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We report on nonequilibrium molecular dynamics simulations of single crystals of copper

experiencing rapid shear strain. A model system, with periodic boundary conditions, which includes

a single dislocation dipole is subjected to a total shear strain of close to 10% on time-scales ranging

from the instantaneous to 50 ps. When the system is strained on a time-scale short compared with a

phonon period, the initial total applied shear is purely elastic, and the eventual temperature rise in

the system due to the subsequent plastic work can be determined from the initial elastic strain

energy. The rate at which this plastic work occurs, and heat is generated, depends on the dislocation

velocity, which itself is a function of shear stress. A determination of the stress-dependence of the

dislocation velocity allows us to construct a simple analytic model for the temperature rise in

the system as a function of strain rate, and this model is found to be in good agreement with the

simulations. For the effective dislocation density within the simulations, 7:8� 1011 cm�2, we find

that applying the total shear strain on time-scales of a few tens of picoseconds greatly reduces the

final temperature. We discuss these results in the context of the growing interest in producing high

pressure, solid-state matter, by quasi-isentropic (rather than shock) compression. VC 2011 American
Institute of Physics. [doi:10.1063/1.3560912]

I. INTRODUCTION

The dissipation of heat due to plastic work is one of the

fundamental phenomena exhibited when materials are

deformed beyond their elastic limits, and has been the sub-

ject of study ever since the discovery that the creation and

motion of dislocations and defects is the means by which

plastic work is generally dissipated.1–4 Plastic heating can be

particularly high in materials subjected to rapid compression,

such as that found within the environment of a shock.

Indeed, the rapid temperature rise that occurs across the

shock front eventually leads to shock-melting if the compres-

sion is sufficiently great. The pressure at which such melting

occurs on the Hugoniot is clearly material dependent, but for

all but the stiffest materials a pressure of 1–2 Mbar is typi-

cal.5 Notably, this pressure lies a little below the highest

pressures that can be achieved statically in the laboratory by

use of diamond anvil cells (DACs).6 As the melting noted

above places an upper limit on the pressure to which a mate-

rial can be shocked, and yet still remain solid, in recent years

there has been a growing interest in the development of tech-

niques which allow materials to be compressed dynamically,

and indeed rapidly, but not so rapidly as to produce a shock:

such techniques generally being termed ‘quasi-isentropic’

compression.7–10 The rationale for such experiments is that

dynamic compression methods (such as laser driven com-

pression, or magnetic loading using Z-pinches), can reach

peak pressures far in excess of those achievable with current

DACs, and if the time-dependence of the applied stress can

be controlled, such approaches may allow the creation, albeit

transiently, of solid-state matter in regions of the phase dia-

gram that have hitherto remained unexplored. It has been pro-

posed that diagnosis of the state of the material produced

could be performed using flash x-ray diffraction, as such

techniques have been shown to be successful in obtaining

structural information on materials subjected to shock com-

pression.16 Some significant successes have already been

achieved in this field, with recent studies employing ramped

compression reporting diamond which is still solid at 8

Mbar.17 These ramped compression techniques are termed

‘quasi-isentropic’ as some plastic work must still be dissi-

pated within the material: most of the techniques suggested

and employed to date have relied upon uniaxial compression

of the sample, and as the material will be subjected to stresses

far beyond its elastic limit, plastic flow will certainly still

take place. However, the underlying assumption is that the

plastic work required will be considerably less than that

which is required within the shock-compression scenario. It

is in this context that we present the work outlined in this pa-

per, where we explore by use of molecular dynamics (MD)

simulations a simple model system, with fixed dislocation

density, subjected to shear strain across a range of strain rates.

Previous MD simulations of plastic flow have largely concen-

trated either on shock compression18–21 or on the steady state

properties of plasticity; typically then being run at constant

temperature and shear stress.22–29 Although this has produced

a wealth of information used to inform multi-scale modeling
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approaches, it has left the field of plastic heating during high

strain rate ramped compression (relevant to quasi-isentropic

compression) largely unexplored.

Plastic flow has also been studied by dislocation dynamics

(DD) techniques.30,31 In most DD simulations, the final strain is

relatively small and the strain rates are much smaller than those

found in shocks. Therefore, plastic heating is typically and right-

fully neglected. In a recent development, a DD approach was

combined with finite element methods (FEM) to simulate shock

evolution.4 Here heating was assumed to result from a constant

compliance and allowed to flow into the FEM mesh. This

method was used to study relaxation under different ramp load-

ings. In the DD-FEM simulations, dislocation density was lower

than in equivalent MD simulations, resulting in less pinning and

enhanced dislocation motion. As a result, shear stress relaxation

occurred faster, and plastic heating (with effectiveness of 90%)

was somewhat higher than that seen in the MD simulations.32

Our goal in this paper can be considered relatively modest.

In real physical systems subjected to ramp loading (i.e.,

dynamic, but less rapid than a shock), the increase in tempera-

ture will be due to a combination of factors. Firstly, the com-

pression itself will induce a temperature rise, which exists even

if the compression is purely isentropic (though we note that for

many materials this will keep the sample well away from the

melting point, as under isentropic compression ðT=hDÞ, where

hD is the Debye temperature, reduces assuming realistic values

of the Gruneisen parameter33). Secondly, the defect generation

and motion will induce a temperature rise associated with the

plastic work, as the shear stresses relax. Thus, we consider here

a very simple system: single crystal copper containing a lone

dislocation dipole (the overall dislocation density being deter-

mined by the fact that we use periodic boundary conditions).

We subject it to volume-conserving shear (thus neglecting tem-

perature rises owing to compression) to a given total shear

strain (i.e., a given tilt of the simulation cell) at a variety of

strain rates, and we monitor both the shear stress and tempera-

ture as a function of time. The system is simulated using none-

quilibrium MD, and is also described with a basic analytical

model based on Orowan’s equation. Excellent agreement

between the MD simulations and the analytical model is found,

as long as the stress-dependence of the dislocation velocity is

taken into account. We show that the highest temperature rise

of the system occurs for shear on a time-scale comparable to

(or shorter than) that of a phonon period. As we employ peri-

odic boundary conditions, the effective dislocation density

within the simulations, 7:8� 1011 cm�2, is determined by the

size of the simulation box. Such a density is not too dissimilar

to those expected within rapid-compression environments, and

we find that if shear strains of close to 10% are applied on

time-scales of a few tens of picoseconds, the temperature rise is

significantly reduced. The good agreement between the MD

simulations and the analytical model presented indicates that it

may be possible to make reasonable predictions of the degree

of heating during ramped compression of simple metals.

II. THEORY

A complete theoretical description of plastic relaxation is

highly challenging (even in fcc solids where plasticity is medi-

ated almost exclusively by the flow of dislocations). There are

relatively few models which consider plastic heating.3,17,34,35

In this work we start by examining the simple case of

full dislocations of Burgers vector b ¼ 1
2

01�1½ � in the 111ð Þ
plane gliding in response to an applied shear strain. We shall

work with a coordinate system such that 111½ � is along z and

01�1½ � is along x. In this system the glide of the dislocation

will act to relieve the r13 component of the stress. This sim-

ple quasione dimensional arrangement lends itself well to

the simple Maxwellian model of a viscoelastic solid.36

We assume that the strain, and its time derivative, can

be expressed as a sum of its elastic and plastic components -

deext
13

dt
¼ dee

13

dt
þ dep

13

dt
: (1)

For the case of an external e13 shear strain being relieved by

dislocation glide, as described above, we can use a single

component of the compliance tensor to relate elastic stress

and strain -

ee
13 ¼ cr13: (2)

The validity of linear elasticity in context of the high strains

applied in this work will be confirmed in section III. For the

plastic strain rate we use Orowan’s equation which states,

for constant dislocation density -

dep

dt
¼ qbv rð Þ ; (3)

where q is the number density of mobile dislocations with

Burgers vectors of magnitude b, and vðrÞ their stress-de-

pendent velocity. In situations of real physical interest, such

as shock or rapid ramp compression of materials to high

pressures, the time dependence of the dislocation density

may be highly complex, with homogeneous and heterogene-

ous nucleation, multiplication and pinning all affecting the

mobile dislocation density. As outlined in the introduction,

our aim in this work is not to attempt to simulate such a com-

plex situation, but to gain some modest insight into some of

the underlying physics by studying a model system.

Taken together Eqs. (1)–(3) allow us to express the

external strain rate as

deext
13

dt
¼ c

dr13

dt
þ qbv rð Þ (4)

) r13 t0ð Þ ¼
ðt0

0

1

c

deext
13

dt
� qbv r13ð Þ

c
dt: (5)

The temperature rise due to dislocation glide can be found

by noting that for an elasto-plastic solid, assuming isotropic

linear thermoelasticity with infinitesimal deformations, and a

linear Fourier heat conduction law, the unidimensional

energy balance equation can be written as -

C

V

@T

@t
� k

@2T

@x2
¼ br13

dep

dt
� aT

c
ee; (6)

where the additive decomposition of strain into elastic and

plastic parts is once again assumed. Here T is absolute
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temperature, C the heat capacity of the sample (taken to be

3 NkT in these classical simlations), V its volume, k the ther-

mal conductivity, and a its thermal expansion coefficient. b
is an empirical parameter that represents the fraction of the

rate of plastic work dissipated as heat.37

Under the adiabatic, isochoric conditions considered in

this paper, and by once again assuming Orowan’s equation

to describe the plastic strain rate, this can be reduced to -

dT ¼ b
Vr13 tð Þ qbv dt

C
: (7)

The value of b is material and conditions dependent, but for

rapid loading takes values very close to unity.37 Here we will

assume a value of b ¼ 1 but note that b could also be used as

an adjustable parameter.

III. SIMULATIONS

A. System setup

In order to test the model proposed in Sec. II we com-

pare its predictions with those of nonequilibrium molecular

dynamics simulations. The MD simulation was performed

using the LAMMPS package38 and comprised a box of size

20.4�10.6�12.5 nm (228 960 atoms) of copper atoms, mod-

eled using the embedded atom method interatomic potential

by Mishin et al.39 This box was oriented with crystallo-

graphic axes as defined in Sec. II. An edge dislocation dipole

was introduced into the box by removing two half planes

and allowing the sample to relax as described elsewhere,40

leading to a box with equivalent dislocation density q ¼ 7:8
�1011 cm�2. Although relatively modest compared to den-

sities expected to be present within shock-compressed cop-

per,21,41 it is sufficiently low to allow us to neglect

dislocation interactions. The dipole and the orientation of the

simulation cell are shown in Fig. 1.

Relaxation of the sample was carried out in the microca-

nonical (constant NVEAQ1 ) ensemble, leading to a simulation

cell with a low initial temperature (around 30 K), and a finite

pressure of 1.4 GPa.42

A linear shear strain ramp was applied, from �13 ¼ 0 to

0:098, during a time trise. In the absence of plastic relaxation

this shear strain would lead to a peak shear stress in the sam-

ple of 4 GPa. This is a value typical of those which could be

reached for shock pressures above 50 GPa. The sample was

allowed to relax this applied strain both during and subsequent

to the application of the ramp. Both the r13 stress component

and the temperature were recorded as a function of time.

Over the range of strains investigated in this paper it

was found that the stress-strain relation was linear, confirm-

ing our assumption of the validity of linear elasticity theory

in this regime.43 The c1313 compliance component of the

sample was measured to be 0:025 GPa�1.

B. Dislocation velocity

In order to solve Eq. (5), we require a knowledge of the

dislocation velocity as a function of stress. One might

assume, as a first approximation in this high stress, high

strain rate regime, that the dislocation velocity has saturated

and reached a constant value close to the Rayleigh speed

(around 3660 ms�1 for Cu). However, several previous MD

simulation efforts have found that a linear stress dependence

provides a better fit.22,23,25,44 One may choose to use the

velocities reported in these steady state simulations as input

to the model. We will use a simple fit to the data of Tsuzuki

et al. for edge dislocation velocities in Mishin Cu.26 How-

ever, we may consider these steady state dislocation mobili-

ties to be inappropriate for the study of a highly dynamic

process, especially considering that previous studies have

shown dislocations can take over 10 ps to reach these steady

state velocities; a time comparable to our dynamic studies.23

Therefore, in addition to fits to the steady state data, we

also determine dislocation velocities from a dynamic simula-

tion. We extract the velocity of the dislocations during relax-

ation from an instantaneous (trise ¼ 0) shear. This is

achieved by monitoring the ‘center of mass’ of the upper dis-

location as a function of time, using the centrosymmetry pa-

rameter to identify the atoms in the defected environment.45

The resulting stress-velocity plot is shown in Fig. 2. The

scatter in the data can be attributed to the small sample size

and the difficulty in calculating average velocity over
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FIG. 1. (Color online) Simulation setup. Coloring with centrosymmetry pa-

rameter. The dislocation dipole can be seen immersed in the perfect crystal

(blue), with partial dislocations in yellow and the stacking fault in red. Dis-

location slip occurs along 01�1½ �.AQ2

FIG. 2. (Color online) Dislocation velocity from our MD simulation and

resulting linear and nonlinear fits. Steady state MD data reproduced from

Tsuzuki et al. along with a fit to that data, is also shown.26
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relatively short time spans. Note that this determination of

velocity does not use the model described in Sec. II.

A simple constant velocity fit would seem to be inappro-

priate over this stress range. A linear fit to the data provides

values in reasonable agreement with those found by Tsuzuki

et al. over the mid-range of stress states. However, we see

from Fig. 2 that as well as a slight divergence at high stress,

this linear approximation will clearly break down for very

low shear stresses (that may prevail at very low shear strain

rates), and thus we also use a ‘full’ fit ensuring that the dislo-

cation velocity tends to zero as the stress is reduced. The

form of this full fit is the reciprocal sum of two linear func-

tions chosen so as to agree with the linear fit at high stress

(this form can be viewed as an approximation to the mobility

model discussed by Olmsted46). However, most of the heat-

ing occurs for shear stresses in the high velocity regime,46

and thus we consider this a small correction. This fact also

allows us to neglect the low velocity temperature depend-

ence. This might not be the case if temperature approaches

values closer to melting, where a temperature-dependent ve-

locity would need to be incorporated in Eq. (7).

We will test both the steady state and dynamically deter-

mined velocities in the model of Sec. II.

IV. RESULTS

First, we verify that the analytic model reproduces the

shear stress relaxation due to dislocation motion in our simu-

lations. Results for ramps of trise ¼ 0; 5; 10; and 20 ps are

shown in Fig. 3. One can consider the 0 ps case as being

analogous to an ideal shock wave, with larger rise times rep-

resenting ramps of decreasing shear strain rate.

For all but the lowest strain rate, it can be seen that the

linear velocity, Tsuzuki, and full fit predictions are essen-

tially indistinguishable. The agreement between the analytic

model employing variable velocity of the dislocations and

the results of the MD simulations is excellent, with only

minor deviations present, regardless of whether dynamic or

steady state dislocation velocities are used. For ramp times

longer than 20 ps we see deviations from the predicted stress

relief profiles, likely due to stress field fluctuations and dislo-

cation inertia; phenomena absent in the analytic model. It

should be noted that, as expected, longer ramps allow relaxa-

tion of the shear strain at lower shear stresses, and as shown

in Eq. (7), this allows for less heat generation during relaxa-

tion of the shear strain.

The temperature rise as a function of time during the plas-

tic heating is shown in Fig. 4. Once again, employing a vari-

able velocity fit in the model proposed in Sec. II, we find a

good agreement with the MD simulations. Note that the tem-

perature rise (as defined by the MD) displays pronounced

oscillations due to the finite size of the box. These oscillations,

which are indicative of coherent phonon modes, are less pro-

nounced for smaller boxes, and are damped at longer times.

In order to compare the final sample temperature given

by the MD to that predicted by the analytic model, the sam-

ple was allowed to thermalize for 100 ps after the start of the

ramp. The mean and standard deviation of the temperature

over the final 5 ps of the run were calculated for a number of

shear strain rates. These values are plotted against the theo-

retical temperature rise in Fig. 5.

The strong dependence of the temperature rise with

ramp time is clearly seen, with excellent agreement between

the MD and analytical models. It is clear that the temperature

rise reaches its asymptotic value for strain rates greater than

approximately 4� 1011 s�1, or ramp times of 250 fs. It is

interesting to note that this time-scale is close to the value of

the highest phonon frequencies in copper.47 This may well

be indicative of a more general notion; that the phonon pe-

riod describes the ultimate time-scale of shock processes in

solids.
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FIG. 3. (Color online) Shear relaxation as a function of time for different

trise. Agreement between the model using a variable velocity and MD is

extremely good, especially in the early stages of loading.
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Final temperatures derived by employing Tsuzuki’s

steady state dislocation velocities are seen to be consistently

low. However, agreement is still within around 2 K over the

entire range of strain rates examined. Although this suggests

that steady state velocities may not be the ideal choice for

this application, their relative abundance in the literature,

coupled with the close agreement with dynamic simulations,

makes their use attractive in determining temperature rise

due to plastic work in ramps.

At the lowest strain rates studied, the constant velocity

model fails, as expected. However, the relatively crude full

fit still works well for temperature rises as low as one tenth

of the asymptotic value, corresponding to shear strain rates

of below 2� 109 s�1, and ramp rise times of 50 ps.

V. SUMMARY AND CONCLUSIONS

We have shown that for a typical fcc metal, simple models

of plastic heating and shear relaxation agree extremely well

with molecular dynamic simulations, provided that an appro-

priate stress-dependent velocity is used for the dislocation

motion and that the dislocation density is known. We show

that a simple linear velocity fit works well for higher strain

rates, but modifications are required to accurately describe

shear-strain ramps on longer time-scales, where dislocation

flow occurs at lower shear stresses. Steady state dislocation

velocities have also been shown to be sufficiently representa-

tive of dynamic behavior for this application. However, knowl-

edge of the details of dislocation motion are not required to

accurately predict the heating in this idealised sample.

For our system we show that a ramp of trise ¼ 50 ps or

longer leads to significantly less plastic heating than a shock

(trise ¼ 0 ps). This may have important implications for the

creation of high pressure solids via laser compression where

the strain rates and pressures attained are comparable to

those accessed by MD simulations. However, in order

to fully address this topic, the model must be generalized to

address a number of issues.

For loading along arbitrary directions, including uniaxial

compression along the principal crystallographic directions,

the full tensor equations relating stress and strain have to be

used, and the appropriate compliances have to be calculated.

We must also take in to account the existence of multiple

active slip planes in a plastically deforming solid. However,

the route to implement these improvements is clear.

A more complex problem is the need to include terms for

creation and destruction of dislocations. For instance, homoge-

nous nucleation of dislocations,47 or activation of Frank–Read

type dislocation sources,2,4 could increase dislocation density.

On the other hand, dynamic recovery, partly due to heating,

would decrease dislocation density. Compliance may also

change due to production or destruction of dislocations. These

source terms need to be coupled to a model for dislocation mo-

bility at high dislocation densities, when pinning will play a

critical role. This could be solved using an effective drag coef-

ficient, much smaller than the one used for the perfect single

crystal. Note that experimental values of the drag coefficient48

are significantly smaller than those found in MD simulations,

likely because of this effect. Cross-slip might also play a role

for long rise times and large dislocation densities.49
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FIG. 5. (Color online) Temperature rise versus strain rate for both variable

velocity models compared with MD. The asymptotic value is the tempera-

ture rise seen in a shock (trise ¼ 0 ps).

FIG. 4. (Color online) Temperature rise as a function of time for various

shear strain rise-times.
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We have considered here edge dislocations, but motion

of screw dislocations should follow similar laws.50 However,

the scenario might be more complex for materials which are

not fcc. For instance bcc metals display extensive climb and

extreme changes in the nature of dislocation motion at high

strain rate, resulting in production of debris and extended

twinning.28

Despite these caveats, it may be feasible to carry out a

reasonable prediction of plastic relaxation and plastic heating

in fcc metals, without the need to carry out costly MD simu-

lations of ramp loading.
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