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Abstract: The aim of this work was to evaluate the influence of two kinds of bio- nano-reinforce- 15 
ments, cellulose nanocrystals (CNC) and bacterial cellulose (BC), on the properties of castor oil- 16 
based waterborne polyurethane (WBPU) films. CNC were obtained by acidolysis of microcrystalline 17 
cellulose, while BC was produced from Komagataeibacter medellinensis. WBPU/BC composite was 18 
prepared by impregnation of a BC membrane and further drying, while WBPU/CNC composite was 19 
obtained by casting. The nanoreinforcement was adequately dispersed in the polymer using any of 20 
the preparation methods, obtaining optically transparent compounds. Thermal gravimetric analy- 21 
sis, Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, dynam- 22 
ical mechanical analysis, differential scanning calorimetry, contact angle and water absorption tests 23 
were carried out to analyze the chemical, physical and thermal properties as well as the morphology 24 
of nanocelluloses and composites. The incorporation of nanoreinforcements into the formulation 25 
increased the storage modulus above the glass transition temperature of the polymer. The thermal 26 
stability of the BC-reinforced composites was slightly higher than that CNC composites. In addition, 27 
BC allowed to maintain the structural integrity of the composites films when they were immersed 28 
in water. The results were related to the relatively high thermal stability and the particular three- 29 
dimensional interconnected reticular morphology of BC. 30 
 31 

Keywords: bio-based waterborne polyurethane, castor oil, bacterial cellulose, cellulose nanocrystals 32 
 33 

1. Introduction 34 
The continuous growing global interest in reducing the environmental pollution has 35 

triggered and sustained the research and development of environmentally friendly poly- 36 
meric materials to replace polymers of synthetic origin in different applications [1,2].  37 

In particular, polyurethanes (PUs) have received much attention.  They are versatile 38 
polymers that find applications in various fields in the form of elastomers, foams, matrices 39 
of structural composites, fibers, adhesives, coatings, etc. Since PUs are soluble in organic 40 
chemicals, their traditional use as coatings and their preparation as thin self-standing 41 
films is associated with the release of volatile organic compounds (VOCs) into the atmos- 42 
phere. Therefore, important efforts have been devoted to reduce this problem and thus, 43 
during the last few decades, there has been a growing preference towards the use of wa- 44 
terborne polyurethanes (WBPU) that consist in stable suspensions of PU nanodroplets in 45 
water [3]. With the introduction of biobased polyols in the market, the preparation of 46 
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biobased WBPU has also progressed with the aim of producing greener alternatives to 47 
traditional materials. 48 

The synthesis of WBPU requires the incorporation of an emulsifier that allows the 49 
stabilization of the PU aqueous dispersion. Frequently, this is achieved by using as co- 50 
monomer a short diol containing an ionizable group in it molecular structure. Anionic and 51 
cationic WBPU can be prepared, although the former are more common. In the case of an 52 
anionic WBPU, the internal emulsifier is a diol containing also a carboxyl group, while a 53 
counterion must be incorporated in the aqueous solution media [4,5].  Bio-WBPU are 54 
also prepared with this technique and vegetable oils have shown to be a particularly at- 55 
tractive source for the preparation of polyols.  These polyols are obtained via the chemi- 56 
cal modification of the oil, or from the preparation of monomers from which the polyols 57 
are synthesized [6–8]. In few cases, the vegetable oil can be used directly as a polyol, which 58 
is the case of castor oil that has hydroxyl groups in the esterified ricinoleic acid chains [6].  59 

In order to improve or tailor properties to meet specific requirements, polyurethane 60 
aqueous dispersions have also been modified by the addition of different nanoparticles 61 
inorganic or biobased ones, to produce self-standing films or coating formulations [3,9– 62 
13].  Transparent films, mostly from anionic WBPU, have been produced from castor oil 63 
and castor oil derived monomers, also containing different nanofillers/reinforcements 64 
(cellulose nanocrystals [14–16], nanosilica [10,17], nanosilver [18] and nanoclays [19]). 65 

One of the most studied bioreinforcements is cellulose, because of its worldwide 66 
availability, outstanding properties and low cost [20–22].  Additionally to these benefits, 67 
micro and nanocelluloses can be handled in aqueous suspension and thus easily incorpo- 68 
rated in the bio-WBPU formulation [16,23]. 69 

When cellulose is obtained from plants, it must be separated from the other compo- 70 
nents present in the raw materials.  This top-down process consists in the disintegration 71 
of the vegetable biomass, followed by purification of the cellulose and then, usually a 72 
combination of mechanical and chemical (or enzymatic) steps that lead to the defibrilla- 73 
tion of the cellulose microfibers, to obtain fibrils of a few nanometers in thickness.  When 74 
the final product is cellulose nanocrystals (CNC), the process continues with the acidolysis 75 
of the fibrils (a strong acid such as sulfuric acid is frequently used) that degrades prefer- 76 
entially the amorphous regions and allows to end up with acicular nanoparticles, CNC, 77 
with thickness usually in the range of 5-10 nm and lengths of 150-200 nm [20,22,24,25].  78 

Some researchers have investigated the use of CNC as reinforcement of PU and 79 
WBPU, taking advantage of the interfacial interaction developed between the materials 80 
through H-bonds.  It has been reported that cellulose-PU interactions have effects on 81 
phase separation of segmented PU and on the crystallization of some of these polymers 82 
[15,26,27]. 83 

On the other hand, bacterial nanocellulose (BC) is obtained via a bottom-up process, 84 
which consists of the external secretion of different bacteria, like Acetobacter and Glucano- 85 
bacter, which produce a nanofibrillar 3D-entangled pellicle a protective measure. The nan- 86 
ofibrils (thickness of 2-4 nm) are extruded through specific points in the bacterial cell wall 87 
and aggregate to form long ribbons of high crystallinity, but also with amorphous seg- 88 
ments that make them very flexible [28,29].   89 

After the BC pellicles are carefully washed to remove any impurity, they can be used 90 
in their hydrated state or as freeze dried membranes [30].  Besides, in some cases, they 91 
have been used as a source in the production of nanocrystals [31].  As in the case of the 92 
CNC, BC can also be used as reinforcement of WBPU.  93 

Comparatively, a lower number of works have been produced that address the prep- 94 
aration of WBPU with BC nanocomposites. Urbina et al. (2019) prepared such a composite 95 
by immersion of a BC wet membrane into a commercial synthetic WBPU [32].  The com- 96 
posite showed shape memory behavior and was activated by immersion in water at 40 °C. 97 
The authors found a much enhanced recovery because of the incorporation of BC.  Feng 98 
et al. (2020) also prepared a WBPU composite with BC using a commercial synthetic pol- 99 
ymer to prepare a nasal stent [33]. 100 
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In this work, two very different types of nanocelluloses (BC and CNC) were used in 101 
the preparation of reinforced films based on a waterborne polyurethane based on castor 102 
oil as the only polyol source.  Self-standing films are discussed in this work, which could 103 
be used as protective films. In the particular case of CNC, the suspension could also be 104 
used as coatings of metals and woods as it has been previously reported [34]. 105 

2. Materials and Methods 106 

2.1. Raw materials 107 
Castor oil (CO, Parafarm®, OH number=177.21 mg/mg of CO, f=2.9) and dime- 108 

thylolpropionic acid (DMPA, Sigma-Aldrich Corp., 98 % purity, f=2) were dried under 109 
vacuum before use it. Isophorone diisocyanate (IPDI, 98 % purity, NCO number = 24.06 110 
% determined by ASTM D2572, f=2), dibutyltin dilaurate (DBTDL, 95 % purity), triethyl- 111 
amine (TEA, 99 % purity), acetone and dimethylformamide (DMF) were purchased from 112 
Sigma-Aldrich Corp. and used without purification.  113 

In order to obtain cellulose nanocrystals (CNC), microcrystalline cellulose powder 114 
(MCC) purchased from Sigma–Aldrich Corp. was used. Sulfuric acid (98% w/v, Anedra) 115 
was used to proceed with the cellulose acid hydrolysis. Bi-distilled water and Spectra/Por 116 
Standard RC dialysis tubing were used in the dialysis of the cellulose crystals suspension.  117 
Citric acid (Biopack), glucose (Britania), peptone (Britania), Sodium phosphate dibasic an- 118 
hydro (Na2HPO4, Cicarelli), potassium hydroxide (KOH, Merck) were used to obtain bac- 119 
terial cellulose. 120 

2.2. Synthesis of WBPU 121 
Castor oil and DMPA (OH equivalent molar ratio of CO to DMPA= 1.0) were fed into 122 

a five necked glass reactor with N2 inlet to reduce any contribution from ambient humid- 123 
ity. Then, IPDI (NCO/OH ratio = 1.4) and DBTDL (1 wt.% with respect to the total reaction 124 
mass) were added and the reaction was allowed to proceed under mixing at 78 °C for 5 h 125 
[4,35].  Acetone was added to avoid a too rapid increase of the viscosity.  Then, after 126 
allowing the temperature to drop to 60 °C, TEA (in equivalent ratio with respect to the 127 
acid groups of the DMPA) was added, followed by 0.5 h stirring.  Finally, the mixture 128 
was vigorously stirred (800 rpm) for 0.5 h, while distilled water (100 mL) was added into 129 
the reactor to produce the polyurethane dispersion. The final dispersion was fed into a 130 
rotary evaporator to eliminate the remaining acetone (at 30 °C). The waterborne polyure- 131 
thane was coded WBPU.  132 

2.3. Synthesis of Nanocelluloses 133 
The bacterial cellulose (BC) was obtained from Komagataeibacter medellinensis (previ- 134 

ously named as Gluconobacter medellinensis sp.nov.), isolated from vinegar [36,37].  The 135 
bacteria were grown in commercial H&S medium (2 wt./vol.% of glucose, 0.5 wt./vol.% of 136 
peptone, 0.5 wt./vol.% of yeast and 0.27 wt./vol. % of Na2HPO4 and 1.15 g/L of citric acid, 137 
at pH=3.5). Incubation was carried out for one week at 28 °C, in an incubator oven. The 138 
films were removed from the medium and to remove residues from the culture medium, 139 
they were treated with 5 wt.% potassium hydroxide for 12 h at room temperature. Finally, 140 
the BC films were washed with distilled water until reaching a neutral pH.  141 

It should be noticed that the strain used here produces a large amount of cellulose at 142 
low pH (3.5), indicating that it exhibits high tolerance to acidic environments while opti- 143 
mally producing BC. This is highly desirable in industrial fermentation processes, because 144 
microbial contamination can also avoided, since most microorganisms are unable to grow 145 
at low pH [37]. 146 

The CNC were synthetized using acid hydrolysis of MCC, according to a previously 147 
reported technique used in our laboratory [38].  MCC was added in distilled water and 148 
dispersed by mechanical stirring until the suspension was homogenized.  Then, 149 
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concentrated sulfuric acid was slowly added keeping the temperature below 20 °C with 150 
an ice bath. After that, the temperature was set to 44 °C and the suspension was mixed 151 
with vigorous stirring for 2 h. Afterwards, the suspension was diluted with distilled water 152 
(1:4) and then, dialyzed against distilled water and bidistilled water until the water pH 153 
was reached. A polyester cloth with pore size of 18 µm was used in order to filter the CNC 154 
suspension and separate potential remaining unreacted MCC. 155 

2.4. Composites preparation 156 
Neat WBPU film was prepared by casting (30 °C overnight). In the case of composite 157 

films, two different paths were followed.  158 
Impregnation of a wet BC membrane by the WBPU dispersion was carried out to 159 

prepare the composite.  The WBPU dispersion was added to the BC membrane placed in 160 
a glass Petri dish coated with non-stick adhesive paper. Impregnation was carried out for 161 
a full day at room temperature, followed by drying the film in a convection oven at 30 °C 162 
overnight. A concentration of 1.35 wt.% of BC was achieved with this method. 163 

CNC composite film was prepared by mixing the two aqueous suspensions, the ma- 164 
trix (WBPU) and the reinforcement, with mechanical stirring for 30 min (750 rpm) and 165 
bath sonication for 5 min (37 Hz, 100% power, 5 min). Casting of the mixed dispersion in 166 
glass Petri dish coated with non-stick adhesive paper at 30 °C overnight was performed 167 
to achive a concentration of 1.0 wt.% CNC (dry base). Figure 1 shows a simple scheme of 168 
both preparation processes. 169 

 170 
Figure 1. Preparation of the films containing WBPU and CNC or BC. 171 

2.5. Characterization methods  172 
A Bruker IFS 25 spectrometer at ambient temperature, with an attenuated total re- 173 

flectance (ATR) unit, was used to obtain FTIR spectra of WBPU. The infrared spectra were 174 
recorded at 64 scans with a resolution of 4 cm-1. The composite films were also character- 175 
ized with this technique.  176 

To determine the crystallinity of the cellulose and the influence as reinforcement in 177 
the composites of WBPU, an X ray diffractometer (X PANalytical X' Pert PRO, with Cu 178 
(Kα) radiation, wavelength: 1.54187 Å). Samples were scanned from 2θ = 5 to 60°, at a 179 
scanning speed of 0.016° s−1. 180 

A differential scanning calorimeter equipment (DSC Pyris 1 Perkin Elmer, with an 181 
electric intracooler as refrigerator unit) was used in order to obtain DSC thermograms of 182 
WBPU and its composites. Samples were scanned from -70 °C to 200 °C, at 10 °C min-1 183 
under N2 atmosphere.   184 

The thermal stability of WBPU and its composites was characterized using a TGA-50 185 
Shimadzu. Samples were heated up from room temperature to 500 °C at a heating rate of 186 
10 °C min-1 under N2 atmosphere. 187 
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A rheometer (Anton Paar Physica MCR 301) was used to determine the viscoelastic 188 
properties of the samples, by dynamic torsion of solid rectangle bars in the range of linear 189 
viscoelastic behavior. Samples were test from -80 °C to 140 °C, at a scanning rate of 5 °C 190 
min-1 with a constant strain of 0.05 % and a frequency of 1 Hz. 191 

The observations of the freeze dried BC membrane and the cross section surfaces of 192 
the films after cryogenic fracture were carried out using a scanning electron microscope 193 
(SEM) Jeol JM-6460LV, with a voltage of 15 kV. The samples were previously placed in a 194 
sample holder and coated with gold and platinum. CNC morphology was examined by 195 
field emission scanning electron microscopy (FE-SEM) using a Zeiss-Supra 40 microscope, 196 
with accelerating voltage of 5 kV. The CNC dispersion was diluted at 0.001 % and soni- 197 
cated for 30 minutes; then a drop was put onto the holder to dry, followed by coating with 198 
a layer of gold.   199 

A goniometer OCA 15LHT Plus photo-microscope Dataphysics was used to measure 200 
the static contact angle of composites and neat WBPU films, using di-iodomethane 201 
(Sigma-Aldrich Corp.) and bidistilled water at room temperature. Using a micropipette, a 202 
drop of 5 µl of each liquid was deposited on the surface of the samples. After 30 s (time to 203 
damp the drop oscillation) a photograph was taken using a high-resolution camera. A 204 
Microsoft Photoeditor Software was used to measure the angle between the coating sur- 205 
face and the tangent line to the drop of liquid. 206 

In order to register changes in the films, due to degradation/dissolution in water, the 207 
different samples were immersed in double-distilled water. Photographs were taken be- 208 
fore immersion and after a specified test time. The sample was recovered from the water 209 
using tweezers and its surface was dried before the "after" picture was taken. 210 

3. Results and discussion 211 

3.1. Characterization of nanocelluloses 212 
3.1.1. Microscopic structure of the nanocelluloses 213 

Figure 2.a show the typical gel-like appearance of a BC membrane and Figure 2.b 214 
shows the three-dimensional interconnected reticular pellicle formed by the nanosize rib- 215 
bon-like fibers. The ribbons within the network are uniformly distributed and randomly 216 
oriented, probably because the microorganism duplicates the sites for cellulose synthesis 217 
before division, and therefore the mother and the daughters cells present the same amount 218 
of active sites for synthesizing ribbons of constant dimensions. In this process, there is no 219 
break of the cellulose ribbon after splitting, only the creation of branch points [39,40]. 220 

Figures 2.c and d show digital and FE-SEM images of the CNC produced by sulfuric 221 
acidolysis of the microcrystalline cellulose.  The FE-SEM image allows to better observe 222 
the thin structure of the crystals, the size distribution is quite narrow and there are no 223 
traces of micrometer sized fibers. 224 



Polymers 2021, 13, x FOR PEER REVIEW 6 of 15 
 

 

225 

 226 

Figure 2. (a) Digital image of the wet BC membrane; (b) SEM image of the same sample after being 227 
lyophilized; (c) digital image of CNC powder and water dispersion; (d) FE-SEM image of CNC. 228 

3.1.2.  FTIR characterization 229 
Figure 3.a shows the IR spectra of the two nanocelluloses used in the study. The char- 230 

acteristic peaks of cellulose type I are present in these spectra [41]. At 1429 cm−1 appears 231 
the peak corresponding to the symmetric bending of CH2, [42] at 1105 cm−1 the stretch of 232 
the C-O-C bond and at 895 cm−1 appears the band due to the glycosidic β-linkage of cellu- 233 
lose [43–52]. 234 

Comparison of the two spectra shows that the bands in the 1500-895 cm−1 region are 235 
of relative lower intensity in the CNC spectrum. According to previous publications [53], 236 
this suggests that the CNC is less crystalline that BC, difference that will be further con- 237 
sidered in the analysis of the X ray diffraction characterization. 238 

There are also differences in the absorption band of the OH groups (3650-3120 cm−1), 239 
which are related to differences in the H-bonding present in the two nanocelluloses, with 240 
the free OH appearing at higher wavenumbers. 241 

 242 
Figure 3. (a) FTIR spectra of the two nanocelluloses: BC and CNC; (b) X ray spectra of BC and CNC 243 

 244 
3.1.3. X ray characterization 245 

The X ray diffractograms of the two nanocelluloses are shown in Figure 3.b. Although 246 
both spectra show that the samples correspond to cellulose type I, the hydrogen bonding 247 
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between and within cellulose molecules are different in the two celluloses used. Thus, 248 
bacterial cellulose is rich in cellulose type Iα, while CNC shows the typical spectrum of 249 
cellulose type Iβ [54,55]. 250 

The peaks in the BC spectrum are assigned to the crystallographic planes (100), (010) 251 
y (110), corresponding to the 2θ = 14.4°, 16.7° and 22.6° [36].  The high intensity of the 252 
peak corresponding to plane 100 is due to the strong monoplanar structure of the fibers 253 
of BC that have ribbon like structure and are preferentially oriented parallel to the surface 254 
of the film during drying [36,39,56].  This feature is characteristic of BC, although the 255 
relative height of the peaks varies with the substrate of the culture [57,58]. 256 

On the other hand, the X ray spectrum of the CNC shows the peaks corresponding 257 
to the planes (101), (101#), (002) appearing at 2θ = 14.8°, 16.7° and 22.6°.  In this case, as 258 
it is typical from cellulose of high order plants, the peak with the highest intensity corre- 259 
sponds to the plane (002). 260 

The calculation of the degree of crystallinity by a deconvolution method [59–61] lead 261 
to the result that is the BC is more crystalline that the CNC, 80.79 and 71.43 %, respectively. 262 
The result is in agreement with the observation of the FTIR spectra as already discussed. 263 

 264 
3.1.4. Thermal degradation (Thermo-gravimetric analysis, TGA) 265 

Figure 4 shows the TG and derivative signal resulting from the thermal degradation 266 
under N2 atmosphere of the two celluloses and after an initial loss of water.  While the 267 
main degradation of BC occurs between 300-400 °C (Figure 4.a) with the maximum peak 268 
at 375 °C (Figure 4.b), in agreement with cellulose degradation profile [62–64], the main 269 
degradation of CNC occurs in the range of 230-300 °C (Figure 4.a) with a peak at ~281 °C 270 
(Figure 4.b).  This low temperature degradation is the result of the obtaining method, 271 
which leaves sulfate groups on the surface and reduces the thermal stability of the CNC, 272 
also a minor degradation step centered about 350 °C appear. Furthermore, due to the pres- 273 
ence of sulfate groups in the CNC sample, the final char is higher for this sample than for 274 
the BC one (24 and 13 %, respectively, at 650 °C) [31,65,66]. 275 

 276 

Figure 4. (a) Thermal degradation curves (TG); (b) derivative signal (dTG) obtained under N2 at- 277 
mosphere for BC and CNC. 278 

Roman and Winter [31], found that even a small concentration of sulfate groups on 279 
the surface of nanocrystals obtained from BC, is enough to produce a large reduction of 280 
the degradation temperature of the nanoparticles. Elimination of the sulfate groups re- 281 
quires relatively low energy and facilitates the depolymerization of the cellulose, begin- 282 
ning with the chains close to these groups [63,67].  The second minor peak that appears 283 
in the degradation of CNC is due to the decomposition of the solid remains from the pre- 284 
vious step.  The sulfate groups are also responsible of the higher char in the CNC sample 285 
and it has been reported that they also have a flame retardant effect [31].  Our results are 286 
in agreement with those observations. 287 
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3.2. Characterization of the composite films 288 
3.2.1. Optical aspect and SEM topology 289 

Figure 5.a shows images of the neat WBPU and the nanocomposite films.  In the 290 
image of the neat WBPU film, it can be seen that it has copied the texture of the Teflon 291 
film used as base in the Petri dish. All films were optically transparent, at least in the range 292 
of thickness used in the study (600-650 µm). 293 

The SEM images (Figure 5.b) show that low temperature fracture resulted in a brittle 294 
fracture with mirror like characteristics and river marks in some regions.  The addition 295 
of 1 wt.% of CNC did not qualitatively change the aspect of the fracture that was also 296 
brittle.  However, the addition of 1.35 wt.% of BC resulted in a completely different to- 297 
pology. The image shows an arrangement of layers, which could be related to the growth 298 
of the BC as a network of fibrils that are added as new layers as the culture proceeds. 299 
Castro et al. [68], showed a similar layered topology for a nanocomposite made with PVA 300 
and obtained from a BC grown in the same strain that the one used in this work. On the 301 
other hand, the CNC remain randomly dispersed in the WBPU and the low concentration 302 
does not allow to observe their presence. 303 

 304 
Figure 5. (a) Digital photography of the films; (b) SEM images of the fracture surface of the films. 305 
In both cases, the images correspond to: neat WBPU (left), WBPU/CNC (center) and WBPU/BC 306 
(right). 307 

3.2.2.  FTIR and DRX analysis of composites 308 
Figure 6.a shows the FTIR spectra of the films.  In the area of the bands located be- 309 

tween 3500 cm−1 and 3100 cm−1 appear the characteristic peaks of cellulose and WBPU, 310 
overlapped in the composites and centered at 3335 cm−1, corresponding to OH groups and 311 
mainly to the -N-H absorption in the PU [16].  It can also be observed that the intensity 312 
of this peak is slightly higher for the BC composite than that of the CNC composite, which 313 
may be attributed to the fact that in the latter, the surface OH groups have been partially 314 
replaced by sulfate groups [31,65,66].  315 

The absorbance at 1710 cm−1 is attributed to hydrogen bonding of carbonyl stretching 316 
[69]; in the case of neat WBPU films this peak appears at 1702 cm−1 and is slightly shifted 317 
to 1697 cm−1 for the WBPU/CNC composite, which may be due to the hydrogen bonding 318 
interactions developed between the polymer and the reinforcement [15].  No shift is ob- 319 
served in the BC composite spectrum. On the other hand, it is observed that the peak at 320 
1527 cm−1 shifts to a longer wavelength, 1537 cm−1 in the case of the CNC composite. This 321 
peak is attributed to N-H bending vibration of the urethane group of WBPU, thus the shift 322 
supports the already mentioned interactions between this reinforcement and the WBPU 323 
[70].  However, no shift is observed in the spectrum of the BC composite. Finally, in the 324 
case of composite with BC, the peaks marked with arrows in the zone between 1500-899 325 
cm−1 correspond to absorption peaks of BC. 326 

 327 
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 328 
Figure 6. (a) FTIR spectra ; (b) X ray diffraction spectra of the neat WBPU and the nanocomposites. 329 

Figure 6.b shows the X ray diffraction spectra of the neat polymer and nanocompo- 330 
sites.  The amorphous nature of the WBPU results in the wide peak observed in the three 331 
spectra.  However, the addition of BC can be confirmed by the presence of an overlap- 332 
ping small peak at ~22.6°, corresponding to the plane (110) of the BC.  On the other hand, 333 
the addition of CNC only produces a very small shoulder in that same 2θ region (corre- 334 
sponding to the (002) plane of CNC). Additionally, a small shift of the amorphous peak 335 
towards higher angles can be detected.  This change may be related to the good disper- 336 
sion of the CNC and the interaction with the polymer structure. 337 

 338 
3.2.3. Thermal characterization of the films (DSC, DMA and TGA) 339 
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Figure 7. (a) DSC traces with 3 week of aging; (b) Normalized storage modulus; (c) tan δ 340 
of the films; (d) TG signal (residual weight %) of the films, neat WBPU and nanocompo- 341 
sites. 342 

 343 
DSC characterization shows that a thermal event occurs at 56.4, 56.7 and 57.8 °C for 344 

WBPU, CNC composite and BC composite, respectively, which is associated to the glass 345 
transition temperature of the materials (Figure 7a). An endothermic peak associated to the 346 
event, which is due to densification of the PU during storage, appears in the DSC curves 347 
of the composites [71].  In those cases, to characterize the aged samples, the peak of the 348 
endotherm was considered as an estimation of the Tg reached in those conditions.  Alt- 349 
hough after three weeks from preparation, densification has taken place in the composites, 350 
the endotherm is not present in the curve of the unreinforced WBPU. This suggests that 351 
the presence of the nanocelluloses accelerates the densification of the material.   352 

Figure 7.a also shows an exothermal event occurring around 150 °C, which is associ- 353 
ated to a transition of short range order-disorder corresponding to the hard segments of 354 
the WBPU (region associated to the reacted isocyanate molecules) [72–75].  355 

The dynamic mechanical analysis (Figure 7.b) shows that the thermal transition from 356 
glass to rubber occurs in a wide temperature range, from about room temperature to 357 
above 100 °C.  The curves of the normalized storage modulus (G'/G'g) allow to clearly see 358 
the effect of the nanoparticles, producing a shift of the Tg of the somposites to higher tem- 359 
peratures.  The tan δ plot (Figure 7.c) shows that the neat polymer has actually two re- 360 
laxations, one close to room temperature and other one, more intense, around 90 °C.  In 361 
the curves of the nanocomposites the low temperature relaxation is much reduced by the 362 
presence of the nanoparticles and relatively more in the case of the CNC films.  On the 363 
other hand, the reduction of the main relaxation at higher temperature is more obvious in 364 
the case of the BC indicating that the mobility of all the polymer network structure has 365 
been reduced. Similar results have been reported by other authors for cellulose reinforced 366 
composite materials [76]. 367 

It is also interesting to compare the storage modulus of the different samples in the 368 
rubbery region.  Clearly, the addition of the nanocelluloses results in the increase of the 369 
rubbery modulus, something to be expected because of the high modulus of the cellulose 370 
(~ 20-100 GPa, [20,77,78]) compared to that of the rubber modulus of the WBPU (G' at 100 371 
°C was 1.3 MPa).  The comparison also shows an additional interesting feature: the rein- 372 
forcement of the BC is higher than that obtained with the CNC. For example, at 100 °C, 373 
the addition of the CNC resulted in a 4 times increase of the normalized modulus relative 374 
to neat WBPU, but more than 10 times in the BC case. This higher reinforcement is the 375 
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result of the 3D-cellulose network, that also led to the reduction of the tan δ peaks as it 376 
was already discussed.  377 

Figure 7.d shows the thermal degradation traces of the neat polymer and the nano- 378 
composites, where only the BC composite shows a small improvement in the thermal deg- 379 
radation.  The temperature of the 5 % weight loss is shifted from 167 °C to 168 °C and 380 
178 °C for WBPU/CNC and WBPU/BC, respectively.  The same trend is observed in the 381 
temperature at which 90 % of the weight is lost, from 438 °C for the neat WBPU to 441 °C 382 
and 454 °C for the nanocomposites containing CNC and BC, respectively. All samples 383 
showed a very low residual char although slightly higher in the case of the composites 384 
compared to that of the neat WBPU. The improvement observed in the thermal stability 385 
for the bio-composites could be associated with the mechanical or chemical interaction 386 
between the bio-reinforcement and the matrix as it was reported by Amri et al. (2021) [79]. 387 

 388 
3.2.4.  Static contact angle and water absorption 389 

Figure 8 presents a summary of the results on static contact angle of water on the 390 
surface of the films. The upper surface of the films was used for the measurements. In all 391 
cases the angle was lower than 90° (hydrophilic surfaces), and particularly so in the case 392 
of the CNC nanocomposite and showing little change in the case of the WBPU/BC with 393 
respect to the unfilled polymer. Considering that nanocelluloses are hydrophilic and that 394 
BC has been identified as more hydrophilic than CNC [80], the explanation for these re- 395 
sults could be find in the processing and distribution of the celluloses in the films.  CNC 396 
are randomly distributed through the whole sample, since the distribution was obtained 397 
via mixing and ultrasonic stirring. Instead, the BC composite films were obtained by im- 398 
mersion/impregnation of the wet BC membrane.  This last procedure is more prone to 399 
lead to the formation of a thin polymer region on the surfaces of the film than the proce- 400 
dure used with CNC. Figure 5.b also supports this view, since the layers of BC that can be 401 
seen in the internal part of the cross section of the film, are not present close to the surfaces 402 
Thus, CNC would be more exposed than the BC network and thus, surface hydrophobi- 403 
city would be higher in WBPU/BC than in WBPU/CNC. 404 

Additionally, the films were immersed in bi-distilled water for different lengths of 405 
time (Figure 8) and the result was the decohesion of the materials that broke into small 406 
pieces, with the exception of the BC nanocomposite.  As it has been previously discussed, 407 
the BC forms a network of ribbons producing an interpenetrated network with the WBPU.  408 
The BC network is responsible for restricting the swelling and ultimately the fragmenta- 409 
tion of the film. 410 

 411 

 412 
Figure 8. Behavior of the films in contact with water: contact angle and water immersion 413 
effect on the integrity of the films 414 
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4. Conclusions 415 
Optically transparent bio-composite films from castor oil-based waterborne polyure- 416 

thane (WBPU) reinforced with cellulose nanocrystal (CNC) and bacterial cellulose (BC) 417 
were obtained by means of two simple processing methodologies. The hydrophilic char- 418 
acteristics of both reinforcements favor its dispersion or impregnation with the WBPU 419 
aqueous dispersion. 420 

The thermal stability of the BC was higher than that of the CNC, since the preparation 421 
method (acid hydrolysis) of the latter leaves sulfate groups on the surface and reduces its 422 
thermal stability. Despite this, both bio-reinforcement slightly increased the thermal sta- 423 
bility of the bio-composites with respect to the polymeric matrix. This behavior would be 424 
associated with the mechanical and chemical interactions between polymer matrix and 425 
nanocellulose. 426 

Compared to the matrix, the normalized storage modulus at the rubber state in- 427 
creased approximately 10 and 4 times for BC and CNC bio-composites, respectively. 428 
These results were a consequence of the interactions of the bio-reinforcement with the 429 
polymeric matrix. Particularly in the case of the BC based biocomposite, the results would 430 
be associated to the three-dimensional interconnected morphology of the bio-reinforce- 431 
ment. Even more interesting, the tridimensional structure of BC allowed to maintain the 432 
structural integrity of the composites films when being immersed in water. 433 

 434 
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