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Abstract: We considered the canonical gravitational partition function Z associated to the classical
Boltzmann–Gibbs (BG) distribution e−βH

Z . It is popularly thought that it cannot be built up because
the integral involved in constructing Z diverges at the origin. Contrariwise, it was shown in (Physica
A 497 (2018) 310), by appeal to sophisticated mathematics developed in the second half of the last
century, that this is not so. Z can indeed be computed by recourse to (A) the analytical extension
treatments of Gradshteyn and Rizhik and Guelfand and Shilov, that permit tackling some divergent
integrals and (B) the dimensional regularization approach. Only one special instance was discussed
in the above reference. In this work, we obtain the classical partition function for Newton’s gravity in
the four cases that immediately come to mind.

Keywords: partition functions; analytical extensions; guelfand’s and gradshteyn’s; classical gravity

MSC: 32A70; 46N55; 82B03; 82B05

1. Introduction

This paper is a continuation and generalization of [1]. It involves mathematical ideas
that were fully explored there (and references therein), in which a canonical ensemble at the
temperature T was concocted for a two-particle gravitation system and fully analyzed. For
brevity’s sake, the accompanying (involved) math will not be repeated here. It is advisable
to have [1] at hand in trying to follow our discussion below. A very important concept is
that of generalized dimensionally regularized partition function Z, which we abbreviate as
GDR[Z . Dimensional regularization works in ν dimensions. We call ν0 the actual physical
dimension. We use the common notation β = 1/(kBT), with T as the temperature. To
simplify numerical computations, we set kB = 1, and also the gravitational constant G
equal to unity. The domain of integration is called D-.

An important point that will emerge below is that of the behavior of the partition
function Z as a function of the inverse temperature β. Z is a sum or integral of terms of the
form exp [−βEM], with Em some energy. Thus, the second derivative dZ/dβ2 is positive.
Thus, its curvature, when plotted against β, cannot change.

Self-gravitating systems exhibit peculiarities that might perhaps defy ordinary com-
mon sense. We highlight here the following: [2]

(1) As gravitational binding gets tighter, the kinetic energy augments and so does, as a
consequence, the temperature;

(2) As gravitational binding gets weaker, the kinetic energy decreases, and as a conse-
quence, the temperature diminishes;

(3) The specific heat becomes negative if the system can freely expand or contract.
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2. Basic Instance: Partition Function for the Distance-Case 0 ≤ r < ∞

The first case is the most important one. Conceptually, it is the most complex of the
four to be addressed. Algebraically, however, it is the simplest instance. We deal with the
gravitational interaction between two masses m and M. The partition function is then:

Z = Zν0 = (−1)ν0 GDR[Zν]ν=ν0 , (1)

and Zν is given by classical phase space (ν dimensions):

Zν =
∫
D

e
−β

(
p2
2m−

GmM
r

)
dνxdν p. (2)

This quantity was already used for three dimensions in [1]. We then have:

Zν =

[
2π

ν
2

Γ
(

ν
2
)]2 ∞∫∫

0

(rp)ν−1e
−β

(
p2
2m−

GmM
r

)
dr dp. (3)

By appeal to the relation below, employed in [1]:

∞∫
0

xν−1e
β
x dx = cos(πν)βνΓ(−ν), (4)

we obtain:

Zν =

[
2π

ν
2

Γ
(

ν
2
)]2

cos(πν)

2
(βGmM)ν

(
2m
β

) ν
2
Γ
(ν

2

)
Γ(−ν). (5)

To apply GDR, we introduce f (ν):

f (ν) =
2πν

Γ
(

ν
2
) (βGmM)nu

ν(ν− 1)(ν− 2)

(
2m
β

) ν
2
, (6)

and in three dimensions:
Zν = f (ν)Γ(3− ν). (7)

Following [1], we Laurent expand around ν = 3 to obtain:

Zν = − 2
3
√

π

(2π2βG2m3M2)
3
2

(ν− 3)
− 1

3
√

π
(2π2βG2m3M2)

3
2×

[
ln
(

8π2βG2m3M2
)
+ 3C− 17

3

]
+

∞

∑
n=1

an(ν− 3)n. (8)

Therefore:

Z =
1

3
√

π
(2π2βG2m3M2)

3
2

[
ln
(

8π2βG2m3M2
)
+ 3C− 17

3
.
]

(9)

Remind that the mean energy < U >= − 1
Z

∂Z
∂β . Accordingly, we obtain:

< U >= −
√

2π5/2(G2m3M2β
)3/2(3C + log

(
8π2G2m3M2β

)
− 5
)

βZ . (10)

For the specific heat C, we use the definition C = ∂<U>
∂T , and we have:

C =
π5/2G4m6M4β

(
3C + log

(
8π2G2m3M2β

)
− 3
)

√
2
√

G2m3M2βTZ
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− β

T

[√
2π5/2(G2m3M2x

)3/2(3C + log
(
8π2G2m3M2x

)
− 5
)

βZ

]2

. (11)

We express a word of caution regarding the plotting the above relations. They involve
big quantities like m and M and also very small ones like G and kB. In order to make sense
of the associated computational mess, we are forced to appeal to a simple scenario with
m = M = G = kB = 1 and set the horizontal coordinate to x = 1/T. Notice that we will be
dealing with gigantic temperatures in the order of 1022 Kelvin. See Figures 1–3.
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20

30
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50

Z

Figure 1. m = M = G = kB = 1, and x = 1/T. Plot of Z(x). Here, x = β, G = m = M = 1. For
small x, we see that Z is negative. These x-values are, of course, unphysical. Z grows as T diminishes.
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Figure 2. m = M = G = kB = 1, and x = 1/T. Plot of < U (x) >. At large temperatures (near the
origin), the binding and kinetic energies, as well as the temperature are large, as prescribed by item
(1) of the introduction. As T decreases, so does the binding and kinetic energies, as indicated by item
(2) of the Introduction.

1.2 1.4 1.6 1.8 2.0
x

-9

-8

-7

-6

-5

-4

C

Figure 3. Plot of the specific heat C(x). Here, x = β, G = m = M = 1. It is negative, as prescribed by
item (3) of the Introduction. The specific heat tends to vanish as the temperature drops, as expected
because of the third law of thermodynamics, that, remarkably enough, is obeyed classically here.

We see that our dimensionally regularized partition function predicts the expected
gravitational behavior.
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3. Partition Function for the Bound System R0 ≤ r ≤ R1

Now, suppose that we deal with two masses: one has mass M and radius R0 and the
second is a point mass m. Both are contained in a spherical box of radius R1. Of course, in
this paper, tidal forces are ignored. The system is bound by construction.

The partition function now turns out to be:

Z =

[
2π

3
2

Γ
( 3

2
)]2 ∞∫

0

dp
R1∫

R0

dr(rp)2e
−β

(
p2
2m−

GmM
r

)
. (12)

We appeal to the well-known result:∫
x2e

a
x dx =

1
6

[
e

a
x x
(

a2 + ax + 2x
)
− a3Ei

( a
x

)]
+ b. (13)

Here, Ei is the integral exponential function [3] and b is an arbitrary constant. We
obtain thus, in three dimensions:

Z =
π

3
2 V1

2

{
e

βGmM
R1

[(
βGmM

R1

)2
+

βGmM
R1

+ 2

]
−
(

βGmM
R1

)3
Ei

(
βGmM

R1

)}

− π
3
2 V0

2

{
e

βGmM
R0

[(
βGmM

R0

)2
+

βGmM
R0

+ 2

]
−
(

βGmM
R0

)3
Ei

(
βGmM

R0

)}
, (14)

where V1 is the volume of a sphere of radius R1 and V0 is the volume of a sphere of radius
R0. For the mean energy, we have:

< U >= −(1/(2R3
1R3

0Z))×

3GmMπ3/2
(
−V1R1R3

0e
GmMβ

R1 (R1 + GmMβ) + R3
1V0R0e

GmMβ
R0 (R0 + GmMβ) + V1R3

0GmM2

β2Ei
(

GmMβ

R1

)
− R3

1V0GmM2β2Ei
(

GmMβ

R0

))
, (15)

and for the specific heat:

C = −3π3/2GmM2β

ZTR3
1R3

0
×

(
−V1R1R3

0e
GmMβ

b + R3
1V0R0e

GmMβ
R0 + V1R3

0GmMβEi
(

GmMβ

R1

)
−

R3
1V0GmMβEi

(
GmMβ

R0

))
− β

T

[
(1/(2R3

1R3
0Z))

3GmMπ3/2
(
−V1R1R3

0e
GmMβ

R1 (R1 + GmMβ) + R3
1V0R0e

GmMβ
R0 (R0 + GmMβ) + V1R3

0GmM2

β2Ei
(

GmMβ

R1

)
− R3

1V0GmM2β2Ei
(

GmMβ

R0

))]2
. (16)

See Figures 4–6.
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Figure 4. Plot of Z(x) . Here, x = β/R1, R0 = 1, R1 = 1000, G = m = M = 1.
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Figure 5. Plot of < U (x) >. Here, x = β/R1, R0 = 1, G = m = M = 1. Note that the size of the
container diminishes as x grows, so that the binding energy has to grow with x.
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Figure 6. Plot of C(x) versus x. Here, x = β/R1, R0 = 1, G = m = M = 1. The binding energy
increases as β grows and the mean energy U is negative. Thus, the specific heat = −β2 dU

dβ is positive.
Notably enough, it tends to obey the third law in a classical scenario, as bound by construction.

4. Partition Function for 0 ≤ r ≤ R1

We now consider the case of two point masses m and M are enclosed in a container of
radius R1. The three-dimensional partition function is now:

Z = −
[

2π
3
2

Γ
( 3

2
)]2 ∞∫

0

dp
R1∫
0

dr(rp)2e
−β

(
p2
2m−

GmM
r

)
(17)

Evaluating the integral corresponding to the momenta, we arrive at:

Z = −4π
5
2

(
2m
β

) 3
2

R1∫
0

drr2e
βGmM

r . (18)
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We see that the resulting integral displays a singularity at the origin. We evaluate this
integral using the Guelfand [4] method for calculating integrals of powers of x, expanding
the exponential in power series around the origin. We are led to:

Z = −4π
5
2

(
2m
β

) 3
2 ∞

∑
n=0

(βGmM)n

n!

R1∫
0

r2−ndr. (19)

We need here the result (see [4]):

R1∫
0

r2−sdr =
R3−s

1
3− s

; s 6= 3

R1∫
0

r−1dr = ln R1 ; s = 3. (20)

Using it, we obtain:

Z = −4π
5
2

(
2m
β

) 3
2
[
(βGmM)3 ln R0

3!
− 3

∞

∑
n=0;n 6=3

(
βGmM

R1

)n R3
1

n!(n− 3)

]
. (21)

Remember that we usually call C the Euler–Mascheroni constant. We now need a
further result that is given in reference [5] and reads:

∑
s=0;s 6=3

ys

s!(s− 3)
=

y3

3!
[ψ(4)− ln |y|+ E1(y)]−

ey

3!
[y2 + y + 2], (22)

so that we finally obtain:

Z = −4π
5
2

(
2m
β

) 3
2

R3
1e

βGmM
R1

3!

[(
βGmM

R1

)2
+

βGmM
R1

+ 2

]
+

(βGmM)3

3!

[
ln(βGmM)− ψ(4)− Ei

(
βGmM

R1

)]}
(23)

where ψ is the poly-gamma function. For the mean energy, one has:

< U >=
GmMπ5/2

Z

(
2R2

1e
GmMβ

R1 + 2R1GmMβe
GmMβ

R1 − 3GmM2β2 + 2CGmM2β2−

2GmM2β2Ei
(

GmMβ

R1

)
+ 2GmM2β2 log(GmMβ)

)
, (24)

and the specific heat reads:

Cv = −4GmM2π5/2β

ZT

(
R1e

GmMβ
R1 −GmMβ + γGmMβ−

GmMβEi
(

GmMβ

R1

)
+ GmMβ log(GmMβ)

)
−

β

T

[
PGmMπ5/2

Z

(
2R2

1e
GmMβ

R1 + 2R1GmMβe
GmMβ

R1 − 3GmM2β2 + 2γGmM2β2−
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2GmM2β2Ei
(

GmMβ

R1

)
+ 2GmM2β2 log(GmMβ)

)]2
. (25)

We plot below these equations in Figures 7–9.

1 2 3 4 5
x

-1000

-500

500

Z

Figure 7. Plot of Z(x) versus x = β for G = m = R1 = M = 1. Results are unphysical for x < 3.35.
At the ensuing very high (big-bang like) temperatures (at which matter does not exist), Z(x) is
negative, and thus unphysical.

1 2 3 4 5
x

-6

-4

-2

2

4

6

U

Figure 8. Plot of < U (x) > for x = β G = m = R1 = M = 1. Remember that the results are
unphysical for x < 3.35. The kinetic energy diminishes as x grows and so does the energy. However,
R1 is too large to allow for statistical bounding in the region here considered.

1 2 3 4 5
x

50

100

150

C

Figure 9. Plot of C(x) for x = β. One has G = m = R1 = M = 1. Again, the results are unphysical
for x < 3.35. The system tends to comply with the third law. It is unbound, since C > 0.

5. Partition Function for R0 ≤ r < ∞

Finally, we confront the twin case of the precedent one (under a y to 1/y transform).
We thus consider the case of a spherical mass M of radius R0 interacting with a punctual
mass m Accordingly, the distance between the two masses has a lower bound but no
upper bound:

Z =

[
2π

3
2

Γ
( 3

2
)]2 ∞∫

0

dp
∞∫

R0

dr(rp)2e
−β

(
p2
2m−

GmM
r

)
(26)
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Evaluating the momenta integral, we obtain:

Z = 4π
5
2

(
2m
β

) 3
2

∞∫
R0

drr2e
βGmM

r . (27)

This integral is divergent and can be evaluated as prescribed in reference [4], that is:

Z = 4π
5
2

(
2m
β

) 3
2 ∞

∑
n=0

(βGmM)n

n!

∞∫
R0

r2−ndr, (28)

leading to:
∞∫

R0

r2−sdr = −
R3−s

0
3− s

; s 6= 3

∞∫
R0

r−1dr = − ln R0 ; s = 3. (29)

Using again the result (20), we obtain:

Z = 4π
5
2

(
2m
β

) 3
2
{
(βGmM)3

3!

[
ψ(4) + Ei

(
βGmM

R0

)
− ln(βGmM)

]
−

R3
0e

βGmM
R0

3!

[(
βGmM

R0

)2
+

βGmM
R0

+ 2

]. (30)

For the mean energy, the result is (here a = R0):

< U >= − 1
3βZ 2

√
2π5/2

(m
x

)3/2(
6a3e

GmMx
a − 3a2GmMxe

GmMx
a − aGm2M2x2e

GmMx
a −

2aEi((GmMx)/a)G2m2M2x2 − 2Ei((GmMx)/a)GGm2mM3x3 − 2G3m3M3x3+

2G3m3M3x3e
GmMx

a + 3G3m3M3x3Ei
(

GmMx
a

)
−

3G3m3M3x3ψ(0)(z) + 3G3m3M3x3 log(GmMx)
)

. (31)

For the specific heat, we have:

Cv = − 1
3axTZ

√
2π5/2

(m
x

)3/2(
−30a4e

GmMx
a + 21a3GmMxe

GmMx
a + a2Gm2M2x2e

GmMx
a −

4a2G2m2M2x2e
GmMx

a − 4aGGm2mM3x3e
GmMx

a −

8aG3m3M3x3 + 4aG3m3M3x3e
GmMx

a − 4G2Gm2m2M4x4e
GmMx

a +

4G4m4M4x4e
GmMx

a + 3aG3m3M3x3Ei
(

GmMx
a

)
−

3aG3m3M3x3ψ(0)(z) + 3aG3m3M3x3 log(GmMx)
)
+

β

T

[
1

3βZ 2
√

2π5/2
(m

x

)3/2(
6a3e

GmMx
a − 3a2GmMxe

GmMx
a − aGm2M2x2e

GmMx
a −

2aEi((GmMx)/a)G2m2M2x2 − 2Ei((GmMx)/a)GGm2mM3x3 − 2G3m3M3x3+
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2G3m3M3x3e
GmMx

a + 3G3m3M3x3Ei
(

GmMx
a

)
−

3G3m3M3x3ψ(0)(z) + 3G3m3M3x3 log(GmMx)
)]2

. (32)

We plot the pertinent results below. Because of duality, our graphs closely resemble
those of the precedent Section. See Figures 10–12.

1 2 3 4 5

-1000

-500

500

Figure 10. Plot of Z(x) for x = β G = m = R0 = M = 1. Results turn out to be unphysical for
x < 3.35, as in the previous case.
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-2

2
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U

Figure 11. Plot of < U (x) > for x = β and G = m = R1 = M = 1. It closely resembles the
companion graph of the precedent case. However, R0 is too large to allow for statistical bounding in
the region here considered.

1 2 3 4 5
x

50

100

150

C

Figure 12. Plot of C(x) for x = β G = m = R1 = M = 1. C > 0 diverges in the unphysical x−region.
It is positive in the physical one. The third law is complied with.

6. Conclusions

In this work, we showed how to deal with the partition function for gravitational
systems in four different scenarios:

• The last two of the four scenarios envisioned here are linked by the twin transform
from y to 1/y.
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• Even if our treatment is classical, the third law of thermodynamics is obeyed by the
specific heat in all cases.

• It is remarkable that at a classical level, one can detect that at too high temperatures,
statistical mechanics fails because the partition function becomes negative. We know
now that at these Ts, matter cannot exist.

• Transformation from y to 1/y: we might have discovered a transform that conserves
the physics in the statistical mechanics of gravitation.
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