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The energy of a physical domain within a molecular system considered as a quantum open system is ana-
lyzed as a functional of the electron distribution dependence with the number of particles. Our attention
is focused upon the constrained-search functionals of the electron density, the 1- and 2-reduced density
matrices (1-, 2-RDMs) for grand-canonical states. It is shown that functionals of the 2-RDM depend on the
number of particles if the ground state energy is not a convex function of them.
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1. Introduction

Chemical processes involve the rearrangement of electron dis-
tributions between fragments of the molecular structure. These
units are physical domains likewise atoms, functional groups or
moieties which exchange electrons between them and conse-
quently possess a non-integer number of electrons, that may be
interpreted as a time average in a given quantum state of an open
system [1]. The accurate description of these domains inside a mol-
ecule [2] is of paramount importance to understand the relation
function–structure, i.e., molecular structure and chemical reactiv-
ity. Chemical descriptors from the conceptual density functional
theory (DFT) defined as derivatives of different magnitudes with
respect to the number of electrons reflect the changes due to infin-
itesimal variations (electron exchange) [3,4]. The solution of the
interacting many-electron problem rests on the search of an opti-
mal of the energy including the correlation effects and posses a
common feature for all type of approaches: it is a functional of
the electron distribution completely described by the density ma-
trix of the system D [5]. Namely, the ground state energy E of a sys-
tem of N electrons (N being an integer number), may be obtained
through the minimization of a functional E½D� over the set of Ds
(DM), subject to the constraint

R
qðrÞdr ¼ N with q the electron

density obtained from D and introduced by means of the l La-
grange multiplier in the form [6],

d E½D� � l
Z

qðrÞdr � N
� �� �

¼ 0 ð1Þ

This constraint permits in principle to extend the energy functional
to electron densities integrating to fractional electron numbers [1].
The different levels of approximation to this problem depends on
magnitude used to perform the description of the distributions,
i.e., q for the DFT [6], the one-particle reduced density matrix 1D
(1-RDM) for the Reduced Density Matrix Functional Theory
(RDMDFT) [7], pair density functional theory (PDFT) [8–10] or the
second-order reduced density matrix 2D (2-RDM) equivalent to
the solution of the Schrödinger equation [11,12]. It is also of needs
to mention some new ways as the path integral (PI) [13] and the
chemical action functional formulation of chemical interactions
which shares Eq. (1) to introduce electronic density and then any
known or approximated density functional may be evaluated [14]
which provides a suitable way to relate the reactivity descriptors
within this framework [15]. Therefore, the search for the solutions
of this problem can be treated on the same footing, i.e., the con-
strained search of an energy functional of the mentioned devices
which provides the energy minimum. Also, the constrained search
formalism has been used to derive functionals for systems with fi-
nite-temperature and for other state functions, most notably the
grand potential [6,16–18].

Molecular open quantum systems, i.e., molecular fragments,
with non-integer or fractional electron numbers have been de-
scribed by the conjecture based on the convex combination of
the N and N þ 1 electron states [1] within the DFT framework. Nev-
ertheless, no intents have been reported out of it until recently,
when a new approach to analyze open systems based on grand-
canonical density matrices (DMs) was proposed [19]. This treat-
ment, besides encompassing the DFT results for the energy of sys-
tems with non-integer electron numbers, allows to generalize it to
arbitrary state functions [19]. The initial formulation of this meth-
od relies on the assumption that the energy of the system is a con-
vex function of the number of particles. This property, empirically
proven for isolated Coulomb systems (e.g. atoms and molecules) is
not expected to hold for interacting reagents, i.e., species imbedded
in some environment [3]. In a further study the contraction map-
pings (CM) for the grand-canonical description have been
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introduced for molecular systems and it was shown that when the
energy is not a convex function of the number of particles some
information is lost when connecting two RDMs of different order,
i.e., q- and p-RDM with q < p, by partial contractions [20].

The purpose of this work is to establish the dependence of the
energy functional of a molecular system with number of particles
out of the energy convexity assumption, in terms of the electron
density q, the 1-RDM and/or 2-RDM according to the level of
description. Section 2 is devoted to the introduction of the con-
strained search method in a form that allows us to treat the energy
functionals on the same footing and a brief introduction to the en-
ergy functionals for the canonical distribution case. The Section 3
introduces the grand-canonical energy functionals, showing their
similarities and differences with respect to the canonical counter-
parts. Relevant to this part is the above mentioned loss of informa-
tion within the contraction process which does not occur in the
canonical case which allows to understand why the 2-RDM energy
functionals of the grand-canonical distributions must depend on
the number of particles. A final section is dedicated to the conclud-
ing remarks.
2. Theoretical aspects

2.1. Constrained search and energy functionals

The description of a quantum state based on density matrices D
permits to introduce pure, canonical and grand-canonical ensem-
bles in a unified manner [21,22]. Therefore, the application of var-
iational principle techniques allows to determine the ground state
energy of a system for an arbitrary number of electrons N , i.e.,
integer or fractional, EN0 as [6]

EN0 ¼ minDTr D Hð Þ ð2Þ

whereH stands for the Hamiltonian of the system which will be ex-
pressed only by 1- and 2-particle terms as H ¼

P
ihðiÞ þ

P
i<jwði; jÞ

where h and w represent those terms, respectively. Hence the cor-
responding minimization process is carried out over D. Let us intro-
duce the idea of constrained search methodology for systems with
an arbitrary number of particles N . Here we will deal with states
with an integer number of particles N, while the grand-canonical
treatment of systems, i.e., those with a fractional number of parti-
cles will be introduced in the next section to make evident the fun-
damental differences which this last one introduces. The key point
in this strategy, known as constrained search, is the realization of
Eq. (2) in two steps [6,23], i.e.,

EN0 ¼ minKðminD!KTr D Hð ÞÞ ð3Þ

or equivalently,

ENK ½K� ¼ minD!KTr DHð Þ ð4aÞ

EN0 ¼ minK ENK ½K� ð4bÞ

The two steps in Eq. (3) expressed by Eqs. (4a) and (4b) may be
interpreted as follows. The first step (Eq. (4a)) indicates the search
for a set of Ds which leads to the same device K obtained by a CM
procedure on it, i.e., D! K with K a p-RDM or a density. This pro-
cedure is called ‘internal’ minimization [6,23] while the second step
(Eq. (4b)) searches for the minimum within the set of representable
Ks, i.e., RDMs or electron densities derived from a D [5,24]. This is
called ‘external’ minimization [6,23]. Both steps correspond to the
search of the ground state D solution of Eq. (4b) for

K ¼ K0; EN0 ¼ ENK ½K0�. The supraindex in ENK ½K� means that N parti-
cle systems are considered, at the time of evaluating the expression
Tr DHð Þ. Let us note that the constrained search provides a way to
determine EN0 by means of the energy functionals ENK ½K� in a
dramatically more efficient way than the one provided by Eq. (2)
[6]. This methodology has been applied to q and 1-RDM energy
functionals [25]. Of course, there are many differences between
the energy functionals based on different choices of K [16,18,26–
28]. However, Eqs.(4a) and (4b) admit to treat all them on an equal
footing. Finally, it may be noted that within the GC framework it is
possible to obtain the same K from different Ds but many of them
may correspond to systems with different number of particles. This
feature indicates a possible dependence of the functional with the
number of particles. Namely, energy functionals might depend on
the number of particles of the system because not every D that orig-
inates a given K can be considered to evaluate the ground state en-
ergy. It will be discussed in detail in the following sections.

Before concluding this section we would like to briefly discuss a
critical issue related to q, p-RDM and their associated energy func-
tionals which is central to our work: N-representability problem. A
given device K is said to be N-representable if it can be obtained
from a DM corresponding to a fermionic system through a CM pro-
cedure [5]. As mentioned earlier, when finding the minimum of the
energy functional ENK ½K� (cf. Eq. (4b)), only N-representable Ks are
allowed as trial functions. This condition can not be relaxed; other-
wise, it would lead to solutions with lower energy than the ground
state, which of course have no physical meaning. A great amount of
work oriented towards the derivation of necessary and sufficient
conditions for the N-representability, has been performed mainly
for the electron density, 1-RDM and 2-RDM [12]. Therefore, as
mentioned before, imposing necessary and sufficient N-represent-
ability conditions is mandatory when working with sets of arbi-
trary Ks, to obtain meaningful results, but however as in this
work we will consider only sets of N-representable Ks, conse-
quently all the minimization procedures will give us the exact
ground state energy. From now on, each time we refer to an elec-
tron density, 1-RDM or 2-RDM it must be assumed that they are N-
representable. Closely related to the N-representability of the q
and the p-RDMs is the corresponding problem for their energy
functionals which introduces several restrictions for them
[29,30]. Nonetheless, because as stated above, the set of Ks used
in the searching process are N-representable we will restrict our-
selves to the set of N-representable functionals in due course of
the present work.

2.2. Canonical states: DMs, RDMs and energy functionals

In the above subsection, we have imposed no restrictions to the
type of the number of particles, however this is a non-trivial issue.
Let us introduce the canonical states (C) to treat closed systems
which possess a fixed integer M 2 N number of particles (N, set
of natural numbers) for all the contributing states as the starting
point before considering the GC functionals for open quantum do-
mains. The general form of D for a canonical state of the system is

MD ¼
X
fUM

k g

xUM
k

UM
k

�� E
UM

k

D ��; X
fUM

k g

xUM
k
¼ 1;xUM

k
P 0 ð5Þ

where fjUM
k >; k ¼ 1; . . .g stands for the set of M-electron quantum

state functions belonging to the antisymmetric M-electron Hilbert
space FM and fxUM

k
; k ¼ 1; . . .g the corresponding associated statis-

tical weights. The particular case in which all the weights but one
are zero corresponds to a microcanonical state, i.e., pure state

MDUM
k
¼ UM

k

�� E
UM

k

D �� ð6Þ

The differences between these systems will not be important in the
following, then we will only refer in the future to canonical states,
keeping in mind that the results and discussions concerning these
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states will be also valid for micro-canonical states. Contraction
mappings for canonical states are well known [5,12]. The p-RDMs,
pD, are obtained after averaging M � p variables of the canonical
MD, by application of the contraction mapping L̂M

p , defined as [5]

pDi1 ;i2 ;...;ip
j1 ;j2 ;...;jp

¼ M
p

� �
L̂M

p fMDg ¼ Tr MD
cyi1 cyi2 . . . cyip cjp . . . cj2 cj1

p!

 !

¼
X
UM

k

wUM
k

pDi1 ;i2 ;...;ip
j1 ;j2 ;...;jp

ðUM
k Þ ð7Þ

where the indices i; j; . . . make reference to an orthonormal set of
spin-orbitals basis for the representation of the p-RDM; cyi and cj

are the standard second quantization creation/annihilation fermion
operators, respectively [31], Tr indicate the mathematical trace

operation or physical sum over states, M
p

	 

is the normalization fac-

tor (Coleman’s normalization convention) [5] and

pDi1 ;i2 ;...;ip
j1 ;j2 ;...;jp

ðUM
k Þ ¼

M
p

� �
L̂M

p
MDUM

k

n o

¼ UM
k

cyi1 cyi2 . . . cyip cjp . . . cj2 cj1

p!

�����
�����UM

k

* +
ð8Þ

stands the p-RDM matrix elements corresponding to the UM
k pure

state [32]. Here we will be mainly concerned with the cases p ¼ 1
and p ¼ 2, i.e., 1- and 2-RDM respectively. Besides, we will consider
the electron density q, which can be obtained from the diagonal ele-
ments of the 1-RDM.

The constrained search equation for the energy functionals of 2-
RDM for C states (cf. Eqs. (3) and (4)) reads

EM
0 ¼ minM D!2D EM

2D½2D� ð9Þ

where the search condition MD! 2D points out the fact that the
process only admits those 2-RDMs obtained by CM of DMs corre-
sponding to a system of M particles and the solution is reached
for 2D0. The M supraindex is redundant in C states and thus can
be omitted because the number of particles is univocally defined
from the 2-RDM, throughout the normalization condition
Tr 2D
� �

¼ MðM�1Þ
2 . Namely, for closed systems there is no need to men-

tion the number of particles in the 2-RDM energy functional. For
this case the functional is completely known and defined by
E2D ½2D� ¼ Tr 1Dh

� �
þ Tr 2Dw

� �
[33], where 1D is obtained by CM of

2D, i.e., 1Di
j ¼ 2

M�1

P
k

2Dik
jk. This is a particular property of RDMs

which ensures that for a system with a fixed number of particles
any q-RDM can be obtained from a p-RDM by a simple partial con-
traction, with the only condition that p > q [5]. Therefore, this case
is equivalent to solve the Schrödinger equation. It is worthy to note
once again that in this work we are only considering both N-repre-
sentable 2-RDMs and energy functionals and that the normalization
condition is not sufficient to guarantee the N-representability of an
arbitrary 2-RDM. However, we have shown that the normalization
condition suffices to separate the set of N-representable 2-RDMs
into disjoint domains, each of them associated with an unique par-
ticle number M and hence the index M appearing in some expres-
sions above must not be confused with the M-representability of
the involved RDMs and energy functionals and it only points out
the number of particles of the system. Consequently, it is redundant
and must be understood of such way than that MD! 2D can be sim-
ply expressed byD! 2D, namely, that for a given a N-representable
2D, the number of particles of all the fermionic DMs that can origi-
nate it is the same and is determined from the normalization of 2D.

In a similar manner, for energy functionals of the electron den-
sity or 1D, there is also no need to indicate the number of particles
because for both devices, this number is univocally determined by
the conditions
R
qðrÞdr ¼ N or Tr 1D

� �
¼ N, respectively. For 1D the

corresponding energy functionals are expressed by

EM
0 ¼ minD!1D E1D½1D� ð10aÞ

E1D½1D� ¼ F1D½1D� þ Tr 1Dh
� �

ð10bÞ

where F1D½1D� is the correlation-exchange functional of 1D [25] and
EM

0 ¼ E1D½1D0� the solution of the search process. Analogously, for
the electron density

EM
0 ¼ minD!q Eq½q� ð11aÞ

Eq½q� ¼ Fq½q� þ
Z

qðrÞvðrÞdr ð11bÞ

where Fq½q� ¼ minD!q Tr DðT þ VeeÞð Þ where T and Vee stand for the
kinetic and electron-electron repulsion energy operators, respec-
tively. Eq. (11a) means that the search is performed over the set
of q derived from a D.

Let us note finally that as we have pointed out early, the parti-
cles number constraint must be imposed for each minimization
processes in Eqs. (9), (10a) or (11a) to obtain EM

0 . Therefore, a more
general form for this constraint is

d EK½K� � lN½K�f g ¼ 0 ð12Þ

where EK½K� stands for the functional of K, i.e., 2D; 1D or q and N½K�
expresses the number of particles univocally determined by K. Con-
sequently, Eq. (12) allow us in principle to extend the domain of
definition of the energy functionals to deal with systems of non-
integer (or fractional) number of particles as we will explore in
the next section.

3. Grand-canonical distributions: DMs, RDMs and energy
functionals

As introduced before the physical domains within a molecule or
molecules interacting with their environment can be considered as
quantum open systems and possess fractional number of particles.
Then, to study these systems we must extend the notion of canon-
ical MDs and begin considering grand-canonical Ds. The expression
for a grand-canonical D of a system with N ¼ N þ m particles, with
N 2 N and m 2 R in the interval m 2 0;1ð Þ (with R the field of real
numbers) is [21,22,34]

D ¼ a
1

UM
kf g

xUM
k

MDUM
k
;
X1
MP0

xUM
k
¼ 1; xUM

k
P 0 ð13Þ

where the carrier space is the complete Fock space F ¼a
1
M¼0FM

and a represents the direct sum. Then, p-RDMs for the GC states
in molecular systems can be expressed as [20]

pD ¼ a
UM

k ;MPpf g
xUM

k

pDUM
k

ð14Þ

Then, the number of particles of the system is not fixed, and can
only be determined as an average N ¼

P
fUM

k ;MP0gxUM
k

M [20,24].

As mentioned above, a qD cannot be obtained by CM of any pD for
q < p without information loss within the GC framework unless
the energy were a convex function of the number of particles
[20]. In this work, we will not restrict ourselves to the convexity
assumption in order to validate the results to incorporate the
description of molecular systems of interacting reagents, species
imbedded in some environment or atoms and functional groups
in a molecule [3]. The number of particles in this distribution N
and related to the density by

R
qðrÞdr ¼ N permits to consider the

constrain Eq. (12) given a q or 1D and univocally determine the
number of particles of the system. Therefore this implies, similarly
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to MC and C distributions, that the GC energy functionals of q or 1D
do not depend on the number of particles of the system and then we
can define functionals in an analogous form as those in Eqs. (10) and
(11). Nevertheless, notably differences between the closed and open
systems arise when considering the description based on the 2D.
Unlike in C distributions where the energy depends on both, 1D
and 2D which are connected via CM, this is not longer valid for GC
distributions because 1D can not be obtained form 2D via a CM
[20] and consequently a similar equation as Eq. (9) is no longer valid
for the GC one.

This distinction rests on the dependence of 2D energy functional
with N. Hence, as it has been stated above, the main point is to re-
spond the question if it is possible to univocally determine the
number of particles from a GC 2D. The number of particles of a
molecular open system, N is determined by the coefficients
fxUM

k
; M; k ¼ 0; 1; . . .1g. Therefore, it may be argued that for

determining the number of particles of the system it of no need
to know all the coefficients, i.e., indeed, if we do not know the coef-
ficient xU0

k
we can calculate the number of particles noting that

N ¼
X1
M¼0

X
UM

kf g
xUM

k
M ¼ 0 xU0

k
þ
X1
M¼1

X
UM

kf g
xUM

k
M ð15Þ

then, the coefficients needed are only fxUM
k
;M; k ¼ 1; . . .1g. Be-

sides, if coefficient xU1
k

is unknown and xU0
k

is known, the former

can be calculated from the normalization conditionP1
M¼0

P
fUM

k g
xUM

k
¼ 1. The problem arises when contracting a DM

GC state to obtain the corresponding 2D and consequently the infor-
mation from xU0

k
and xU1

k
coefficients is lost. Then, it is not possible

to univocally determine the number of particles of a GC system like
distribution from 2D. Let us clarify this point by means of a simple
example. Let two GC DMs be

Da ¼ xa
U0 jU0ihU0j þxa

U1 jU1ihU1j þ
X

fUMg;M>1

xUM jUMihUMj ð16aÞ

Db ¼ xb
U0 jU0ihU0j þxb

U1 jU1ihU1j þ
X

fUMg;M>1

xUM jUMihUMj ð16bÞ

such that xa
U0 –xb

U0 and xa
U1 –xb

U1 . It is evident that

L̂2fDag ¼ L̂2fDbg � 2D ð17Þ

where pD ¼ L̂pfDg ¼afUM
k ;MPpgxUM

k

M
p

	 

L̂M

p fMDUM
k
g and it was as-

sumed that L̂M
p fMDUM

k
g ¼ O for M < p, and L̂p

pfpDUp
k
g ¼ I with I and

O, the identity and null superoperators, respectively [20]. Therefore,
it holds

N a �N b ¼ xa
U1 �xb

U1 –0 ð18Þ

where N a andN b represent the number of particles from Da and Db,
respectively. It means that two GC D corresponding to systems with
different number of particles can originate the same 2D. Therefore,
it is not possible to determine N for a molecular open system from
the associated 2D and consequently it implies that the energy func-
tional for a GC 2D depends on N . Finally, let us argument about
these results from another point of view. As pointed out above, 2D
can be obtained from different DMs, giving rise to N a and N b par-
ticles, respectively. Suppose Da is chosen as a trial when determin-
ing the ground state energy for the GC state of systems with N a

particles. Hence, to determine the value of the energy functional
for 2D from the minimum of the expression Tr DHð Þ, we must con-
sider Da and not Db. Conversely, for systems with N b particles, Db

must be considered and not Da. Nevertheless, despite in both cases
we can use the same 2D, the energy functionals will be different.
Namely, the searching space in both situations for the minimum
of the expression Tr DHð Þ is defined over different domains and
then, the corresponding energy functionals will be necessarily
different

EN a
2D ½

2D� – EN b
2D ½

2D� ð19Þ

This result has important consequences. It forbids us to formulate
the GC case of Eq. (9) in terms of the constraint given by Eq. (12).
On one side, the energy functional unlike that of the C case cannot
be extended to arbitrary numbers of electrons due to the non-uni-
versality of the energy functional of 2D with respect to the number
of particles, i.e., there are different energy functionals for different
particle number; on the other side, there is no expression for
N ½2D� since it is not possible to univocally determine the number
of particles of the DMs that originate a given 2D.

4. Concluding remarks

Energy functionals for molecular quantum open systems have
been analyzed in comparison with closed ones within the formula-
tion of density matrices. As we are mainly concerned with 2-parti-
cle Hamiltonians, attention was focused on q;1D and 2D energy
functionals. The corresponding CM for canonical and grand-canon-
ical states of the systems were reviewed with emphasis in the loss
of information present in the grand-canonical case. This feature,
which is absent in closed systems, is of paramount importance
for understanding the energy functionals of q, 1D and 2D. Nonethe-
less, open systems for which the ground state energy is a convex
function of the number of electrons are closely related to their
canonical counterparts. The main differences between these sys-
tems, besides of the number of particles, arise when the convexity
of the energy is not valid. Although the canonical and grand-canon-
ical descriptions in terms of q and 1D are very similar, the formu-
lation for 2D highly differs. The reason is that while the number of
particles of a grand-canonical systems can be univocally deter-
mined from q and 1D, this is not the case for the 2D and conse-
quently the energy functional for 2D within the GC distributions
depends on the number of particles of the system, unlike its canon-
ical analog. Thus, it is not possible to formulate the variational
principle for the ground state energy in terms of the 2D for GC dis-
tributions using particle number constraints. Energy convexity are
not expected to follow for interacting molecules as reagents in a
chemical reaction or for species imbedded in solvents because of
the different nature of intermolecular forces, thus to study the
properties of grand-canonical distributions without recurring to
the convexity assumption will help to understand these phenom-
ena and are among our interests.
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