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The lowest excitation energy and the magnetic correlations (S; - S;) between two magnetic impurities are
analyzed within the two-magnetic-impurity model Hamiltonian. The model includes two magnetic ions
that can exist in two valence states and a band of conduction electrons. The two localized states
represent the ground states of the ionic configurations (5f)" and (5f)"*!, assumed to be a doublet and
a triplet, respectively. In the zero band-width limit, three parameters characterize this model: the energy
difference between the magnetic configurations (4), the localized-extended-state hybridization energy
V), ag)d the relationship between the Fermi wavelength and the distance T between the magnetic ions
(p=Kk F-_r)). For ¢— 0, the strong coupling regime takes place and the physics that governs the ground
state depends on A/V. For V<-4, the highest spin configuration is favored, and the model shows a triplet
ground state and the coexistence of strong ferromagnetic (F) correlations between the impurities with
the Kondo physics of two magnetic impurities. For V < -4, with major charge fluctuations between the
magnetic configurations, a singlet ground state occurs and antiferromagnetic (AF) correlations between
the impurities appear. When ¢ increases, the decoupling of the impurities proceeds and (S; -S,)
decreases, finally for ¢ =x/2 the decoupled limit takes place and the model is reduced to two
independent ions ((S; - S)=0). For a narrow region of 4/V, when ¢ increases, the model shows the

crossover from singlet (AF) ground state to triplet (F) ground state.

© 2013 Published by Elsevier B.V.

1. Introduction

The behavior of 4f or 5f states in heavy fermion (HF) materials
is one of the most interesting open problems in solid-state physics.
Experimentally, these systems show very peculiar properties
including Kondo effect, magnetic order, superconductivity, etc. [1].
From the theoretical point of view, the essential physical ingre-
dients to describe HF compounds are (i) a lattice of localized
magnetic orbitals; (ii) a structureless non-interacting conduction
band; and (iii) a hybridization matrix element which mixes the
localized and conduction band states [2]. Therefore, at high
temperatures, HF systems behave like a collection of individual
local moments. On the contrary, at low temperatures, correlations
take place and the Kondo effect can occur. This screening can
quench the magnetic interaction between local moments.
The interplay between both mechanisms is a long-standing
problem and remains unclear.

In order to solve this very interesting problem and taking into
account that systems with more than one impurity are consider-
ably more complicated, much of the work has focused on the
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two-impurity Anderson (TIA) model [3-19], and its integer valence
limit, the two-impurity Kondo (TIK) model [20-37]. The TIA is the
simplest model that can be studied to analyze the interplay
between the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
which favors magnetic ordering of the impurities and the Kondo
effect which works against order since it tends to quench indivi-
dual impurity spins. This interplay is thought to be the most
relevant mechanism for understanding the magnetic properties in
many heavy fermions compounds [38]. However, it is interesting
to point out that the Anderson model describes transitions
between one magnetic and one nonmagnetic configuration, as in
Ce or Yb compounds. Nevertheless, the problem is different in
some actinide systems [39], such as Uranium and Neptunium
compounds, where the involved 5f electrons can fluctuate
between two magnetic configurations and the degree of localiza-
tion or mixed-valence depends on the compound. For US
compounds, the experimental data suggest a mixed-valence
scenario [40]. On the contrary, for UTe [40], UCog s Sb, [41], among
other compounds, the coexistence of Kondo effect and ferro-
magnetic order has been detected experimentally showing an
important localized character of 5f electrons. Similar results are also
obtained in Np compounds such as NpNiSi, [42] or Np,PdGas [43].

Motivated by this scenario we consider in this paper the
problem of two magnetic impurities fluctuating between two
magnetic configurations. To this end we resort to the theory
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of valence fluctuation phenomena. In order to calculate spin and
charge dynamical susceptibilities in Tm compounds, Mazzaferro
et al. [44] presented a theory of intermediate valence between two
magnetic configurations. Their results can explain the most
important features of the neutron-scattering spectrum of TmsSe,
with TmSe fluctuating between two magnetic configurations: Tm>*
(J=6) and Tm?>* (J=7/2 ). They show that one of the most
important features of the model is the existence of two magnetic
configurations, which makes the difference with the Anderson
model. The effective magnetic moment does not disappear at
intermediate valence if the fluctuations take place between two
magnetic configurations. This model was also studied by Allub
et al. [45] using Wilson's renormalization group . The aim of this
work is to present the narrow-band approximation [46-51]
to solve a straightforward extension of this model: the problem
of two magnetic impurities fluctuating between two magnetic
configurations. We consider that this is the simplest approach to
describe the competition between local hybridization and
magnetic order.

In the following section we introduce the model Hamiltonian
and set up the zero-bandwidth approximation to this problem.
Section 3 presents the numerical results and discusses their
physical implications. Section 4 consists of the conclusions.

2. Model

Beginning with the model for one magnetic impurity fluctuat-
ing between two magnetic configurations [45], we extend it
to include two magnetic impurities and the following model
Hamiltonian may be written:

H=Hy + Hf + Hpyp. (1)

The first term represents the band Hamiltonian

Hy= ¥ ecl, s | )
? k ke Ko

where cf, (c? ) creates (destroys) an electron with momentum
ko Ko

K and spin ¢ in the conduction band, and e? is the energy of

conduction electrons.
The second term stands for the localized f states in the
magnetic ions

Hy=Ei; Z}Z(IT]'XT]‘I + 1D
j=1
+E1 212(|+]'><+]'| +10;)¢0;] + |=){=jD- 3)
j=1

where, in bracket notation, the lowest spin configuration of each

ion at site l_l)j is represented by the spin-1/2 states (| 1;) for S,=+1/2
and [};) for S,=-1/2), and the highest spin configuration is
represented by the spin-1 states (|+;) for S,=+1, |0;) for S,=0,
and |-) for S,=-1). E;, and E; are the energies of the two
accessible valence states. Furthermore, in this paper we consider
1 localized electron in the lowest spin configuration and 2 elec-
trons in the highest spin configuration [45].

The third term is the hybridization Hamiltonian, whereby the
ionic configuration changes by emission or absorption of a con-
duction electron and is given by

thb: Z Vs (C—> ‘T]>(+]|+C—> N])( ]|)+HC
T, ki ki k.
< J
7— z V—> (C_> \TJ>(0|+C—> Ni0ih +H.c.|, 4)
—> ki Ik,

where the matrix elements in Hyy,, are taken as to preserve

- -
rotational symmetry and we define V. =Ve‘k‘Rl, with V the

kj

hybridization strength. The first term ¢, |t jX+;l destroys at site j

k 1
the ionic state with S,=+1 in the highest spin configuration and

creates a conduction electron in a ? state with spin t and
a localized electron in the lowest spin configuration with spin .
The following terms in Eq. (4) act in similar manner with the
different spin z component. Note that Hyy, is the term which allows,
through the conduction electrons, the charge transfer from one
impurity site to the other. For only one impurity (i.e., j=1), Eq. (1)
reduces exactly to the model considered in Ref. [45].

Exact treatment of the many-body Hamiltonian (1) is an
unsolvable problem. This is why, as a first approach to solve this
problem and taking into account the fact that essentially, in most
experiments, only levels close to the Fermi energy are relevant,
here we study the zero-bandwidth (ZBW) limit of this model. For
this purpose, following our previous work [16], we simplify the
conduction band by a few extended states, located precisely at the
Fermi_e)nergy (61:) Therefore we represent the condg)ction band by
two Kk states: 1(1 = kF and kz 7_]([-‘, with kg the Fermi
momentum. Accordingly, the band Hamiltonian reduces to

? kw K o k o ‘7< ko ko k 50 k >0

and Hyy, gives

- =
Hpyp =V ¥ {e’km'RJ‘ <CT_>
—

Hy= Y e ', ¢ =eX(c, o +c, c ) (5)

1)+l + CT? Ilj)(—j|> +H.c.
ml

Ko Kk mt k
K, K
— X {e"m' f<cL 11001 + ¢, |¢,—><0,-|) +He|.
2? i K k wt
(©6)
— —> - —
Defining ¢l =eKiRoct  of —elKaRict - and
10 kza

¢=K1-(Ri—R3)=Kkf-(R1—R5>), we can write the ZBW limit

of H as
Hzpw = er X(ch 15+ € Ca0) + Eij Z]:z(|Tj><Tj| + <D
7 j=1,
+E1 Y 2(|+j>(+j| +10,)¢051 + |=;){=5D)
j=1;
+V{[(€c], + it + @], + =11+ He |
+[(ely + e Ia) ol + (], + e lia)— + Hee |

1, .
+75 (e, + 1011 + (€c], + c)it)(0n |+ Hoe|

(€l + €C))112)(0a] + (&, + €] )I12)(0a] + Hec }
™)

Measuring energies from the Fermi level (ef =0), the model is
completely characterized by three parameters: A =(E;-E;;;)/2
(the energy difference between the two configurations), V, and ¢.
The Hilbert space of the localized electrons in the model under
consideration reduces to 25 states which we define as: 4 two-
particle |g10;) states, 12 three-particle |Szjo;) states, and 9 four-
particle |Sz,Sz;) states, with Szj=+;,-;, 0; and ¢j= 1}, ;. The
magnetic properties of Hzy can be obtamed from the six-
particle states (N=6) or from the grand canonical ensemble
adjusting the chemical potential fixing the average number of
particles in the system. Both methods give the same physical

1
+ﬁ[
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results and here we consider the solution in the subspace of N=6.
For this case, the full Hamiltonian matrix is 106 x 106: 4 states
with 4 conduction electrons and 2 localized electrons

(c“c]lCZTch]oz)) 48 states with 3 conduction electrons and
3 localized (c,T C16|SZIGJ>) and 54 states with 2 conduction

electrons and 4 locallzed(c c,a 1S215z5)).

For ¢=x/2 (or +(2n+ 1)z/2), Hzpw corresponds to two
independent magnetic impurities and we can write Hzw (¢ =
7[/2) =Hpj + Hp, with

Hjj= EFZJ/}L,,J’]‘G + E1 (1)1 + Wiy diD
FE1([45){+j1 + 10;)¢0;] + [=){=1)

+V2V{ 1 1)1 + 7y 1) (] + Hie

1
+ L
where we define y{ = (ic] +c} )/v2,and /3, = (] +icl )/v2.In
this particular case, each impurity can be solved independently in
a given Hilbert space and we obtain the decoupled (DC) limit of
this model. It is interesting to note that the ground state in this
limit corresponds to the fixed point Hamiltonian obtained, in the
strong coupling regime, by the renormalization-group approach
for one impurity problem [45]. In principle, the Hilbert space
corresponding to Hj comprises just 20 states: four possible
occupations of the extended (y) orbital (0, t, ¢, and t{), and five
possible localized states (| 1), |{;), [+, 10;), and |-;)). Nevertheless,
two-particle and three-particle states are only relevant for mixing
in Hj and it is easy to see that the lowest energy level corresponds
to three-particle states with spin S=1/2. Therefore, taking six-
particle states in Hzgy, the DC limit corresponds to two identical
impurities, each one in the subspace of three-particle states.
Therefore, the ground state energy is four-times degenerated:
one state with S=0 and three states with S=1.

For ¢ =0 (or + nx), Hzy reduces to the strong coupling (SC)
limit of this model, where both impurities are coupled through
only one band state and the model Hamiltonian can be written as
Hzgw (¢ =0)=H' + H", where we define

H'=er Yol a1, + E1 2 T )+ M)y
c j=1

PO+ 1001+ He . ®)

+E1 Z;Z(|+j><+j| +10;)€0;1 + [=){=D
j=1.

+v2V % { o, 1)1 + 1)l + Hee
j=12

1
+ [l 10+ 101+ e } )
and
H' = ep T, s, (10)

with ol =(c] + ¢} )/v2 and o} = (c] —c} )/~/2. Therefore, the SC
limit can be solved by a diagonalization of H'. The corresponding
subspace includes 100 states: for each four possible occupations of
the extended («) orbital (0, 1, ¢, and *{), there are twenty-five
localized states (|o102), |Szjoj), and |Sz15z,) ).

The ground state properties of H' depend on the parameter
A/V. There is a critical value Acy/V=-1.49 such that for A < A¢p, the
ground state energy corresponds to a five-particle states with
S=3/2. On the contrary, for A > Acq, the ground state energy
corresponds to a four-particle state with S=0. Therefore, to study
the six-particle subspace of Hzyy, we must take only direct
products of the H' states by the H” states: four-particle states in
H' with two-particle states in H”, five-particle states in H' with
one-particle states in H”, and finally six-particle states in H'.

3. Results and discussion

For the one impurity case, the coupling of the local spin to the
conduction electrons is ferromagnetic if the lowest spin config-
uration is energetically favored (4 = (E;-E;,2)/2 > 0) and antifer-
romagnetic (Kondo) if the highest spin configuration is
energetically favored (4 < 0) [45]. Therefore, to study the magnetic
correlations between two Kondo impurities we consider in this
paper A <0. In what follow we discuss the two limiting cases

(p= T()F . ﬁ)]—l_l)z) = /2 or 0) and the general case.

3.1. The decoupled limit: ¢ =n/2

Let us first consider the decoupled limit. Following our pre-
vious discussion, we solve Eq. (8) for three-particle states. Let
IN,S, Sz); denotes the eigenstate of H;; with N particles, spin S, and
z component of spin Sy. It is easy to obtain

(i) 4 states with S=3/2 and energy 1
13,3/2,+3/2); —7T|+j>

13,3/2, +1/20 = (/145> + V27, 10)/V3,
13,3/2,-1/2); = &}, 1) + v27},10;))//3, and
13.3/2.-3/2)5 =71, 1))

1133/2—E1:

(ii) 4 states with S=1/2 and energies

A4 =051 +E1)+R

13,1/2,+1/2, +>,,—a1+yﬁyﬂm >+b,+(fy]l|+,> y,1|0]>)/f
13,1/2,-1/2, £ y=ar v}, v} 14+ br e (-V2r[ 1) + 11, 100)/+/3,

with a;, = \/(A%4/R)/2, b, = /(1 £4/R)/2, and R=v/a? + 3V2.

This is the physical scenario, in the ZBW approximation, of an
intermediate-valence impurity fluctuating between two magnetic
configurations: the degenerate S=1/2 ground state, [3,1/2, +
1/2,-);, is a mixing of both magnetic configurations.

For A <0 and |A]>V, the model is reduced to the Kondo
problem in this system and the ground state energy (two-times
degenerate) is A;].ZIQ=E1—1.5(V2/|A|) corresponding to (\F27ﬁ|+j)—
y]TTIO))/\/_ 3 and (—«/_y;ﬂ|—j>+yﬁ|0->)/«/— The first excited states
(spin excitations) are given in (i), and it is straightforward to see
that the physics that governs the low excitation energies is given
by an s-d Hamiltonian with antiferromagnetic (Kondo) coupling
between conduction electrons and spin-1 local moment [45]. Here,
the Kondo energy is Ex = 1.5(V?/|A]).

As in the case of ZBW Anderson model [46,47], many physical
results of the one impurity problem can be qualitatively under-
stood in this simple theoretical picture [48].

3.2. The strong coupling limit: ¢ =0

- — = -

For ¢ = kKr- (R {—R3)=0, the SC limit occurs and the ground
state of H' depends on 4/V:

(a) For A <Aco, H' gives four five-particle states with S=3/2
and energy 5%, =05(3E; +E12)-R, with R'=+/a%+5V>. The
five-particle state with S=3/2 and S;= +3/2 reads |5,3/2,+
3/2)=ap {2(1“ [+1+20=al (141020 + | 01+2))/v21/v/5 + boal,al,

(I4+112) + |1142))/v2, where ag=+/(1-4/R)/2
V(A +A4/R)/2.

It is straightforward to write the other z component states:
15,3/2,+1/2), 15,3/2,-1/2), and |5,3/2,-3/2).

(b) For A > Ao, the lowest eigenvalue (1'40) of H' results from
the diagonalization of a 3 x 3 matrix (four-particle states with

and b=
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S=0) given by

2E; -2V 0
-2V (Eq +E1/2) «/GV (11)
0 VBV 2E,|

and the corresponding eigenvector (a'g, b’o, and c'g) allows us to
write the ground state as
14,0,0) = @'o[|+1-2)—10102) + [-1+2)]/+3

+b'o [aL(\Olm + ‘l102>_\/§|_1T2>_‘/§|T1—2>)/\/6} /N2

+b'o[al, (10112) + 11102)=v21+112)=v211142))/ V6| /2
+Coal,al (11112)=11112))/V2.

In Fig. 1, solid line shows the energy difference (1'40-4'53,2) as a
function of A and we can see the critical value Acq/V=-1.494,
defined by (1'40-4'53,2)=0. The dashed line corresponds to
(X41-4'53,2) with 245, the lowest eigenvalue (three-times degen-
erate /lﬁ) ) of four-particle states with S=1, obtained from the
4 x 4 matrix

2E, -22v -Zv 0
—Z2V (Ey+Eip) 0 22V a2
-Zv 0 (Ey+E1) 4V

0 %v 4V 2E 1|

(X'41-2'53/2)=0, defines the critical value A'co/V= -1.156.

Thus, in Fig. 1 we distinguish two different ground states: a
quadruplet (singlet) ground state for A <Acg (4 > A¢g) and three
different first excited states, depending on the value of A/V. For
A <Aco, the first excited state is [4,0,0) (solid line); for
Aco <A < A'co , the first excited states are |5,3/2,Sz) (dotted line),
and finally, for A > A’c, the first excited states are |4,1,S;) (dashed
line). From these results, it is easy to write (by adding one or two
electrons in the decoupled «, orbital) the six-particle states
(16,S,Sz)) of Hzgw (¢ = 0). For spin-2 states we can write

16,2,+2) =al,15,3/2,+3/2),
16,2,+1)=[a},15,3/2,+3/2)+ V3a},15,3/2,+1/2)] /2,

0.15 T T T
0.10 i
E 0.05 E
;f“’ 0.00 - -
: |
- z e
= ook g V=-1.4940 v
A JV=-1.1565 \
- - - -8=3/2, N=5 part. \
-0.10 } —— S=0, N=4 part. v
— — S$=1, N=4 part. \
P i\
-0.15 G G -
-4 -2 Aco Acc
AV

Fig. 1. Lowest energy levels of H' (measured from A's53,,) as a function of A/V.
Depending on the value of 4/V, three different regions are observed: (I) for A < Aco,
the ground state energy corresponds to 4's 3, and the first excited energy is 1’4, (II)
or Acp <A <A'co, the ground state energy is 149 and the first excited energy is
A's3/2, and (III) for A > A’co, where the ground state energy is 2’40 and the first
excited energy is 1’4 1. Arrows show the first excited energy in (I), (II) and (III).

16,2,0) = La; 15.3/2,+1/2) + o, \5,3/2,—1/2>} /2, etc. For
spin-1 states we take:

6,1,+1)= ﬁa%l|5,3/2,+3/2)—aL|5,3/2,+1/2)] /2,
16,1,0) = Lan 15,3/2,+1/2)-d},15,3/2,-1/2)| /v/2, etc. For
A < Ao, all these states correspond to the eight-times degen-
erate ground state energy A'ss. For A > Ac, the singlet six-
particle state |6,0,0)=a},a},14,0,0) with energy 1’40, occurs.
Defining the localized spin operators

5{/21’ = (X=X D /2, ST o5 =114l and S5 =141 for
spin-1/2 at site j, and S7; = (|+;)+j1= 1=}

S1j = V2(+X0j1 + 10;=j), and  Sj; = v2(1=)0;] + 10;)(+j) for
spin-1, it is easy to obtain the magnetic correlations (S; - S;)
between the impurities. At zero temperature (T=0), for A < Ac
ferromagnetic correlations are obtained from (5,3/2,S7[(S; -
S2)15,3/2,Sz) = a3+ 0.5b3 = 0.25(3-4/1/A% + 5V?). Conversely,
for A>Ac, the ground state gives antiferromagnetic
correlations

(4,0,0((S; - S2)/4,0,0) ==2a2-b¢ -0.75c2.

- — =
3.3. The general case: 0< Kf- (R {—Ry)<x/2

For 0 <¢ < z/2, in the absence of hybridization (V=0), there
may be 106 different six-particle states, corresponding to three
possible occupations (n=2, 3, and 4 electrons) of the localized
orbitals with the three occupations (6-n) of the extended states:
(4 x 1) states for n=2, (12 x 4) states for n=3, and (9 x 6) states
for n=4. Hybridization couples states with the same total spin z
component and number of electrons, such that the 106 x 106
matrix factorizes into seven (1 x 1) blocks with S=3, five (9 x 9)
blocks with S=2, three (15 x 15) blocks with S=1, and one (9 x 9)
block with S=0. By diagonalizing these matrices, we obtain the
eigenvalues and eigenstates of Hzgy. Depending on the values of

the model parameters A/V and ¢ = T()F . (_R>1—l—(>2), there are two
possible ground states: a singlet, with energy 4g or a triplet, with
energy g1, and three possible excited states corresponding to a
singlet, a triplet, or a quintuplet, with energy ¢». For S=2, it is
easy to obtain the analytical expression Ag,=0.5(3E;+

Em)—\/A2 + 0.5V2(5 ++/1+24cos?(¢)). For A/V=-45 and
Ey/;/V =-1, the lowest three energy levels (40, 46,1, and s>) as
a function of ¢ are shown in Fig. 2. For these parameters, there is
always a triplet ground state, while the first excited state depends
on the value of ¢ and it can be a singlet or a quintuplet. Due to the

-20.3 T T T T T T T T v T v T
: — =1 )
- = S=0
. . .. .-8=2 J .
204 | K g . . -

> -20.5

he oV

-20.6

0 1 2 3 4 5 6
¢

Fig. 2. Lowest energy levels of Hzw as a function of r/):T()F »a}l—ﬁz), for
A4/V=-45 and E;;/V =-1. The solid line indicates the ground state energy g 1,
the dashed line shows Agp, and the dotted line represents g .
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Fig. 3. Lowest six-particle energy levels of Hzgy (measured from 4g ;) as a function
of = k- (R{—R>) (ranging from 0 to z/2). (a) For A/V = -2, the ground state
energy corresponds to S=1 (solid line) and the first excited energy level shows a
crossover from total spin S=2 (dotted line) to S=0 (dashed line) at $=0.22. (b) For
A/V =-1.25, the ground state energy shows a crossover from S=0 (dashed line) to
S=1 (solid line) at ¢=0.38. (c) For A/V =-1 and any value of ¢, the singlet ground
state energy occurs (dashed line) and the first excited energy is given by the S=1
states (solid line).
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Fig. 4. ¢ dependence of the critical values A¢y, where the singlet and triplet ground
states are equal in energy, and Ac,, where the first excited energy changes from
S=2 to S=0 state. We can observe three different regions, in each one we represent
the ground state spin by S; and the first excited state spin with Sg. (F) and (AF)
refer to ferromagnetic and antiferromagnetic character of the magnetic correlations
between the impurities at zero-temperature. The dotted line is a guide to the eye.

periodical dependence on ¢, hereafter we take this parameter
ranging from O to z/2 [16].

In Fig. 3, for total spin S= 0, 1, 2 we show the lowest energy
levels (measured from 7¢;) as a function of ¢. In Fig. 3(a), for
A/V =-2 (A <Acp), the ground state is always a triplet but the first
excited state, depending on the value of ¢, is S=0 or S=2. For
¢ < 0.22, the quintuplet occurs, whereas for ¢ > 0.22, the singlet
takes place. Similar results are obtained when A/V decreases. In
Fig. 3(b), for A/V =-1.25, depending on the value of ¢, two
different ground states occur: for 0 < ¢ < 0.38, the ground state
is a singlet; conversely, for 0.38 < ¢ < z/2, the triplet ground state
emerges. For ¢ ranging from 0 to /2, the existence of two ground
states is restricted to a narrow range of A between Acg and A’c. In
Fig. 3(c), for 4/V = -1 and ¢ ranging from 0 to z/2, we can see that
the ground state energy corresponds to S=0 (dashed line) and the

first excited state is S=1 (solid line). When A/V increases, the
same results are obtained.

In Fig. 4, we put together these results showing the ¢ dependence
of the critical values Acq, where the singlet and triplet ground states
are equal in energy, and Ac;, defined by (162-160) = 0. Two possible
ground states can be observed: for A <A the triplet ground state
occurs showing ferromagnetic (F) correlations between the impurities;
conversely, for A > A¢; the system shows a singlet ground state with
antiferromagnetic (AF) correlations between the impurities. Further-
more, for ¢ < 0.41, three different excited states can be distinguished:
starting from A < A, the system shows a quintuplet first excited state,
when A increases we can observe first a crossover (A = Ac; ) from S=2
to S=0 excited state and at high A the crossover (A = A¢; ) from singlet
to triplet excited state. For ¢ > 0.41, only the last crossover from
singlet to triplet can be observed. It is straightforward to determine
the value ¢ =0.41 that corresponds to A <0 and |A[>V. Since we

can approximate Ag=2E; -0.25V%(5 + /1 + 24 cos?(¢))/|A| and
/16)0=2E1—V2(2 +sin(g))/|4|, yields the equation of ¢ as:
5 sin’(¢) + 3sin(¢)-2 = 0. Furthermore, it is interesting to note that
in the region of parameters where the ground state corresponds to
S=1 and the first excited state is S=2 (S =1 and Sg, =2 in the
figure), the low excitation energies can be adjusted by an antiferro-
magnetic Heisenberg Hamiltonian (Kondo) where a localized spin
S=3/2 is coupled to s = 1/2 extended state. For A <0 and |4|>V, we

can approximate 1g1=2E; -0.25V2(9+1/1+8 sinz((ﬁ))/ |4}, and we
can write the Kondo energy near the strong coupling regime as

(A62—461) =0.25V>(4 + /1 + 8 sin*(¢)—/1 + 24 cos2(¢))/|A|. There-
fore, in the ZBW approach at very low temperatures, for A <0 and
|A|>V, the Kondo physics occurs as in the single impurity problem,
where S=1 localized spin is coupled to s=1/2 band state [45].
According to our previous discussion (¢ =0), the S=3/2 localized
state results from the impurities in a ferromagnetic S=2 state
antiferromagnetically coupled to s=1/2 band state. Thus, near the
strong coupling regime, the Kondo physics favors the ferromagnetic
coupling between the impurities.

In Fig. 5, we show the zero-temperature magnetic correlations
(S1 -S,) between the impurities as a function of ¢ for different
values of A/V. For A/V =-4.5 (solid line), due to the fact that the
ground state of the system is a triplet, we can see only ferromag-
netic correlations in the full range of ¢, starting from (S; - S;) = ag —+
0.5b3= 097 for ¢=0 to (S;-S,)=(9+6b. +bi)/36=4/9 for
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05F N _ -
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Fig. 5. Zero-temperature magnetic correlations (S; - S,) between the impurities as
a function of ¢= k- (R;—Ry), for different values of A/V. Three different
behaviors can be distinguished: the ferromagnetic local moments regime, for
A<Aco (A/V=-4.5 or -15), the antiferromagnetic local moments regime, for
A>Ac (A/V=-1 or -0.5), and the crossover regime for Acy<A<A4A'co
(4/V =-1325 or -1.25).
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Fig. 6. Magnetic correlations (S; -S,) between the impuLities as a function of
temperature, for A/V =-4.5 and different values of ¢ = kr- (R ;—R;). At low
temperatures, we can see different behaviors depending on ¢. For ¢ =0.1 we can
observe, at very low temperatures, the Kondo peak due to excitation from triplet
ground state to first excited quintuplet state. When ¢ increases, the peak
diminishes and it moves to high temperatures due to the increases in the Kondo
energy (see ¢ = 0.3). The temperature at the peak is a measure of the Kondo energy.
For ¢=0.4, the curve shows the interplay of excitations to singlet (AF) and
quintupled (F) exited states. For ¢ = 0.8, the curve shows the effect of excitation
from triplet ground state to first excited singlet state. For ¢ = 1, the same behavior
is observed.
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Fig. 7. Magnetic corre@tiog (S1-S,) between the impurities as a function of
temperature for ¢=Kkpr- (R{—R)=0.1 and different values of 4/V. For
A/V =-45, we observe the peak showing the signature of the Kondo physics of
two magnetic impurities. For A/V =-1.5, the curve, at very low temperatures,
diminishes rapidly due to thermal excitations from triplet ground state (F) to
singlet excited state (AF). For A/V =-1.25 or -1, as temperature increases, the
curves show the changes from AF correlations to F correlations produced by
thermal excitations. For A/V =-0.5 or 0, we only observe AF correlations between
the impurities with a monotonous decrease as T increases. At very low tempera-
tures, for A >Aco (Aco/V=-1.49), it is interesting to note that as the (S; -S,)
becomes less temperature dependent due to the strong mixes of both configura-
tions. Consequently, the figure shows the intersection of different curves.

<S1 -SZ>

¢—n/2. It is straightforward to determine this value from the
decoupled limit. The same results, with lower values of (S; - S,) are
obtained for A/V =-1.5 (dashed line). For 4/V =-1.325 (dotted
line), the figure shows antiferromagnetic correlations for ¢ <0.17
and ferromagnetic correlations for ¢ > 0.17. For ¢ =0.17, we can
see the abrupt jump of (S; - S;) due to the fact that the ground state
changes from a singlet with AF correlations between the impurities
to a triplet with FM correlations. Similarly, for 4/V =-1.325
(short dashed line), where we can observe AF correlations for ¢ <
0.39 and F correlations for ¢ >0.39. For ¢ =0, the AF analytic
solution gives (S; - S) = ~2a2-bg—0.75c2. Finally, for 4/V = -1 and
A/V =-0.5, the ground state is a singlet and only AF correlations

occurs in the full range of ¢. For ¢—x/2, it is easy to show that
(S1-S2)=-(9+6b% + b-)/12, since (S;-S;)=0 for ¢=r/2 (the
decoupled limit).

In Fig. 6, we show (S; -S,) as a function of temperature, for
A/V =-4.5 and several values of ¢. For small values of ¢, at low
temperatures, we can see a peak due to the thermodynamic
excitations from triplet ground state to the quintuplet excited
state given an additional FM contribution to (S; -S;). When ¢
increases, the peak decreases and the maximum moves to high
temperatures (see ¢ =0.1 and 0.3). For ¢ =0.4, the peak disap-
pears and (S; - S;) decreases monotonous as T increases. When ¢
increases, the splitting between the S=1 ground state and the first
excited singlet state decreases, which can be observed for ¢ = 0.8
or 1: at low temperatures, when T increases, the curves show a
rapid decrease in (S; - Sy). In Fig. 7, we show (S; - S,) as a function
of temperature, for ¢ = 0.1 (strong coupling region) and different
values of A/V. At zero temperature, for A <Ay (4co/V=-1.49), we
observe ferromagnetic correlations (S¢ =1 ground state). On the
contrary, for A > Acg, only antiferromagnetic correlations (Sg=0
ground state) are obtained. In both cases, the magnetic correla-
tions decrease with decreasing |A|/V; in other words, increasing
the mixes of both configurations decreases the magnetic correla-
tions between ions. For A/V =-4.5, we can see the low tempera-
ture peak outlined in Fig. 6. For A/V =-1.5, the figure shows the
decreasing F correlations, due to the low temperature excitation
from Sg=1 ground state to the Sk, =0 first excited state. For
A/V =-1.25, the singlet ground state occurs with strong AF
correlations which are destroyed by increasing temperature,
favoring F correlations due to the Sg, = 1 first excited state. Similar
behavior is observed for 4/V =-1. For A/V =-0.5 or 0, we only
observe AF correlations between the impurities. Finally, it should
be noted that as the mixes of both configurations increase, the
magnetic correlations decrease and the curves become less tem-
perature dependent. This implies the intersection of curves for
different A/V.

4. Conclusions

We have applied the narrow-band approximation to solve the
problem of two magnetic impurities fluctuating between two
magnetic configurations. The solution presented here enables the
understanding, in simplified terms, of the behavior of two mag-
netic ions by the competing effects of three types of energies:
(I) the energy difference between the magnetic configurations (4);
(I) the hybridization effects which, at a given degree of strength
(V), mix the f- and conduction-band states energy; and (III) the
relation of the Fermi wavelength with the distance between the

- — =
magnetic ions (¢ = kg - (R {—R3)). At zero-temperature, we have
obtained a A/V vs. ¢ “phase diagram”.

For A <Acq (-1.5<A4¢;/V < -1.1), the ground state is a triplet
and the magnetic correlations between the impurities are
ferromagnetic. On the contrary, for A > A¢;, the singlet ground
state occurs with antiferromagnetic correlations between the
impurities. For small values of ¢ (strong coupling region), A <0
and |A|>V, the highest spin configuration, in each ion, is favored
and the Kondo physics of two magnetic impurities emerges, in
this case the model gives a triplet ground state with very strong
ferromagnetic correlation between the impurities. The first
excited state corresponds to S=2 and the model allows these
results to be understood in terms of a Kondo Hamiltonian of an
effective localized S=3/2 spin state and a extended (band)
s=1/2 spin. For ¢ = z/2, the model gives two independent ions
and (S; -S;)=0. For ¢ »>x/2 (low coupling regime), depending
on A/V, the ground state is a triplet or a singlet with low
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ferromagnetic or antiferromagnetic correlations, respectively.
The effective magnetic moment in each ion, in contrast to the
case of two-impurity Anderson model [16], does not disappear
at intermediate-valence if the fluctuations take place between
two magnetic configurations, giving rise to the possibility of
magnetic order between them at any value of the coupling
different from the DC limit. Finally, it would be desirable to
obtain experimental results in nanodevices to confirm some of
the results obtained here.

Acknowledgments

This work was supported by the Consejo Nacional de Investi-
gaciones Cientificas y Técnicas (CONICET). We would like to thank
B. Alascio for helpful discussions on this subject.

References

[1] G. Stewart, Rev. Mod. Phys. 56 (1984) 755.
[2] A.C. Hewson (Ed.), The Kondo Problem to Heavy Fermions, Cambridge
University Press, Cambridge, 1993.
[3] Y.C. Tsay, M.W. Klein, Phys. Rev. B 7 (1973) 352.
[4] C. Jayaprakash, H.R. Krishna-murthy, J.W. Wilkins, ]J. Appl. Phys. 53 (1982)
2142.
[5] S. Chakravarty, J.E. Hirsch, Phys. Rev. B 25 (1982) 3273.
[6] B.A. Jones, B.G. Kotliar, A.J. Millis, Phys. Rev. B 39 (1989) 3415.
[7] T. Saso, Phys. Rev. B 44 (1991) R450;
T. Saso, H. Kato, Prog. Theor. Phys. 87 (1992) 331.
[8] A. Schiller, V. Zevin, Phys. Rev. B 47 (1993) 14297.
[9] L.C. Andreani, H. Beck, Phys. Rev. B 48 (1993) 7322.
[10] G.E. Santoro, G.F. Giuliani, Phys. Rev. B 49 (1994) 6746.
[11] J. Arispe, B. Cogblin, A.S.R. Simdes, J.R. Iglesias, J. Phys. Condens. Matter 6
(1994) 7773.
[12] W. Klein, G. Xianlong, L. Ji, Phys. Rev. B 60 (1999) 15492.
[13] C.A. Busser, E.V. Anda, A.L. Lima, M.A. Davidovich, G. Chiappe, Phys. Rev. B 62
(2000) 9907.
[14] TIL Ivanov, Phys. Rev. B 62 (2000) 12577.
[15] AMJ.C. Neto, RE. Lagos, Phys. B 312/313 (2002) 176.
[16] R. Allub, Phys. Rev. B 67 (2003) 144416.
[17] R. Aguado, D.C. Langreth, Phys. Rev. B 67 (2003) 245307.
[18] S. Nishimoto, T. Pruschke, R.M. Noack, ]. Phys. Condens. Matter 18 (2006) 981.

[19] J. Simonin, Phys. Rev. B 73 (2006) 155102.

[20] C. Jayaprakash, H.R. Krishna-murthy, J.W. Wilkins, Phys. Rev. Lett. 47 (1981)
737.

[21] R.M. Fye, J.E. Hirsch, D.J. Scalapino, Phys. Rev. B 35 (1987) 4901;
R.M. Fye, ].E. Hirsch, Phys. Rev. B 40 (1989) 4780;
R.M. Fye, Phys. Rev. Lett. 72 (1994) 916.

[22] B.A. Jones, C.M. Varma, Phys. Rev. Lett. 58 (1987) 843;
B.A. Jones, C.M. Varma, J.W. Wilkins, Phys. Rev. Lett. 61 (1988) 125;
B.A. Jones, C.M. Varma, Phys. Rev. B 40 (1989) 324.

[23] 1. Affleck, AW.W. Ludwig, Phys. Rev. Lett. 68 (1992) 1046;
I. Affleck, AW.W. Ludwig, B.A. Jones, Phys. Rev. B 52 (1995) 9528.

[24] K. Ingersent, B.A. Jones, ].W. Wilkins, Phys. Rev. Lett. 69 (1992) 2594.

[25] O. Sakay, Y. Shimizu, J. Phys. Soc. Jpn. 61 (1992) 2333.

[26] C. Sire, C.M. Varma, H.R. Krishna-murthy, Phys. Rev. B 48 (1993) 13833.

[27] L.C. Andreani, H. Beck, J. Appl. Phys. 70 (1993) 6628.

[28] J. Gan, Phys. Rev. Lett. 74 (1995) 2583;
J. Gan, Phys. Rev. B 51 (1995) 8287.

[29] A. Georges, A.M. Sengupta, Phys. Rev. Lett. 74 (1995) 2808.

[30] J.B. Silva, W.L.C. Lima, W.C. Oliveira, J.LN. Mello, L.N. Oliveira, J.W. Wilkins,
Phys. Rev. Lett. 76 (1996) 275.

[31] K. Hallberg, R. Egger, Phys. Rev. B 55 (1997) R8646.

[32] P. Scholttmann, Phys. Rev. Lett. 80 (1998) 4975.

[33] W. Izumida, O. Sakai, Phys. Rev. B 62 (2000) 10260.

[34] T. Aono, M. Eto, Phys. Rev. B 63 (2001) 125327;
T. Aono, M. Eto, Phys. Rev. B 64 (2001) 073307.

[35] M. Vojta, R. Bulla, W. Hofstetter, Phys. Rev. B 65 (2003) 140405(R).

[36] V.L. Campo Jr.,, L.N. Oliveira, Phys. Rev. B 70 (2004) 153401.

[37] N.B. Perkins, M.D. Nufiez-Regueiro, B. Cogblin, J.R. Iglesias, Phys. Rev. B 76
(2007) 125101.

[38] S. Doniach, Phys. B 91 (1977) 231.

[39] M.T. Kevin, G. van der Laan, Rev. Mod. Phys 81 (2009) 235.

[40] J. Schoenes, O. Vogt, J. Lohle, F. Hulliger, K. Mattenberger, Phys. Rev. B 53
(1996) 14987.

[41] V.H. Tran, R. Troc, Z. Bucowski, D. Badurski, C. Sulkowski, Phys. Rev. B 71
(2005) 094428.

[42] E. Colineau, F. Wastin, J.P. Sanchez, J. Rebizant, J. Phys. Condens. Matter 20
(2008) 075207.

[43] V.H. Tran, ].C. Griveau, R. Eloirdi, W. Miller, E. Colineau, Phys. Rev. B 82 (2010)
094407.

[44] ]. Mazzaferro, C.A. Balseiro, B. Alascio, Phys. Rev. Lett. 47 (1981) 274.

[45] R. Allub, H. Ceva, B.R. Alascio, Phys. Rev. B 29 (1984) 3098.

[46] B. Alascio, R. Allub, A.A. Aligia, ]. Phys. C: Solid State Phys. 13 (1980) 2869.

[47] R. Allub, C. Wiecko, B. Alascio, Phys. Rev. B 23 (1981) 1122.

[48] R. Allub, M. Achterberg, B. Alascio, Phys. Rev. B 30 (1984) 5349.

[49] R. Allub, C.R. Proetto, Phys. Rev. B 62 (2000) 10923.

[50] R. Allub, J. Phys. Condens. Matter 20 (2008) 445204.

[51] R. Allub, Phys. B 406 (2011) 1738.

Please cite this article as: R. Allub, , Physica B (2013), http://dx.doi.org/10.1016/j.physb.2013.04.009

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75


http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref1
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref2
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref2
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref3
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref4
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref4
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref5
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref6
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref7a
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref7b
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref10
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref11
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref12
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref13
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref13
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref14
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref15
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref15
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref16
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref17
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref18
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref19
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref20
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref21
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref22
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref22
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref23a
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref23b
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref23c
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref27a
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref27b
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref27c
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref31a
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref31b
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref34
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref35
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref36
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref37
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref38a
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref38b
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref41
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref42
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref42
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref43
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref44
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref45
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref46a
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref46b
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref49
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref50
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref51
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref51
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref52
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref53
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref54
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref54
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref55
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref55
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref56
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref56
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref57
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref57
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref58
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref59
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref60
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref61
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref62
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref63
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref64
http://refhub.elsevier.com/S0921-4526(13)00216-0/sbref65
http://dx.doi.org/10.1016/j.physb.2013.04.009
http://dx.doi.org/10.1016/j.physb.2013.04.009
http://dx.doi.org/10.1016/j.physb.2013.04.009

	Magnetic correlations between two Kondo impurities with two magnetic configurations: Narrow-band limit
	Introduction
	Model
	Results and discussion
	The decoupled limit: ϕequalπ/2
	The strong coupling limit: ϕequal0
	The general case: 0ltkrarrFmiddot(Rrarr1-Rrarr2)ltπ/2

	Conclusions
	Acknowledgments
	References




