007
and η = 2 × 10−7, 4 × 10−7, 6 × 10−7, 8 × 10−7 (from left to
right).

the form:

Φ(u,v) =
N∑

i=1

[
Φs (ui, vi) +

2E

λ1

(
uiui+1 − u2

i

)]
, (3)

Z(u,v) = const., (4)

with Φs the NEP for a single cell [50] given by:

Φs(ui, vi)=
ε

λ2

(
v2

i − 2β uivi − 2Cvi

)
+

2λε

λ1λ2
(β u2

i + 2Cui)

− 2
λ1

[
b

2
u2

i −
b

4
u4

i + S(t)ui

]
, (5)

where λ1 = r2
1 + r2

2 , λ2 = r2
3 + r2

4 and λ = r1r3 + r2r4.
Integrability conditions also constrain the parameters to
obey

βλ1 + λ2/ε = 2λ, (6)

a condition satisfied only below the Hopf bifurcation. No-
tice the parametric dependence of Φ on t, caught up by
each ui variable through its coupling to the adiabatic
external signal.

4 Noise-sustained synchronization

We numerically observe the synchronization of the net-
work with the external signal for appropriate values of
noise and coupling strengths. To have an overview of the
dynamics, in Figure 1 we present the activity record of
{ui} for a subset of neurons for some values of E and η. For
vanishingly small noise intensities, only small-amplitude
homogeneous subthreshold oscillations around the rest
state can be appreciated. This coherent behavior is in-
duced by the adiabatic signal and represents the rest state,
for which ui(t) ≈ uj(t). As the noise intensity increases,
so does the number of cells that become noise-activated

Fig. 2. Q-factor vs. noise intensity (averaged over 20 realiza-
tions on a network of 256 cells) for phase repulsive coupling
E = 0.007 and nT = 131 989. Error bars are magnified by a
factor of 4 to render an appreciable picture.

during roughly half a cycle of the external signal and the
system starts to synchronize (we call active those cells for
which ui(t) exceeds some threshold value uth).

As expected, we verify that as one neuron activates, in
general it inhibits its nearest neighbors. The outcome of
this phenomenon is the antiphase state (APS) that par-
tially appears along the ring during the stage of noise-
activation. For higher levels of noise, the cells’ activity be-
comes highly synchronized with the external signal. In this
scenario noise plays a constructive role and the synchro-
nization becomes eventually degraded for larger values of
noise intensities. To illustrate and quantify this point we
introduce the Q-factor

Q =
√

Q2
sin + Q2

cos, (7)

with

Qsin =
1

nT

∫ nT

0

2Ac(t) sin(ωt)dt

Qcos =
1

nT

∫ nT

0

2Ac(t) cos(ωt)dt.

Here n is the number of periods T covered by the integra-
tion time and we have introduced the normalized global
activation

Ac(t) =
1
N

N∑
i=1

θ[ui(t) − uth], (8)

where θ is the Heaviside step function. As expected, Ac(t)
is not sensitive to uth for reasonable values of threshold, so
hereafter we fix uth = 0.39. By normalization, Ac = 1/2
corresponds to a state where half of the neurons remain
activated. However, in an APS the Ac does not reach the
value 1/2 because alternance fails due to the local noise, a
necessary ingredient for activation. The failure takes the
form of defects where pairs of neighbor neurons remain
inhibited or excited.

In Figure 2 we show Q as a function of η for E = 0.007.
A maximum of Q at η ∼ 10−6 can be appreciated. This
curve indicates that there is an optimal noise level at an
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Fig. 3. Time-evolution of the u-component for a subset of
50 cells, for different noise intensities η and coupling E. The
parameters are: E = 0.0095 and η = 1.6× 10−7 (a), 2.8× 10−7

(b), 6 × 10−7 (c), 10−6 (d).

Fig. 4. The same as Figure 2 for coupling E = 0.0095.

intermediate noise strength for neuronal coherence and
signal enhancement. At that noise intensity, the system
reaches the best synchronization.

A different synchronization scheme is numerically ob-
served for larger values of E, as we show in Figure 3 for
E = 0.0095. In this case, for appropriate values of noise,
a stationary APS is developed where the activated state
is macroscopically occupied and almost half of the neu-
rons remain excited. Since activation is noise-mediated,
this kind of pattern (induced in principle by the spa-
tial coupling) has defects that break the alternance. Both
structure and defects are persistent in time as can be ob-
served in Figure 3b: the resulting structure is shown as
a stripe pattern for the activity record. Finally, in Fig-
ure 3d we show the evolution for the synchronized state
for η = 10−6. The activity’s synchronization with the sig-
nal is clear. Note that this case has two characteristical
levels of noise, one for activation and the other one for
synchronization.

In Figure 4 we show for E = 0.0095 the Q-factor
as a function of the noise intensity. The curve aspect is
similar to the one in Figure 2, but in this case the best
performance is observed at η ∼ 1.2 × 10−6.

5 Theoretical description of the dynamics

As in reference [38], a theoretical study of the dynamics
can be done by exploiting the properties of the NEP dur-
ing the time-evolution. We consider a reduced two-neuron

Fig. 5. NEP landscape in the (u1, u2) plane for the reduced
two-neuron system (in units of 10−6), for signal S = 0, phase
repulsive coupling E = 0.007 and along the vi = βui +C lines.
The associated nullclines are shown in dotted and dashed lines.
The level-line ticks indicate the Φ-gradient direction. The lines
correspond to the levels: −17.5, −16.4, −14.806502 (saddle),
−12,−6 and 0. Some of them are labeled in the figure.

system of variables (u1, u2, v1, v2), which is a minimal de-
scription of an idealized case where all the even nodes on
one hand, and all the odd nodes on the other, have the
same stochastic phase-space trajectory. For this effective
model, the NEP in equation (3) take the simple form:

Φ (u,v) = Φs (u1, v1) + Φs (u2, v2)

+ 2E
(
2u1u2 − u2

1 − u2
2

)
/λ1. (9)

We first analyze the case of small coupling: Figure 5 dis-
plays the Φ-level curves in the (u1, u2) plane, in the ab-
sence of signal for E = 0.007. Here, the {vi} have been
adjusted to the slow manifolds vi = βui + C to include
all the fixed points in the same two-dimensional scheme.
Both the attractors and the saddles can be obtained, ei-
ther from the intersection of the nullclines or by minimiz-
ing Φ(u1, u2, v1, v2). Besides the uniform rest state (which
lies along the line u1 = u2), two (excited) attractors and
two saddle points can be appreciated. Note that the NEP
and their fixed points distribution are symmetric with re-
spect to the u1 = u2 line, reflecting the u1–u2 permu-
tation invariance of the dynamical equations. The com-
plete equivalence between symmetric points in the reduced
model originates a degeneration in the antiphase state (u1

activated, u2 inhibited or u2 activated, u1 inhibited).
The global stability is given by the depth of each at-

tractor’s well respect of the saddle level, and this difference
depends on S(t). To illustrate this point, in Figure 6 we
show Φ as a function of S for the uniform state (labeled by
u), for the saddle (indicated by s), and for the activated
state (indicted by a). Here |S| ≤ A0 and for each value of
S, the global stable state corresponds to the attractor(s)
with the lowest value of Φ, while the other ones are either
metastable or unstable states.

http://www.epj.org


Eur. Phys. J. B (2014) 87: 82 Page 5 of 7

Fig. 6. Dependence of the NEP value on the scaled signal at
the saddle s, activated a and uniform u states, for a two-neuron
system with coupling E = 0.007. Note that both saddle points
share the same value of Φ (the same stands for the activated
states).

Fig. 7. The same barrier scheme of Figure 6 for coupling
E = 0.0095.

For S = A0 the difference in Φ between s and u is
ΔΦs = 1.06×10−6. For a noise level of this order, the two-
cell system would climb that potential barrier and transit
to the excited state, that has a lower Φ value. For this
noise level the APS can return to the u-state because the
barrier at S = −A0 is significantly smaller than the first
one. In fact, η ∼ ΔΦs is the expected order of magnitude
of noise for full synchronization, in good agreement with
the numerical results of Figure 2.

The alternative route to synchronization observed for
larger values of coupling can also be elucidated in terms
of the NEP. While the NEP’s landscape has the same
qualitative structure than in Figure 5, the dependence of
the potential barriers with the external signal changes:
Figure 7 shows Φ as a function of S for the uniform u,
saddle s and the activated state a for E = 0.0095. In this

case, the difference in Φ between s and u for S = A0 is
ΔΦa = 6.6×10−7. For a noise level of this order, the two-
cell system would climb the potential barrier and transit
to the activated state, that has a lower Φ value. In this ex-
cited states, the NEP’s barrier between s and a goes from
ΔΦ = 7 × 10−6 at S = A0 to ΔΦ = ΔΦs = 2.01 × 10−6

at S = −A0. Hence, as S varies the system remains con-
fined in a, which explains the observed robustness of the
excited state (see Figs. 3b and 3c). The noise level must
increase one order of magnitude to transit again to u. In
fact, η ∼ ΔΦs estimates the optimal level of noise to re-
turn to the uniform state, so completing the cycle. This
noise-sustained decay is also associated with a decrease in
Φ. For η ∼ ΔΦs, the barrier ΔΦa is not significant and the
system easily reaches an excited state during each oscil-
lation of the external signal, namely, it synchronizes (see
Fig. 3d).

The two-cell approximation does not take into account
the eventual formation of defects, which break the back-
ground activation’s alternance of extended APS, as can
be observed in Figures 3b and 3c. Being these theoretical
results approximate, we remark that they elucidate the
route to synchronization and also allow to estimate the
order of magnitude for the relevant scales of noise.

6 Conclusion

We have investigated the stochastic dynamics of a ring
of electrical phase-repulsive-coupled FitzHugh-Nagumo
cells, externally forced by a common subthreshold har-
monic signal, and submitted to additive and independent
Gaussian white noises of the same intensity η.

We numerically observe that local additive noise is able
to sustain an extended antiphase structure (APS) where
the cells change alternately their state of activation. This
APS can be also synchronized with an external subthresh-
old adiabatic signal for appropriate parameter values.

The observed resonance, featured with both the an-
tiphase regular structure and the enhancement of the sys-
tem’s output was recently reported in reference [35] for
bistable FHN rings with antiphase coupling and local and
global noise. We have proved here that the same kind
of structure can be developed in a less restrictive sce-
nario closer to the neuronal case: excitable dynamics, local
noises and electrical-like synapses.

We remarks that the constructive role of noise as an
essential input to the stochastic synchronization process is
encoded with the measure of the coherence Q-factor, i.e.
equation (7), which exhibits a maximum as a function of
the noise intensity η. The role of the noise is thus twofold:
it induces the phenomenon but also enforces it. This fact
reminds one the phenomenon of double SR [53].

To elucidate the numerical results we have considered
the system’s non-equilibrium potential (NEP). In partic-
ular, we have studied a reduced model with two coupled
cells, whose NEP allows for a theoretical characterization
of the dynamics. The reduced system has five fixed points,
which are NEP’s critical points. The minima of the NEP
(i.e., the attractors) are a uniform (rest) state, and two
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activated states where one neuron remains excited and
the other one inhibited. The system has moreover two un-
stable points (NEP’s saddle points) which separate the
uniform state from the excited ones. By analyzing the po-
tential barriers and their dependence with the external
signal amplitude, we have shown that the dynamics can be
explained in terms of noise-sustained transitions between
these attractors. In particular, two potential barriers or-
ganize the dynamics: the first one corresponds to macro-
scopic activation (i.e, transition from the uniform state to
the antiphase one) while the second barrier corresponds
to the decayment from the activated state to the uniform
one. The noise scale for full synchronization is estimated
with the largest barrier. We remark that all the decays
are noise-induced and correspond to global decrease of the
NEP, being the role of the signal to change adiabatically
the relative stability between the wells, so providing the
route to synchronization. This is the fundamental ingre-
dient that drives the dynamics and determines the noise
level for synchronization.

The integrability condition arising from the NEP’s
derivation restricts the range of validity of its expression.
Although bistable and excitable dynamics can be reached
within the aforementioned constraint, self-sustained oscil-
latory dynamics remain outside the range of parameters.
Nevertheless, within the range, the NEP appears as a pow-
erful theoretical tool to analyze stochastic dynamics. Our
results are expected to depend on both temporal and/or
spatial noise correlations, as occurs (for example, in cou-
pled FHN systems) for related phenomena like coherence
resonance [9]. The NEP approach could be useful even
in those cases since dynamics driven by space correlated
and colored (Ornstein-Uhlenbeck) noises can be described
–in principle– in terms of their corresponding NEP [54].
The explicit dependence of the NEP on the adjacency
matrix also suggests that the same approach would be
useful for analyzing other kinds of synchronization (or
self-organization phenomena) in complex networks and
continuous systems. In this sense, we hope that the NEP
approach can be used to understand phenomena and prop-
erties of the system which are not obvious outside of this
framework.

We acknowledge financial support from CONICET (project
PIP 220100100315) and Universidad Nacional de Mar del Plata
(project EXA 603/12), of Argentina. We also thank R. Deza
for his critical reading of the manuscript.
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Rev. Lett. 99, 148103 (2007)
33. G. Balázsy, A. Cornell-Bell, A.B. Neimal, F. Moss, Phys.

Rev. E 64, 041912 (2001)
34. A. Sherman, J. Rinzel, Proc. Natl. Acad. Sci. USA 89,

2471 (1992)
35. Q. Zhao, C.G. Yao, M. Yi, Eur. Phys. J. B 84, 299 (2011)
36. Y. Li, G. Schmid, P. Hänggi, L. Schimansky-Geier, Phys.

Rev. E 82, 061907 (2010)
37. X. Ao, G. Schmid, P. Hänggi, Math. Biosci. 245, 49 (2013)
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50. G. Izús, R.R. Deza, H.S. Wio, Phys. Rev. E 58, 93 (1998)
51. S. Bouzat, H.S. Wio, Phys. Lett. A 247, 297 (1998)
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