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Abstract: In the present work, we develop an adaptive dynamic controller based on monocular
vision for the tracking of objects with a three-degrees of freedom (DOF) Scara robot manipulator.
The main characteristic of the proposed control scheme is that it considers the robot dynamics, the
depth of the moving object, and the mounting of the fixed camera to be unknown. The design of the
control algorithm is based on an adaptive kinematic visual servo controller whose objective is the
tracking of moving objects even with uncertainties in the parameters of the camera and its mounting.
The design also includes a dynamic controller in cascade with the former one whose objective is to
compensate the dynamics of the manipulator by generating the final control actions to the robot even
with uncertainties in the parameters of its dynamic model. Using Lyapunov’s theory, we analyze the
two proposed adaptive controllers for stability properties, and, through simulations, the performance
of the complete control scheme is shown.

Keywords: visual servoing; adaptive control; manipulator robot

1. Introduction

Currently, research in the field of industrial robot control is focused on adding external
sensors combined with advanced control strategies so that robots can work in unknown
or semi-structured environments, thus, increasing the field of applications. Among the
most widely used external sensors, vision sensors provide rich information about the
working space. For this reason, vision-based control systems applied to robotics have been
extensively studied in recent years.

Servo-visual control systems can be classified into image- or position-based systems
according to how the control errors are defined, and in handheld or fixed camera system
depending on the location of the vision camera with respect to the robot [1]. Furthermore,
these control systems can be dynamic [2] or kinematic [3] depending on whether or not the
dynamics of the robot are considered in its design.

Although the parameters of the models of these control systems can be obtained with
sufficient precision through calibrations or identification techniques, there will always
be uncertainties due to assembly errors, variations in the load handled, etc. To deal
with these uncertainties, various adaptive robot controllers have been proposed. In [4],
uncertainties in the kinematic parameters of a handheld camera system were considered,
without demonstrations of the stability of the system. In [2], only the uncertainties in the
parameters of the vision system were dealt with, and local stability results were presented.
On the other hand, in [5], a precise knowledge of the kinematics of the robot and the vision
system was assumed, considering only uncertainties in the robot’s dynamics.

The authors in [6–8] presented adaptive controllers with uncertainties in the vision
system with a proof of global convergence to zero of the control errors for positioning tasks
and only with bounded errors for the following tasks. These works did not consider the
dynamics of the robot. Other works, such as [9,10], considered uncertainties in both the
camera and robot parameters for a fixed camera system: the first with the assumption of
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needing an explicit measurement of the speed of the end of the robot in the image, and the
second with a similar approach to the first but that avoided this measurement.

Both works dealt separately with the problem of adapting the parameters of the
camera and the robot with a cascade structure and with a complete stability test of the
system. Although the design of the adaptive robot controller followed a classical structure,
it was based on a model with torque and force inputs, which is not the case with a real
industrial robot. The design of the servo-visual controller was complex, and the simulation
results did not effectively show a convergence to zero of the control errors. In the above
mentioned works, the controllers were designed for planar or 2-D robots.

Currently, few works have considered adaptive servo-visual control for a 3-D robot.
In [11], an adaptive dynamic controller designed with backstepping techniques was pre-
sented that considered uncertainties in both the camera and robot parameters in a unified
structure and allowed the tracking of objects in an asymptotic way. However, this was
achieved due to the use of two fixed cameras mounted on perpendicular planes. In [12],
the author proposed an adaptive kinematic controller based on linearization techniques
using a fixed camera. He considered two decoupled systems for the controller design, one
for depth control and one for 2-D displacement control.

In [13], an adaptive visual servo controller for trajectory tracking was presented using
a calibrated Kinect camera, which acted as a dense stereo sensor, and a controller based only
on the inverse kinematic model of the manipulator with a position-based control law. The
authors did not provide a stability analysis of the proposed system, and the performance
of the controller was verified through experimental results considering only the Root Mean
Squared Error (RMSE) of the position of the robot end effector as representative of the
controller’s precision.

In [14], an adaptive control approach was presented considering the unknown robot’s
kinematics and dynamics. The system used a calibrated camera to identify and calculate the
Cartesian position of the robot’s operating end, on which an unknown tool was mounted,
in order to estimate the 3-D dimensional information of the tool through the kinematic
observer. The adaptive controller was of the free–model type combined with a kinematic
observer. The stability of the closed-loop system was demonstrated by Lyapunov but
was strongly conditioned to the convergence of the kinematic observer, which necessarily
required persistently exciting trajectories to converge. The performance was shown through
simulations.

In the work [15], an adaptive controller for trajectory tracking by a 3-degrees of
freedom (DOF) manipulator robot with a fixed camera configuration was presented, con-
sidering both the parameters of the camera as well as the dynamics of the manipulator and
the dynamics of its electric actuators as unknown. They proposed a control system with
two control laws based on the backstepping technique and with speed measurement in the
image plane. The first control law set the armature current of the motors as an auxiliary
control variable, and another control law was given to generate the voltage references to
the motors as a final control action.

For the adaptation of the different parameters, eight adaptive laws were required,
and they demonstrated the stability of the proposed closed–loop system proposed by
Lyapunov’s theory, assuming that the estimated parameters did not cause a singularity in
the estimation of the independent-depth image Jacobian matrix. The simulation results
only showed the convergence to zero of the position and speed control errors in the image
for a single circular path in the image plane, and they did not show the convergence of the
estimated parameters or the auxiliary control variable and the articular positions of the
manipulator during the task.

A similar approach was presented in [16]; however, they avoided measuring the
velocity in the image plane by incorporating a kinematic observer in cascade with the
adaptive controller. They showed that the image space tracking errors converged to
zero using a depth-dependent quasi-Lyapunov function plus the Lyapunov-like standard
function and the asymptotic convergence of the observation errors in the image space.
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However their simulation results only showed the convergence to zero of the position
control errors for a single circular path in the image plane. Similar to the previous work,
they did not show the convergence of the estimated parameters, and, in addition, their
results showed that the depth estimation error did not converge.

In [17], a research work prior to the current one was presented, in which only a planar
robot with two degrees of freedom was considered and where the unknown depth of the
target was constant. In the present work, we propose an adaptive control system consisting
of two cascaded controllers to control a 3-D robot. The first is an adaptive image based
kinematic visual servo controller in a fixed camera setup, the aim of which is that the robot
follows a desired 3-D Cartesian trajectory even without knowing the depth and relative
orientation between the end of the robot and the camera.

The second controller is an adaptive dynamic controller, with joint velocity reference
inputs from the first controller, which compensates for the dynamics of the manipulator
even with uncertainties in its dynamic parameters. The designed control system considers
the real dynamics of a Scara 3-D industrial manipulator robot, and the ultimately bounded-
ness of the control errors of the entire system is demonstrated using Lyapunov’s theory.
The performance is shown through representative simulations.

2. Robot Model

The kinematic and dynamic model of a Scara-type robot manipulator [18] is presented
as follows.

2.1. Kinematic Model

The kinematic model of a Scara Bosch SR800 [18] manipulator with 3 degrees of
freedom (DOF), can be written as:

xw(q) = tw
r =

xw
r

yw
r

zw
r

 =

 l2 cos(q1 + q2) + l1 cos(q1)
l2 sen(q1 + q2) + l1 sen(q1)

h + q3

, (1)

where tw
r is the position of the end of the robot in the inertial frame 〈w〉; l1 and l2 are the lengths

of the first two links; h is the maximum height of the operating end, and q = [q1, q2, q3]
T is

the vector of joint positions, see Figure 1. The transformation between the robot frame 〈r〉
and the inertial frame 〈w〉 is given by the vector tw

r and the rotation matrix Rw
r equal to the

identity matrix due to a mechanical compensation of the robot’s orientation:

gw
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r tw
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=

[
I tw

r
000 1

]
. (2)

l1

l2

q1
q2

q3

twr

t w
2

r

θ

tw 2
w

zw

xw

yw

zw2

xw2

yw2

zr

xr

yr

zc

xc

yc

Figure 1. System frames of reference.
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2.2. Dynamic Model

The 3-DOF dynamic model of the Bosch SR800 robot can be written as [18]

M(q)q̈ + C(q, q̇)q̇ = q̇re f , (3)

where M(q) is the inertia matrix, C(q, q̇) is the matrix of centripetal and Coriolis forces, q̇
and q̈ are the vectors of joint velocities and accelerations, and q̇re f is the vector of reference
speeds applied to the robot as a control action to its internal servos.

The model (3) can be rewritten in parameterized form as:

q̇re f = ΦΦΦ(q, q̇, q̈)Xinert (4)

where ΦΦΦ(q, q̇, q̈) is the regression matrix whose elements are functions of q, q̇, and q̈; and
Xinert is the vector of dynamic and actuator’s parameters of the Bosch SR800 robot, whose
identified value is Xinert = [1.73, 0.19, 0.09, 0.10, 0.92, 0.009]T .

3. Simulated Experimental Platform and Vision System

To validate the proposed control system, we used the model of an experimental
platform, which is a real SCARA Bosch SR-800 industrial robot of 4 DOF, available in
our workplace and which represents a common robotic structure referred to in many
works [19].

The camera used in the experiments was a Drangonfly Express IEEE1394b camera.
This camera is capable of acquiring and transmitting color images through the bus IEEE-
1394b at a speed of 200 fps (frames per seconds) and with a resolution of 640 × 480 px
(pixels). The camera should be mounted at a certain height over the manipulator robot in
such a way that it allows for capturing the entire workspace. The images captured by the
camera were processed in real time using functions from the OpenCV library to extract
two characteristic points fixed to the end effector of the robot, which were used as image
features in the visual servoing algorithm as explained below.

The modeling of the vision system provides the equations that relate the position of
the end of the robot (xw = tw

r ) and the fixed distance dw
x to a second point , displaced on the

x axis of the robot frame 〈r〉, in 3-D space with its corresponding projection on the image
plane. Figure 1 shows the frames associated to the manipulator 〈r〉, the camera 〈c〉, and the
3-D space 〈w〉 and 〈w2〉, to which the poses of the robot and the camera, respectively, are
defined. The transformations between the inertial frames 〈w〉 and 〈w2〉, and between the
frames 〈c〉 and 〈w2〉, are given by:

gw
w2

=

[
I tw

w2
000 1

]
gw2

c =

[
Rw2

c 000
000 1

]
, (5)

where tw
w2

= [xw
w2

, yw
w2

, zw
w2
]T is the position vector (generally it is unknown) from 〈w2〉

expressed in 〈w〉 and Rw2
c = Rz(θ)Rideal = (Rw2

c )−1 = Rc
w2

with:

Rz(θ)=


cos(θ) − sen(θ) 0
sen(θ) cos(θ) 0

0 0 1

,Rideal=


0 −1 0
−1 0 0
0 0 −1

. (6)

The 3-D point that represents the position of the robot is mapped to the point xI
1 of the

camera image plane using:
λzx̄I

1 = KΠΠΠogc
w2︸ ︷︷ ︸

ΠΠΠ

gw2
w x̄w︸ ︷︷ ︸
x̄w2

, (7)

where x̄I
1 is the point xI

1 expressed in homogeneous coordinates, K and ΠΠΠ0 are the matrices
of intrinsic parameters of the camera and of perspective projection, xw2 = tw

r − tw
w2

is the
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robot position expressed in 〈w2〉, and λz is an unknown scale factor. Operating algebraically,
the expression (7) can be rewritten in non-homogeneous coordinates as:

xI
1 = α′Rz(θ)xw′2 + oI , (8)

where xw′2 = Rideal(tw
r − tw

w2
) and α′ = α

zw
w2−(h+q3)

is the unknown depth of the operating

end in the image frame 〈I〉, α is the scale factor, and oI is the coordinate vector of the center
of the image (parameters of K). Similarly, the second point xw + d on the end of the robot
with d = [dw

x , 0, 0, 1]T is mapped to the point xI
2:

λzx̄I
2 = λzx̄I

1 + KRc
w2

d. (9)

The distance between the two points in the image plane is given by dI = α′dw
x . Then,

the vector of image features is defined as:

xI =

x1
y1
dI

 =

[
xI

1
dI

]
=

[
α′Rz(θ)xw′2 + oI

α′dw
x

]
, (10)

and its time derivative is given by:

ẋI = αRz(θ)RidealJ(q, tw
w2

, dw
x )q̇ = αRz(θ)u = Du, (11)

where u = RidealJ(q, tw
w2

, dw
x )q̇, J(q, tw

w2
, dw

x ) is the Jacobian of the robot, and D = αRz(θ)
represents the generally unknown parameters of the vision system.

4. Adaptive Kinematic Servovisual Controller

The inverse model of the expression (11) is given by:

u = D−1ẋI =

 p1 p2 0
−p2 p1 0

0 0 p3

ẋ1
ẏ1
ḋI

, (12)

where p1 = cos(θ)/α, p2 = sen(θ)/α and p3 = 1/α.
xTD−1x > 0 for all x 6= 000 if |θ| < π

2 . Equation (12) can be expressed in the follow-
ing ways:

u =

p1 0 0
0 p1 0
0 0 p3

ẋ1
ẏ1
ḋI

+

 p2ẏ1
−p2 ẋ1

0

 = PẋI + ηηη, (13)

u =

ẋ1 ẏ1 0
ẏ1 −ẋ1 0
0 0 ḋI

p1
p2
p3

 = φφφp. (14)

Defining the control errors as x̃I = xI − xI
d, where xI

d is the desired visual characteristic
in the image plane. Two different control laws can be proposed as described below.

4.1. Control Law with Measurement of ẋI

The following adaptive control law is proposed with measurement of the speed of the
image characteristics:

uc=P̂


ρ1
ρ2
ρ3

+


p̂2ẏ1
− p̂2 ẋ1

0

=


ρ1 ẏ1 0
ρ2 −ẋ1 0
0 0 ρ3




p̂1
p̂2
p̂3

=φφφcp̂, (15)
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where uc = RidealJ(q, tw
w2

, dw
x )q̇re f represents the robot’s control action in Cartesian coordi-

nates and q̇re f the joint velocity command sent to the robot. The vector p̂ represents the
estimated parameters of the vision system for which the vector p̃ = p̂− p was considered
as the parameter error; the matrix φφφc is composed with the elements of the vector ẋI and
the vector ρρρ whose expression is:

ρρρ =

ρ1
ρ2
ρ3

 = ẋI
d − λx̃I . (16)

where λ > 0 represents the gain of the controller.

Controller Analysis

Assuming perfect velocity tracking (u = uc), that is, q̇ = q̇re f , from the expressions
(13) and (15), the closed-loop equation of the system is, thus, obtained:

PẋI + ηηη = φφφcp̂ = φφφc(p + p̃) = Pρρρ + ηηη +φφφcp̃

P( ˙̃xI + λx̃I) = φφφcp̃. (17)

Then, the following Lyapunov candidate function is proposed:

V =
1
2

x̃IT
Px̃I +

1
2

p̃Tγγγp̃, (18)

whose time derivative is:

V̇ = −λx̃IT
Px̃I + x̃IT

φφφcp̃ + p̃Tγγγ ˙̃p. (19)

This defines the adapting law:

˙̃p = −γγγ−1φφφT
c x̃I , (20)

where γγγ > 000 is an adaptation gain matrix. Replacing (20) in the expression (19), we obtain:

V̇ = −λx̃IT
Px̃I ≤ 0. (21)

Therefore, x̃I ∈ L∞ and p̃ ∈ L∞. Integrating Equation (21), it can be proven that
x̃I ∈ L2. From the expression (17), it is proven that ˙̃xI ∈ L∞. Then, by Barbalat’s lemma,
we conclude that x̃I(t)→ 000 with t→ ∞, thus, achieving the control objective.

4.2. Control Law without Measurement of ẋI

The following proposed adaptive control law does not require measurement of the
speed of image features:

uc =

ρ1 ρ2 0
ρ2 −ρ1 0
0 0 ρ3

 p̂1
p̂2
p̂3

 = φφφcp̂, (22)

where φφφc is composed with the elements of the vector ρρρ given by the expression (16).

4.2.1. Controller Analysis

Assuming perfect velocity tracking (u = uc), from the expressions (12) and (22), the
closed-loop equation of the system is obtained:

D−1ẋI = φφφcp̂ = φφφc(p + p̃) = D−1ρρρ +φφφcp̃

D−1( ˙̃xI + λx̃I) = φφφcp̃. (23)
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Then, the following Lyapunov candidate function is proposed:

V = x̃IT
D−1x̃I +

1
2

p̃Tγγγp̃, (24)

whose time derivative is:

V̇ = x̃IT
D−1 ˙̃xI + ˙̃xIT

D−1x̃I + p̃Tγγγ ˙̃p

= −2λx̃IT
D−1x̃I + α2x̃IT

D−2T
φφφcp̃

, (25)

where the expression (20) is used as the adapting law. From (25), outside the ball

‖x̃I‖∞ ≤
2a|ẋI

dmax
|

λ

‖p̃‖
1− 2a‖p̃‖ = η, (26)

we verified that V̇ < 0. Then, the control error is finally bounded by the value of η.

4.2.2. Remarks

• For positioning |ẋI
dmax
| = 0; therefore, x̃I(t)→ 000 with t→ ∞

• For trajectories that are persistently exciting, it can be shown that ‖p̃(t)‖ → 0 with
t→ ∞, and therefore x̃I(t)→ 000 with t→ ∞.

Then, under these conditions, we proved the same as for the controller with measure-
ment of ẋI , that x̃I(t)→ 000 with t→ ∞, thus, achieving the control goal.

5. Dynamic Compensation Design

This section ignores the perfect velocity tracking assumption considering a velocity
tracking error (u = uc + ũ) due to the dynamics of the robot. Under this condition, the
closed-loop Equation (23) now results in:

D−1( ˙̃xI + λx̃I) = φφφcp̃ + ũ, (27)

and the time derivative of (24) is:

V̇ = −λx̃IT
D−1x̃I + (1 +

1
α
)x̃IT

ũ +
1
α

x̃IT
D2φφφcp̃, (28)

From (28), outside the ball,

‖x̃I‖∞ ≤
1
λ

|ẋI
dmax
|‖p̃‖+ 1.5‖ũ‖
p1 − ‖p̃‖

= η, (29)

it is verified that V̇ < 0. Then, the control error is finally bounded by the value of η. Note
that ũ(t) does not necessarily converge to zero, since, by including the robot dynamics,
the convergence of p̃(t) → 0 is not always achieved as an attempt is made to identify a
different structure for which the kinematic controller was designed. As a consequence, the
control error increases.

To solve the degradation of the kinematic control, a cascaded adaptive dynamic
controller is proposed that makes the robot reach the reference speed provided by the
kinematic controller, again restoring the good performance of the control system, see
Figure 2. Defining the speed control error as ˙̃q = q̇ − q̇d, the following control law is
proposed:

q̇re f = M̂ννν + Ĉq̇d = φφφdX̂inerc, (30)

where ννν = q̈d −K ˙̃q, K is a positive definite gain matrix, X̂inerc represents the estimated
robot parameters, X̃inerc = X̂inerc − Xinerc is the parameter error vector, and M̂ and Ĉ are
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the matrices of inertia and Coriolis torques calculated with the estimated parameters.
Replacing q̇re f in the dynamic model (3), we obtain the closed-loop equation of the system:

Mq̈ + Cq̇ = φφφdX̂inerc = φφφdXinerc +φφφdX̃inerc

M( ¨̃q + K ˙̃q) + C ˙̃q = φφφdX̃inerc. (31)

φφφcp̂

−γγγ−1φφφT
c x̃I

∫
dt

+−λ+ (RidealJa)−1 + −K +

d
dt

φφφdX̂inerc

−γγγ−1
dynφφφT

d
˙̃q

∫
dt

Manipulator
Robot

Vision System

xI
d

xI

x̃I

ρρρ

uc q̇d q̇re f
ẋI

d

xw

q, q̇, xw

q
q̇

x̃I

ρρρ

˙̂p

p̂

˙̃q

ννν

˙̃q

ννν

˙̂Xinerc

X̂inerc

q̈d

Adaptive Kinematic
Controller

Adaptive Dynamic
Controller

Figure 2. Adaptive visual servoing control system with dynamic compensation.

We consider the following positive definite function:

V =
1
2

˙̃qTM ˙̃q +
1
2

X̃T
inercγγγdynX̃inerc, (32)

and its time derivative in the trajectories of the system:

V̇ = ˙̃qTM ¨̃q +
1
2

˙̃qTṀ ˙̃q + X̃T
inercγγγdyn

˙̃Xinerc

= −K ˙̃qTM ˙̃q+ ˙̃qT( Ṁ
2 −C) ˙̃q+X̃T

inerc(φφφd ˙̃q+γγγdyn
˙̃Xinerc)

, (33)

where the term ( Ṁ
2 − C) is zero, since C is the antisymmetric matrix calculated with the

Christoffel terms. Defining, as adaptation law,

˙̃Xinerc = −γγγ−1
dynφφφT

d
˙̃q, (34)

and replacing it in expression (33), we obtain:

V̇ = −K ˙̃qTM ˙̃q ≤ 0, (35)

and therefore ˙̃q and X̃inerc ∈ L∞. Furthermore, by integrating V̇ over [0, T], it can be shown
that ˙̃q ∈ L2. From expression (31), it is proven that ¨̃q ∈ L∞. Then, by Barbalat’s lemma, we
conclude that ˙̃q(t)→ 000 with t→ ∞, thus, achieving the control objective.

As proven above, the result ˙̃q(t)→ 000 with t→ ∞ implies that:

ũ(t) = RidealJ(q, tw
w2

, dw
x ) ˙̃q(t)→ 000 with t→ ∞ (36)

Then, going back to Equation (29) and introducing the convergence condition on
ũ (36), the error bound conditions of Equation (26) and, therefore, the stability conditions
previously obtained for the kinematic controller are asymptotically recovered even in the
presence of unknown robot dynamics.
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6. Simulations

In this section, we show simulation experiments that can be considered realistic and
whose results are very close to those that would be obtained with the real robot. This
is because the model used in these simulations is an identified model of the real robot,
which represents the dynamics of both the rigid body and that of the electric motors and
reduction gears in its actuators. A complete study of this model, the reduction of the
total set of dynamic parameters to a minimum base parameters set that considers only the
dominant and identifiable dynamics, and its subsequent expansion to model and identify
the dynamics of its actuators is found in [18].

To verify the performance of the proposed control system, realistic simulations were
carried out for a positioning task and for a trajectory following task using the identified
kinematic and dynamic model corresponding to the Bosch SR800 SCARA industrial robot.
The parameters of the vision system were θ = 10 and α = 820 px/mm, and errors of 20%
and 10% were considered, respectively.

Figure 3 shows the evolution of the image characteristics for a positioning task, starting
from rest at the position xw(0) = [0.63, 0.22, 0.35]T [m] and reaching the desired position
xw

d = [0.31, −0.61, 0.45]T [m]. The kinematic controller was applied first to the kinematic
model of the robot, and then its dynamics were incorporated. The gains set to the values
shown in Table 1. Figures 4 and 5 show the norm of the control error and the convergence
of the vision system parameters; observing that, in both cases, the control error converged
close to zero as indicated in the remarks of Section 4.

Figure 3. The image features for positioning.

Figure 4. The control error for positioning.
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Table 1. The gains for the positioning task.

Kinematic Model Dynamic Model

λλλ=


10 0 0
0 10 0
0 0 10

 λλλ=


15 0 0
0 15 0
0 0 0.0004


γγγ=105


800 0 0

0 0.02 0
0 0 0.08

 γγγ=2


1010 0 0

0 103 0
0 0 1



Kinematic model

Dynamic model

Figure 5. The estimated vision parameters for positioning.

On the other hand, Figure 6 shows the image feature vector xI for the following task,
starting from the position xw(0) = [0.523, 0.278, 0.423]T [m] and following a circular spiral
reference xw

d = [0.15 cos 24t cos t + 0.540, 0.15 sin 24t cos t − 0.046, 0.1 sin t + 0.423]T [m].
The servo-visual controller was applied to a kinematically modeled robot, then the robot
dynamics were incorporated, and later this dynamic was compensated with the adaptive
controller, considering a 50% error in the robot parameters. The gains used in these three
cases are shown in Table 2. Figures 7 and 8 show the norm of the x̃I vector and the
convergence of the vision system parameters.

Table 2. The gains for the following task.

Kinematic Model Dynamic Model Compensation Dynamic Model

λλλ=


200 0 0

0 400 0
0 0 20

 λλλ=


100 0 0

0 300 0
0 0 10

 λλλ=


60 0 0
0 610 0
0 0 20


γγγ=105


200 0 0

0 200 0
0 0 0.008

 γγγ=109


100 0 0

0 10 0
0 0 0.002

 γγγ=105


400 0 0

0 400 0
0 0 2



Figure 6. The image features for the following task.
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Kinematic model
Exact dynamic model
Compensate dynamic model

Figure 7. The control error for the following task.

Kinematic model
Exact dynamic model
Compensate dynamic model

Figure 8. The vision parameters estimated for the following task.

Figures 9 and 10 show the norm of the speed control error of the adaptive dynamic
controller and the convergence of the dynamic parameters of the robot, respectively.

Uncompensated dynamics
Compensated dynamics

Figure 9. The speed error for the tracking task.

Figure 10. The estimated robot parameters for the tracking task.
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7. Discussion

In Section 4, the design of two new adaptive servo-visual kinematic controllers for
trajectory tracking with a 3-DOF manipulator robot was presented. The main contribution
of these new control schemes is their simple design, their image-based control law, and
their unique adaptation law, unlike previous works with complex controllers as in [15,16].
From a practical point of view, these do not require the measurement of speed in the image
plane.

Finally, these schemes represent a generalization of previous work [17] to the case
of 3-D movement by the manipulator. This makes it possible to consider not only the
intrinsic and extrinsic parameters of the vision system as unknown but also the depth of
the objective, which can be time-variant and, as shown in Section 3, can be estimated with
an appropriate selection of the image characteristics.

In the simulations, the tracking task and the target points in the positioning task were
chosen to show, in both cases, the performance of the controller without speed measure-
ment in the case where the depth of the target is time-variant. It was also demonstrated by
Lyapunov’s theory that the scheme that required a speed measurement of the image char-
acteristics achieved an asymptotic convergence of the control errors in both the positioning
and tracking tasks.

On the other hand, the scheme that did not require such measurement achieved an
asymptotic convergence only in positioning tasks as shown by the simulation results of
Figure 4 and in following tasks in which the trajectories to follow sufficiently excited
the dynamics of the system with the spiral trajectory whose result is shown in Figure 7.
However, in this last scheme, the stability analysis showed that, even in trajectories that
were not persistently exciting, the control errors always remained bounded. In a previous
work [17], it was shown that, for the case of 2-D motion where the depth of the target was
constant, the controllers always reached the control target even on non-exciting trajectories,
such as a ramp type.

Figure 5 shows that the control actions generated by the kinematic controller, regard-
less of whether they applied to an idealized robot modeled only with its kinematics or
to a real robot modeled with its exact dynamic model, the estimated parameters always
converged on the positioning tasks, although not to the true values. This shows that,
for these tasks, the performance of the kinematic controller is sufficient, and dynamics
compensation is not required.

However, in high-speed tracking tasks that excite the manipulator dynamics, such
as those in Figure 6, it can be seen in Figure 7 how the control error in the image plane
converged asymptotically to zero when the control actions generated by the kinematic
controller were applied to an idealized robot modeled only with its kinematics, and the
estimated parameters converged to their true values as shown in Figure 8. However, when
these actions were applied to a real robot modeled with its exact dynamic model, the perfor-
mance was very poor since it was attempting to control a system with a different structure
than that for which the controller was designed, generating undesirable high frequency
movements, like those shown in Figures 8 and 9, and even the estimated parameters may
not converge as can be seen in Figure 8.

Figures 7 and 9 show that the performance of the kinematic controller is practically
recovered when the manipulator dynamics were compensated, limiting the control errors
as indicated by the stability test of the dynamic compensator in Section 5, even with
unknown manipulator parameters. Figure 10 shows that most of the parameters converged
to their true value and others remained bounded very close to them. Furthermore, Figure 8
shows how the convergence of the vision system parameters was also recovered, although
not to the true values as in the ideal kinematic situation.

8. Conclusions

An adaptive 3-D kinematic servo visual controller for positioning and trajectory
tracking was designed for a Scara robot manipulator and its stability based on Lyapunov’s
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theory was proven. Simulation experiments showed that, for positioning, the control
objective was always reached regardless of the manipulator dynamics. On the other
hand, for following tasks with generally unknown robot dynamics, we observed that
the kinematic control kept errors limited; however, its performance degraded with its
aplication to an ideal robot without dynamics.

However, the cascaded adaptive dynamic controller efficiently compensated for the
unknown dynamics of the manipulator, and the final performance approximated that
of the kinematic control even though the estimated robot parameters did not converge
to their true values as shown by the simulation results and the stability proof based in
Lyapunov. Work is currently underway to fine-tune an experimental system in order to
take this research to the experimentation phase.
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