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We investigate the high temperature fate of four-dimensional gauge-Yukawa theories featuring short
distance conformality of either interacting or noninteracting nature. The latter is known as complete
asymptotic freedom and, as templates, we consider non-Abelian gauge theories featuring either two singlet
scalars coupled to gauged fermions via Yukawa interactions or two gauged scalars with(out) fermions.
For theories with interacting fixed points at short distance, known as asymptotically safe, we consider two
calculable examples. Exploring the landscape of safe and free theories above we discover a class of
complete asymptotically free theories for which symmetry breaks at arbitrary high temperatures. In its
minimal form this class is constituted by a theory with two fundamental gauged scalars each gauged under

an independent group.
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I. INTRODUCTION

The phenomenon of symmetry nonrestoration (for a review
see for example [1,2]) was first noticed by Weinberg [3] and
then studied in detail by Mohapatra and Senjanovic¢ [4,5] who
were the first ones to successfully apply the mechanism to
phenomenology. Since then it has been employed in cosmo-
logy to address various issues like the monopole [6-8], the
domain wall [9], and false vacuum problems. The phenome-
non has also been invoked for other phenomena including
baryogenesis [10-15] and inflation [16].

Symmetry nonrestoration at high energy can occur also
due to the concomitance of other mechanisms such as the
presence of large charges that can induce either Bose-
Einstein condensation or superconductivity. This mechanism
has been used in the literature [17-24]. For example a large
charge can still be realistically related to the yet to be
experimentally determined neutrino lepton number [25-30].

“borut.bajc @ijs.si
flu go@fisica.unlp.edu.ar
*sannino @ cp3.sdu.dk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2021/103(9)/096014(20)

096014-1

Symmetry nonrestoration at high temperature cannot
occur in supersymmetry [31-33] unless we have flat
directions [34,35] and/or nonzero fixed charge.

For nonsupersymmetric quantum field theories sym-
metry nonrestoration has been tested via different methods
in [36-41] for global symmetries and nonrestoration for
local symmetries have been investigated in [42]. The results
seem to support the existence of symmetry nonrestoration
although these claims have been challenged in [43-47].

Analyses including generalization to different space-
time dimensions including ¢ dimensions away from four
are summarized in Refs. [48-51]. More precisely, sym-
metry nonrestoration at high temperature is possible also in
lower [48,50,51] and noninteger dimensions [49].

A common feature of all the theories studied so far for
symmetry nonrestoration at high temperature is that these
can be viewed as effective theories without a well-defined
ultraviolet completion. This fact implies that the arbitrary
large temperature limit cannot be taken.

In this work we go one step beyond with respect to what
has been done so far by analyzing Weinberg’s symmetry
nonrestoration hypothesis within models that are well
defined at short distance. These are, according to Wilson
[52,53] and Weinberg [54] classification of well-defined
theories, of either asymptotically free or safe nature.
Within these theories it is consistent to consider the infinite
temperature limit. It is worth recalling that for these
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theories short scale conformality guarantees the existence
of a well-defined theory at high energy making them UV
complete. Asymptotic safety for gauge-Yukawa theories
was discovered in [55] with the corrections to the quantum
potential presented in [56]. Interestingly, once asymptotic
freedom is lost in the gauge-fermion sector, within pertur-
bation theory, the fundamentality of the theory can only be
reinstated via Yukawa interactions. This implies that
elementary scalars are needed, for the first time, to tame
the high energy behavior of the theory. The discovery of
asymptotic safe quantum field theories [55] has led to an
ongoing number of theoretical [57-61] and phenomeno-
logical investigations [62—69], including the recent discov-
ery of safe nonsupersymmetric grand unified theories of
[70] which naturally integrates and complements the
supersymmetric story of [58].

For the issue of symmetry nonrestoration at arbitrary
high temperatures we consider, at first, the landscape of
complete asymptotically free non-Abelian gauge theories
that feature either two singlet scalars coupled to gauged
fermions via Yukawa interactions or two gauged scalars
without Yukawa interaction.

The first model we encounter of complete asymptotically
free theories for which symmetry breaks at arbitrary high
temperatures is constituted by two gauged scalars trans-
forming according to the fundamental representation of two
distinct gauge groups with fermions also transforming in the
fundamental representation and without Yukawa interactions.

To investigate the high-temperature fate of global sym-
metries for asymptotically safe theories we consider the
Litim-Sannino model of [55] and one of its variations that
has been used for perturbative safe extensions of the standard
model [71]. We show that for these examples the safe
quantum global symmetries are restored at high temperatures.

The paper is organized as follows: In Sec. II we study
various classes of complete asymptotically free theories.
We start in Sec. II A with gauge singlet scalars and show
that their thermal mass is always positive in the UV. Then in
Sec. II B we first show various examples of SU(N,.) gauge
groups with scalars in the fundamental representation, for
which the symmetry restores at high temperature. Then we
study a theory of a product of different SU(N) gauge
groups in two versions: both for a pair of scalars in
fundamental representation and for a pair of scalars in
adjoint representations we show that for a particular choice
of model parameters the symmetry can be broken at
arbitrary high temperature. Then in Sec. III we study
two examples of asymptotically safe theories both of which
restore their global symmetries at high temperature. Three
Appendixes collect all the of formulas needed for the
computation. Appendix A summarizes the calculation of
the one-loop renormalization group equations and the high
temperature thermal masses for a generic gauge-Yukawa
theory. Appendixes B and C give all of the computational
details used in Secs. Il A and II B.

II. COMPLETE ASYMPTOTICALLY FREE
THEORIES AT HIGH TEMPERATURE

Before embarking on our main quest, which is to
investigate the symmetry (non)restoration phenomenon
for complete asymptotically free quantum field theories,
we briefly summarize Weinberg’s (nonfree) model mechan-
ics. In its most minimal form the model features two scalars
with the following quartic potential:

M A A
sz¢?+1¢§—§¢%¢% (2.1)
with discrete Z, X Z, symmetry ¢p; — —¢; and ¢, = —¢h».
For
Ao >0, 2 <y (2.2)
the model is bounded from below. At high temperature the
following correction arises [3]:

2

AV = L (B = D) + (3 — D).

% (2.3)

With A > 31, [but with 4; satisfying (2.2)] the field ¢,
acquires a negative thermal mass squared at high temper-
ature which yields a nonzero vev (¢,) # 0. Therefore in this
case the second Z, breaks at sufficiently high temperatures.
This theory is, however, not UV complete since the scalar
couplings increase with the energy. Assuming a physical
cutoff, for temperatures below this cutoff one therefore
observes the phenomenon of symmetry nonrestoration.

Because the theory is limited by a physical cutoff we
cannot ask the relevant question of whether the symmetry
remains broken at arbitrary high temperatures. This is
exactly what our work wishes to achieve, i.e., what is
the ultimate fate of the symmetry in a truly UV complete
theory (up to gravity) at arbitrary large temperatures.

Here we analyze complete asymptotically free theories
that are natural UV completions of Weinberg’s model.
These require the presence of gauge fields and the gauge
sector to be asymptotically free given that it is this sector
that is the one responsible to drive the Yukawa and scalar
couplings to be asymptotically free as well.

We divide our theories in whether they feature gauge
singlets or gauged scalars.

A. Symmetry restoration with singlet scalars

To start with we consider an SU(N,) gauge group with
N;= Ny + Ny, Dirac fermions in the fundamental rep-
resentation coupled to the scalars ¢, via the following

Zy x Z, symmetry' (dy = —p. Wi — iysyy) preserving
Yukawa terms:

'In some cases the symmetry of the theory could be larger
than Z,.
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Nfl Nfz

Ly = ¢ Zylil/_/nl//n + ¢» Z)’zil/_/zill/m- (2.4)
i-1 i=1

Because we are searching for asymptotically free solu-
tions we must have that a, o 1/ for large 1 = log (u/u)
with u the renormalization scale and p a reference scale.
Complete asymptotic freedom requires that all couplings
(2.5) must vanish at infinity at least as fast as a, and
therefore their scaling must be proportional to 1/7* with
a > 1. Additionally the requirement of a negative thermal
mass given in (A19), necessary for symmetry breaking,
implies that at least some scalar quartic couplings cannot
decrease faster than the gauge coupling, i.e., they must
approach zero as 1/t* with b < 1. Therefore, for the
purpose of our work, it is sufficient to investigate the fixed
flow solution according to which all couplings (2.5) vanish
at infinity as 1/¢ [72]. This observation greatly simplifies
the following analyses by transforming a set of nonlinear
and coupled first order ordinary differential equations into a
system of nonlinear and coupled polynomial equations. In
practice, by defining (g is the gauge coupling)

a —i a, = y’z a; = A a; = A
9 (471.)2’ yi T (47[)2’ A T (47[)2’ A (4”)2
(2.5)

(i =1, 2) we will search for solutions of the asymptotic
form

’ a:g7y1’)’2’ﬂl,ﬂz,/1,n- (26)

with constant &,,.

We are now ready to investigate the first relevant
examples with singlet scalars and then we will generalize
the results to a wider class of theories.

1. SU(N,) with two singlet scalars
and fundamental fermions

In this model, described in detail in Appendix B, we
consider two singlet scalars coupled through Yukawa
interactions to Ny, (N,) Dirac fermions in the fundamental
representation of SU(N,.). We further allow for N, Dirac
fermions in the fundamental representation of the gauge
group that are inert with respect to the scalars, i.e., do not
possess Yukawa couplings.

We now provide an elegant proof that at high temper-
ature this theory, if completely asymptotically free, cannot
break any symmetry. Let us start with the thermal masses
for the scalars that at one loop read (B18)

2

2T = (47)2 ——
m;(T) = (4x) DlogT

(3@, — @ +2N.Nya,),  (2.7)

written in terms of (2.6) couplings. It is sufficient to
consider one of the two scalar masses to be negative.
Here we choose that to be m? which requires
&,1 — 2NCNf]5{yl > 3&,{] > 0. (28)
Under the assumption that there is a completely asymp-
totically free solution we have (B14)
—a&;, = 18a; +2a; — 8N Ny a5 + 8NNy, a;, (2.9)
for the relevant scalar coupling as a function of the other
couplings. The general form of the renormalization group

equations (RGE) can be found in Appendix B.
Rewriting (2.9) as

2(a; — 4NNy a;,) + @, + 18@; + 8N Ny, ay @, =0,
(2.10)

we notice that every term except the first one is positive.
This means that to satisfy this equation, the first term must
be negative for the fixed flow solution to be possible.
However, since the first term can be rewritten as

&% _4NCNf1a§1 = ((Nxﬂ _2NCNf1&,V1)(aﬂ +2N0Nfla~"1)

+4N.N; (N.N; —1)a; (2.11)
the simultaneous requirement of the presence of a negative
mass squared term implies that also the first term is positive
due to (2.8).

We have therefore shown that (2.10) cannot have a
solution and that the symmetry must be restored for this
model at high temperature once complete asymptotic
freedom is enforced.

2. More general result for singlet scalars

Let us consider the more general scalar potential

V=L 5 O + V) (212)

TN

where ¢ is a real vector with d; components. The global
symmetry at the potential level over ¢ is O(d ). Under this
group ¢ transforms with a d, x d,; orthogonal matrix O of
O(dy) as

¢ = 0¢. (2.13)
We further consider an arbitrary gauge group with

Weyl fermions transforming according to an arbitrary gauge
representation compatible with asymptotic freedom [73].
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The Yukawa terms written directly in terms of the Weyl
fermions” read

‘CYukawa = ¢al//z YUWJ +Hec. + ['Yukawa()(v l///)- (2]4)
Under the assumption that
w' = Uy, 04U YU, =Y, (2.15)

with O a rotation matrix that is part of a subgroup of O(d,)
and U a unitary transformation with i, j,k =1,...,N f with
Ny the number of Weyl matter fields, the Yukawa terms
preserve the resulting subgroup of O(d,). The information
on which fermions couple to ¢ is clearly hidden in the
Yukawa matrix. The last unspecified Yukawa terms in
(2.14) contain interactions of the y scalar fields with the
Weyl fermions v’ that are not coupled to ¢». We now show
that the thermal mass of ¢ cannot be negative at high
temperatures when the theory is required to be asymptoti-
cally free also in all couplings.
Let us consider the thermal mass

2 2 T2
T) = (4
(1) = (7)1 ioa T

((d¢ -+ 2)1 - 77]](1( -+ Tr(ﬂf’l)),

(2.16)
where we used
Tr(Y*y?) = 6Tr(Y]Y,). (2.17)
and defined as usual
i oo
’1:(4”)2;’ nij = (471') l Y :47Tt17 (218)

with 1, Mijs Y¢ constants.

In order not to restore the symmetry carried by the
potential term and the Yukawa relative to ¢b the thermal
mass (2.16) must be negative. This implies

ke — Tr(f/ 1) > (dy + 2)4 > 0. (2.19)

Let us now compute the RGE for 1 relative to achieving

the fixed flow solution:

z(ﬁijﬁlj 2Tr(f] ? ? }71))
+2(dy+8)2% + 2+ 4Te(Y]¥)) =0,  (2.20)
where we used
’We use the supersymmetric notation: y;y; = y/iT(iaz)l//j

(=wp).

Tr(YY YY) = AS,,0.4 + BSucOpg + CSuabpes  (2.21)
which follows from the symmetry properties of the Yukawa
matrices (2.15).

To obtain a solution, the first term must be negative (all

the others are positive). However, we have

ﬁijflij_
(’Ykk—Tr( ))(Ukk —|—Tr(Y ')
+2 iy + (Te(V]¥))? = 2Tr(Y]7,)2). (2.22)

i<j

The first term on the right-hand side is positive due to the
assumption of the occurrence of a negative thermal mass
squared (2.19); therefore, the only possible negative term
could be the last one. Since the above traces are invariant
under unitary rotations of the Hermitian matrix ¥ If/l, we
are free to consider the basis with diagonal

(Yi7)),; = 3.6, (2.23)
so that (2.22) becomes
(Tr(Yi¥)))? 2Tr(YTY1)
= Zd )(dim(R),) = 2)71,
i
+ 22 dim(R,) dim(R},)37,57,  (2.24)

u<p’

with ¢ and g’ running over the fermion representations.
For nongauge singlet fermions we have dim(R,/) > 2 and
therefore the right-hand side is positive. For gauge singlet
fermions the only solution compatible with a UV well-
defined theory is the one for which the Yukawa coupling
vanishes identically and therefore the previous equation
does not apply.

Therefore there is no solution to the RGE for 1. Or, in
other words, if a fixed flow solution exists, it cannot have a
negative thermal mass. The previous example with a Z,
symmetry is included here by assuming the original
symmetry to be simply a Z, for dy = 1.

B. Exploring symmetry nonrestoration
with gauged scalars

So far we have shown that a great deal of gauge theories
with scalar gauge singlets do not support symmetry non-
restoration at arbitrary high temperatures. Does this phe-
nomenon persist when considering gauged scalar fields?
This is the question we will answer in this section. To
simplify the discussion we will consider theories without
Yukawa terms. We will find an example with the opposite
behavior, i.e., we will explicitly present a theory featuring
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two different gauge groups displaying simultaneously com-
plete asymptotic freedom and symmetry nonrestoration.

To motivate the introduction of a second gauge group we
will first show that with a single gauge group symmetries
will restore at arbitrary high temperatures with(out) fer-
mionic matter fields.

Although the models in this section share some features
with the ones investigated in [74] the main difference
resides in the fact that we are interested in symmetry
nonrestoration at arbitrary high temperatures. This means
that we investigate theories near their UV fixed point, while
in [74] the authors concentrate on symmetry nonrestoration
occurring near interacting IR fixed points.

1. SU(N,) with N, fundamental scalars
The SU(N,)xSU(N;)xSU(N,) symmetric Lagrangian
.3
is

1 -
L= =5TrF,F* +Tr(QipQ) + Tr(D*SD,S")

—o(TrSS")> — uTr(SST)? (2.25)
with the fields transforming as
Q~(N. Ny 1), S~ (N.,1,Ny). (2.26)

The scalar thermal mass at high temperature is

2
my(T) = (4r)?

<4(NSNC + 1) +4(N, 4+ N,.)A,

241log T
NZ-1
+3 N : &) (2.27)
where we introduced, following [75],
yi yi G
v=@nPTh u= (@2 P = (4P
(2.28)

with constant ;11,2, a.

The positivity of (2.27) follows from boundedness
arguments. In fact, the 7 = 0 potential is bounded from
below if and only if [75]

Jy>0: N+, >0, (2.29)

Iy <0: 1+, <0. (2.30)

Since

If N . = N, =4 one can add to the potential a new invariant
wdetS + w* det S.

(1) 1, >0:
(N9N0+1)Z] +(Ns +Nc)j'2

1 ~ - 1\~
:F(NSNC—}_ 1)(Nydy +4) + (Nz—ﬁ>/12 >0

(2.31)
() 1, >0:

(Nch+ 1);11 + (NS +Nc);12
= (NN + 1) (A1 + ) + (N; = ) (N, = 1) |2 2 0
(2.32)

we can now conclude that the thermal mass is always
positive

m3(T) > 0 (2.33)

i.e., the symmetry is restored at high temperature.

2. SU(N,) with two fundamental scalars

One of the problems of the previous model was that there
was too much symmetry in the scalar potential. We now
take the case of two scalars, Ny = 2, but instead of scalar
SU(2) the symmetry of the potential will be just a discrete
symmetry. We can take either a single Z, for even N, = 2n
or Z, X Z, for odd N. =2n + 1.

In fact, we note the following:

(i) Z, C Z,, and foreven N. = 2n the center of SU(N.)

isZ,, andso Z, C SU(N.,).Inother words, acommon
@; — —@; is already present. So in this case there is
only one extra Z, possible, say ¢, — —¢;. In other
words, besides the gauge SU(2n) symmetry there is
also a Z, symmetry @; — —;.

(i) For odd N. =2n+ 1 there is no Z, subgroup of
SU(N.). In fact using the Levi-Civita tensor the
invariant out of N. = 2n + 1 fundamentals is pos-
sible. Here it is thus possible to have an extra
Z, x Z, symmetry for two fundamentals.

One way or another this means that each term of the
potential can have only an even number of fundamentals ¢,
and antifundamentals ¢} and an even number of funda-
mentals @, and antifundamentals @3:

Momy o Moo o .
V= 31(6/)1 “¢1)? +32(¢2 “§2)* + (P} - 61) (85 - $2)
s S s S 2'5—'*—'2/12—'*—’2
+ 44(07 - 02) (@5 - §1) +?(€01 X7 +E(€0z “§1)

(2.34)

with 1,34 real and in general As complex.
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By taking
167%a 162%];
F=-22 =204 (2.35)
Nt Nt
with constant &, ;1[, and
~ 1 ~ ~
the solutions to the RGE (see Appendix C 3) are
ey
- 6a— o w2487 —12a+ 1
Ay = T A3+ AL = 16
(2.37)
2
5 6 — 1+ a,V24a* —12a+ 1
A_;,_ = )
4
=1, I3=i=0 (2.38)
acceptable only for & > (3 ++/3)/12.
The thermal potential at large N, is
2 ~ ~
AVr = (42 gior (0 +Ta) +38) 3 - )
+ (200 +13) +33)(5 - §2)). (2.39)

The masses are quite symmetric and the search for
symmetry restoration boils down to looking for negative
J3 = —| 3| which leads to a negative mass square for @,
i.e., a negative combination

126 -1 2(\/24a2—12a+1

— 17,12 1
: WP ) @40

for

3+ /3 . %@ —wa+ 1
a> ﬁzf, 0s|z3|s\/a1—’éa+. (2.41)

The function (2.40) is minimized for

243 — 12a + 1

e (2.42)

. 1
T = —
|3‘ \/z

which is however not enough for a negative mass square.

3. SU(N,,) x SU(N,,) with fundamental scalars:
Symmetry breaks at high temperatures

The model we will study now is similar to the previous
one, but now we have two simple groups, SU(N,,)x
SU(N.,,), so that each g; is in a fundamentals representa-
tion of its SU(N ;) and a singlet under the other one. The
most general potential is

/1 t I /1 bt S st 24 s S
V= 31(% p1)? +32((P2 “§2)> = U@ - 01) (5 - §2)-
(2.43)
Defining first
1672 16727,
=1,2: ¢ = L Aj=—", 2.44
l gl N”t NClt ( )
16727

A= 2.45
\/NCIN02t ( )

with constant &;, A;, 4, the thermal effective potential
becomes at large N,

T? ~ N
2 _ c ~ — 2
24logT<< (ﬁl Nclﬂ>+3a1>((p1 1)
4 Ncl"‘ ~ Sy >
c2

Introducing the new variables

AVT = (471')2

(2.47)

one finds the following solution of the RGE (see
Appendix C4):

a =0, (2.48)
y— 65‘+4_ I (2.49)
242 = 11—6(24552+ —12a, + 1), (2.50)
valid for
a, > (3+V3)/12 (2.51)

~ “The other possible solution &, = 1/4,1, = % (A - %&_)2 +
2% =5 (48a% — 1) describes a T =0 potential which is un-
bounded from below.
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We will now prove that this solution supports symmetry
nonrestoration at arbitrary high temperatures.

Denoting by u? the coefficient in front of (; - ;) in the
parentheses on the right-hand side of (2.46) we have

12a, —1 . N~
2 + c2

=—+2/_-2 A, 2.52
My ) + 24 N, ( )

R2a, -1 _- N~
= 20 -2, 7 2.53
Ha 2 - N, ( )

We are searching for positive

A=A (2.54)

and, up to redefinitions of what is 1 and what is 2, we can
take

~ 24&% — 124 1 -
1= —\/ wmo il e (259)
16
so that
126, —1 \/24&2 —12a, +1 ; Ny
2 + + + 2 2
/’tl 2 ( 16 | | + Ncl| |>’
(2.56)
12, —1 \/24&2 —12a, +1 ; Nej =
P s )] [y s S ) { Cpy sy T
=t ( = AP =[5
(2.57)
Minimizing the expression for y? we obtain
. 1 24a% — 12a, + 1
A= + a . (2.58
| | ]+NC1/NL'2 16 ( )
The minimized mass parameter
12a, -1 24a% — 12, +1 N.
2 2 - 1+-2 (2.59
) 16 N, @)

can now be negative by a suitable choice of number of
colors.

Let us now demonstrate that the previous solution leads
to a bounded potential. The latter occurs if

My =22 >0 (2.60)

which can be rewritten first as

=2 -22>0 (2.61)
and then as

(6, — 1) 2433 — 123, +1 _ 12&
16 16 16

(2.62)

which is indeed positive.

Finally, requiring equal gauge couplings in the large N;
limit
means that the original not rescaled couplings satisfy the
relation

Nclg% = chg%' (264)

This is achieved by the following suitable choice of

number of matter fermions:

Nfl Nf2
= ) 2.65
Ncl NC2 ( )
Because of (2.51), they must satisfy
1 Ny 11
—243V3) <t <—. 2.66
S2+3v3) <L < (2.66)

ci

We arrive at the result, similar to Weinberg’s model, that
only one thermal mass is negative.

4. The IR story of SU(N,,) x SU(N,,)
at nonzero temperature

Interestingly the model of the previous subsection can
feature also an IR Banks-Zaks fixed point, more precisely,
a fixed circle [76]. This can be achieved by tuning the
number of fermions to maintain both gauge couplings
equality and the occurrence of a perturbative IR fixed point.
Once this is achieved the remaining equations for the IR
fixed point values® are

3
0 =243 +22% = 60,4 + 50{%, (2.67)
2 2 3 2
0= 243 + 242 — 6ard; + a3, (2.68)
0 = 2(11 + /12)/1 - 3(&1 + az)/l. (269)

°N.B. These values should not be confused with the tilded 1 /t
coefficients used for the fixed flow solutions in the UV.
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The solutions are

/1+:§a+, (2.70)
2+ 27 :%ai, (2.71)

if and only if
a_=0. (2.72)

The thermal effective potential is
T2 ch Sy >
AVy = LYRe 21 A4 - Nclll +3a, | (¢ ¢1)
Nc] Sy o
c2

so that the thermal masses are proportional to

N,
W= 6a, +21_ —2,|=24, (2.74)
Ncl
N,
1= 6a, — 24 =2, /=22, (2.75)
NcZ
Searching again for the branch
3 5 2
A= |4, A= — §a+—|/1| (2.76)

we have first

3 N
2 _ _ 22 112 c2
Ui = 6a, 2<\/2oz+ |A]* + NC]|/1|>, (2.77)
13 IN
2 22 1912 _ cl
H; = 6o, + 2( 205+ \/1| N62|/1|>. (2.78)

p? is minimized for

1 3
W=—— 22 2.79
| | 1+N61/NC22a+ ( )
so that the thermal mass
NCZ
Ut =6a, -2 Eai 1+ N, (2.80)

is negative for (but still in the Veneziano limit N_.; — o)

> 5. (2.81)
Since

Py iai -0 (2.82)
the parameter choice describes a T = 0 potential which is
bounded from below.

We have therefore found an example in which symmetry
nonrestoration occurs near an IR fixed point which is more
minimal than the one presented in [74].

5. Another example of symmetry breaking at high T:
Two adjoints in SU(N,;) x SU(N,,)

This model is similar to the previous one, except that
adjoint scalars are considered instead of fundamental
scalars. The details are described in Appendix C5. The
most general quartic potential is

P N Sy S e sy
V= ZTer + ZTrE2 +7 (Trzy)” + n (Trx3)
A
- ETrZ%TrZ%. (2.83)
We redefine the couplings as
A, 1 A 1
12 = (4n)? 16'122 X —, Ao = (4n) ng’z X
, 1.2
(2.84)
pl 1 a, 1
s L s
(2.85)

with all tilded quantities constants, and eventually we will
take the large N, , limit.

As shown in [75], the potential (2.83) is bounded from
below if the parameters satisfy the following inequalities:

/

4 A B\
A+>0 (1<k<N.), (4 +22) (4p+2) > 2.
k; i k, ks

(2.86)
If ; > 0, then it is enough to check the above for k; = N,

while if 4} < 0, k; = 1 suffices. However, for large N.., the
second case is impossible, since
Ai+A>0-2>0 (2.87)

which is in contradiction with the original assumption
of 2; < 0.
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So the only possibility is just 2} > 0, 4; > 0:

I+, >0, L+Ab>0 (A +1)0h+1)> 7%

(2.88)

The thermal mass is

Vi = (4n)?

r 2y + 27 Ne, A4 12, | Tre?
- o
48logT \\"' TN, LR

T
+ (zz + 20—+ 12a2> Trz§>. (2.89)

€2

We provide here an existence proof for a negative
thermal mass with parameters satisfying the boundedness
of the potential constraint.

First one can show that only one sector would not work,
as expected. This means that if 1=a, =1, = 1’2 =0,
there is no solution of the above fixed flow RG equations
for real &, A, A} assuming 1, 4+ 1] > 0 (boundedness) and
2y + 21} < 0 (negative thermal mass).

However, a solution for bounded potential with negative
thermal mass squared exists for

) =0 = 2 +2\/§, (2.90)
I=72=2, (2.91)

di = 12(2 + V2) - 26, (2.92)
Jp = 16, (2.93)

J= \/ 120(2 + v/2) - 392, (2.94)
% = 16. (2.95)

€1

This is therefore another relevant example of symmetry
nonrestoration at arbitrary high temperature.

III. ASYMPTOTIC SAFETY AT HIGH
TEMPERATURE

Another way to achieve a UV complete theory, up to
gravity, is via the presence of an interacting ultraviolet fixed
point in all couplings. In fact, one can have a combination
of safe and free couplings for the model to be well defined
at all scales.

Due to the fact that the discovery of asymptotically safe
quantum field theory is relatively recent [55] the issue of
symmetry nonrestoration for this relevant class of models
has never been investigated before.

We will consider here examples classified according to
whether we can reuse part of the results and reasoning
employed above for the complete asymptotically free theories
or we need a separate in-depth analysis of the safe model.

For the first class we consider theories structurally
similar to the one considered above albeit with sufficient
matter fields such that asymptotic freedom is lost while
assuming that perturbative asymptotic safety occurs.

To transform the previous proof valid for asymptotically
free theories to the equivalent potential asymptotically safe
case we need to

(i) replace all tilded quantities with untilded ones;

(ii) eliminate the log7 in the denominator of the

thermal mass;
(iii) replace the 167°da;/dt in the left-hand sides of the
RGEs with a zero.
This means that in the theories investigated in the previous
section, once asymptotic freedom is lost and potential
asymptotic safety appears, symmetry restoration is a must.

A. Explicit examples of asymptotic safety

We now consider explicit constructions of asymptoti-
cally safe quantum field theories that cannot be reduced to
the example above because they either have multiple gauge
singlet scalar quartic terms or/and have gauged scalars
with nonzero Yukawa couplings. Interestingly we antici-
pate that in both examples the symmetry is restored at high
temperature.

1. The Litim-Sannino (LS) model

The first model we consider here is the one put forward
in [55] in which asymptotically safe quantum field theories
and their structure was first discovered and understood.
The Lagrangian reads

L= —%Tr(F"”F;w) + Tr(QiPQ) + Tr(9,H " H)

+yTr(QLHQg + OrH'Q})

—uTr(H'H)* — v(TrH H)?, (3.1)
with symmetry
G =SU(N¢) x SU(Np) x SUNp) x Uy(1), (3.2)
under which the fields transform as
O~ (N¢,Np. 1,1), (3.3)
O~ (Nc.1.Np. 1), (3.4)
H~ (1,Np,Ng,0). (3.5)

We assume the Veneziano limit, needed to ensure the
rigorousness of the result
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Ne 11
NpNe = 00, —E=""1te,

No=3 (3.6)

with € <1 to control the size of the UV fixed point
couplings that at the relevant order in perturbation theory
read

gzNC 26

= =_= 2 i
a, (4n)? =€ + O(e?), (3.7)
YNe _ 4 4 o) (3.8)
a, = =—c¢ €), .
Y (4n)? 19
o MNF _ \/Z— 1 2
ay = ST e+ O(e?), (3.9)
N? 1
a, = v T 2v/23 — /20 + 623 |e + O(e?).
(4r) 19
(3.10)
The 72 term of the H mass squared is
T2
m% = (4ﬂ)2ﬂ(8ah + 4% + 2(Zy)
~9.7¢T? > 0, (3.11)

so that the symmetry is restored at high temperature.
Therefore we arrive at the conclusion that the original
model of an asymptotically safe quantum field theory is
also safe with respect to global symmetries.

B. A gauged scalar variant of the LS model

Here we consider an interesting example featuring a two-
scalar sector with one of the scalars being gauged while the
full theory remains asymptotically safe [71]. This model
allows for a relevant test of symmetry (non)restoration and
the Lagrangian of the model reads

L= —%Tr(F’““F,w) + Tr(QipQ) + Tr(9,H )" H)

+Tr(D, 5 Dr3) + (% Tr(QHQ) + H.c.>

—u,Tr(H'H)? — u; (TrH'H)?

—w,Tr(S78)? —w, (Tr87S)?, (3.12)

where the fields transform under the gauge and three global
symmetries (Ng = N¢ — 2)
G=SU(N¢)xSU(Np); xSU(Ng)gxSU(Ng),  (3.13)

as

O~ (N¢,Np, 1,1), (3.14)
O~ (N¢,1,Ng, 1), (3.15)
H~ (1,Np,Ng, 1), (3.16)
S~ (Nc, 1,1,Ny). (3.17)
For small and positive
ezx—Z—l—; él];/\’—sc_)x_z_%’ (3.18)

the following relations are satisfied [71] at the UV fixed
point:

Nng 25
= = , 3.19
%= 4n)? T 18° (3.19)
Ncy2 24
= =— 3.20
ay (4r)? 25 Ay ( )
u ZN%ul :—6\/224—3\/ 19+6\/22a (3 21)
ne (471)2 100 9 '
NFM2 3
= =—(v22-1 22
auz (471_)2 25( )a!]’ (3 )
a, ENZCWZ‘ _3EY3UVa-3) a, (3.23)
' (4n) 1612
Ncw2 1
= =—(2-=-V2)a,. 3.24
=y " 16V 029

Following the analysis of the LS case but now generalized
to both scalars we arrive at

2

T
mi(H) = (471)25( a, + 16a, +8a, ) ~38.4eT* > 0,

(3.25)

T2
m(S) :(471)2ﬁ(8acw2 +4a,, + 3a,) ~37.2¢T* > 0.

(3.26)

This implies that no symmetries can be broken at high
temperature.

IV. CONCLUSIONS

In this paper we analyzed Weinberg’s symmetry non-
restoration idea within UV complete theories of either
asymptotically free or safe nature.
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The reason why these are natural models to investigate is
that only for UV complete theories it is consistent to
consider the arbitrary large temperature limit.

Safe and free theories share short scale conformality that
insures a well-defined behavior at arbitrary high energies.
Because of this, they belong to a special subset of all
possible quantum field theories. The remaining field
theories should be considered as effective low energy
descriptions that cannot be complete without quantum
gravity possibly modifying their high energy behavior.
In any event, given the fact that we do not yet have a
complete theory of quantum gravity, for these theories the
symmetry nonrestoration test cannot be performed at
arbitrary high temperatures.

As complete asymptotically free templates we com-
menced our investigation with SU(N.) gauge-Yukawa
theories featuring N, fundamental Dirac fermions and
two singlet scalars coupled via Yukawa interactions to
the fermions. We demonstrated that symmetry is restored
for this class of asymptotically free theories. We then
generalized the result to arbitrary (Weyl) fermion repre-
sentations and to certain multiple singlet scalar theories. It
was sufficient to demonstrate the incompatibility between
the request of negative thermal mass squared for one of
the scalars and the simultaneous need for its coupling to be
asymptotically free.

We then moved to investigate the case of gauge scalars
and have shown that high temperature symmetry non-
restoration appeared for the case of two gauged scalars
transforming according to the fundamental representation
of two independent gauge sectors. Fermions in the funda-
mental representation were included as well but without
Yukawa couplings.

We then moved to investigate the case of asymptotically
safe theories starting by noticing that the symmetry
restoration results discovered for the singlet scalars dis-
cussed above could be extended to potentially safe theories.

Two more relevant examples were investigated in the
asymptotically safe scenario in which either multiple
quartic scalar field terms were present in the Lagrangian
[55] and/or some of the scalars were gauged [71]. In these
models symmetries restore at high temperature.

As an interesting class of UV complete theories featuring
symmetry nonrestoration at arbitrary high temperatures we
discovered the one featuring two gauged scalars, each in a
fundamental representation of its own SU(N,.) gauge
group: for large enough ratios of colors, one scalar thermal
mass can be negative.

So far we discussed UV complete theories before adding
quantum gravity. We can imagine that a possible safe and
free completion of the standard model occurs few orders of
magnitude below the scale above which quantum gravity
cannot be ignored. In this case our analysis still applies. It
can even happen that quantum gravity is, per se, asymp-
totically free [77], and in this case we can ignore it.

The simplicity of the UV complete models discovered
here featuring arbitrary high temperature symmetry non-
restoration phenomenon invites for further theoretical and
phenomenological investigations. For example, it would be
interesting to investigate whether UV complete grand-
unified theories of the Pati-Salam type exist and that can
feature the phenomenon of symmetry nonrestoration.
Additionally there could be dark sectors that are gravita-
tionally coupled to us that can be UV complete and feature
early universe phase transitions from a symmetric to a
broken one as the temperature increases.
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Note added.—While we were completing the present work,
a related paper appeared [74] in which explicit examples
of Banks-Zaks type CFTs were considered in which
symmetry nonrestoration occurred at nonzero temperature.
Differently and in a complementary manner of [74] our
work investigates, rather than theories around IR fixed
points, models featuring either Gaussian (completely
asymptotically free) or interacting (completely asymptoti-
cally safe) UV fixed points such that we can investigate the
infinite temperature limit within a given UV complete
quantum field theory.

APPENDIX A: THE ONE-LOOP RG EQUATIONS

In this Appendix we summarize the relevant one-loop
RG equations used in the main text starting with the
normalization of the fields given by

1 . 1
Liin == FIF" + i¥PY + S D'OD,®". (Al

The gauge RG equation is

(4m)p, = <4n>2uj—§ — by (A2)
with
by = 27(G) = 27(F) = L 7(5) (A3)

3 3 6

where G, F, S stand for gauge bosons, Weyl fermions, and
real scalars, respectively, and T(R) is the Dynkin index of
the representation R, defined as
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Tr(TA(R)T2(R)) = T(R)5"E. (A4)
In SU(N.) we will need the following:
T(fundamental) = % T(adjoints) = N..  (A5)
The Yukawa RG equations for Dirac fermions ¥;
Lyuawa = ZY Wi, (A6)

are [78] (k = 1 for Dirac fermions and x = 1/2 for Weyl
fermions)

a

(4265 = (4P D =

1
=5 (VY fyeytiy?)

+2YPYaTyb 4 kYPTr(YPTY® 4 yoryb)
=3¢ (Co(F)Y* + YCy(F)) (A7)
where ¢“ are real scalars and
(C2(F));; ZTA T, (A8)

where the generators T4 are in the (in general reducible)
representation of the fermions.

Here and in the following a repeated index gets summed
[a, b over real scalars, a over SU(N,.) generators, i, j, k
over (bi)spinors] even when the explicit sum is not written.

Notice that the Yukawa matrices in (A6) are Hermitian
by definition.

The scalar sector is defined by

1
V= alabcd¢a¢b¢c¢d (A9)

Following [79] we introduce the completely symmetric
tensors

1
Nopea = 3 Z’labe fAefeds (A10)
perm
1
Alped = E;nTr(Y“TYe F YYD g (ALL)
1
Habcd :ZZTV(Y“TYbYCTYd), (AIZ)
perm
N2-1
ahcd Z Z TA jvgbcd, (A13)

perm A=

abcd Z Z {TA(S TB(S)}ab{TA( ) TB(S)}cd
(A14)

where the sum over “perm” means that we sum over all 4!
permutations of the indices a, b, ¢, and d so to make the
left-hand sides completely symmetric in all indices. The
matrices T4(S) are the Hermitian SU(N,) generators in
the representation of the scalars. Since ¢¢ are taken real,
these generators are imaginary and antisymmetric. For real
representations of SU(N,) this is automatic, while for
complex representations one has to work out the form of
these matrices. More precisely, they are found in the
covariant derivative:
Du¢a = aﬂ¢a - lgW/e<TA(S))ab¢b (AIS)
For the case of more gauge couplings g, of gauge groups
with generators T4, one should remember that

PP PP’
Adbea™ gy = (M5, )42 (M5)"8 - (AL6)
with the W mass
1
(M) =3¢ 9a9p8Ta(S). T§(S)} 0" (A1)
The one-loop RG equations then read [79]
di
1672 ;};Cd A2, 4 2kAY, = 8kH ey
- 3g2A abed + 39 Aahcd (A18)

Finally, at high temperature the thermal mass matrix is
given by [3] (see also [80])

T2
24
+ 6% (T(S)TA(S)) ap)-

myy(T) = 57 (Rapee + 26Tr(Y4TY? + Y7TYe)

(A19)

It is useful to rewrite the above formulas by multiplying
the various quantities by constant ¢?¢p”¢¢p¢/4! and sum-
ming over the indices a, b, ¢, d. We thus define

_ a2 ¢a¢b¢c¢d 1 oV oV
Vn = N3 = 2 ggeog oo N0
_ PP e o vervay OV
VA}':ZK'AZdeT—Kgb Tr(Y“Ye4+YY )8(]5“’
(A21)
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Ve = _8KHabch
= “2kTr(YOYPY Y d) gl degd,  (A22)
apb pc pd
Vs = —3g2A8,, SOV ¢4‘f§ ¢
) ov
= _39245 (TA(S)TA(S))MT#’ <A23)

PP P’

VA = 3g4Aahcd 41

:%.94(¢a{TA(S>’TB(S)}ab¢b)(¢C{TA(S)?TB(S)}cd¢d)'

(A24)

Equation (A18) can thus be written as

102 P D

4' dt - VA2 + VAY + VH + VAS + VA

(A25)

while the equivalent of (A19) is

AV(T) = g m2,(T)p¢?

2 2
T (2 %

E 84)‘184)“ + 692¢H(TA(S)TA(S))ab¢b

+ 2k Tr(YeTY? + Y“Yﬂ)gbb). (A26)

APPENDIX B: SU(N.) WITH TWO SINGLET
SCALARS AND FUNDAMENTAL FERMIONS

In this model the two singlet scalars with the potential
(2.1) couple through Yukawa couplings to N (N,) Dirac
fermions in the fundamental representation of SU(N.).
We further allow for Ny, Dirac fermions in the funda-
mental representation of the gauge group that are inert
with respect to the scalars, i.e., do not possess Yukawa
couplings.

The gauge coupling one-loop RGE is

d
16ﬂ2d—€ — —byg?,

with

1.2
F Ne=3(Np + Nj, +Np,).

b:
073

(B2)

The solution is

g aq
= ==, B3
a!/ (4”)2 t ( )
with
=5, (B4)
a, = 2by°
The Yukawa RGE are
1622 D= (342NN, )y 3N 1,2
- — = . 3 T — Py 1 = s
dt C fi yl g Nc yl
(B5)
Assuming the ansatz
2 ~
Vi Ay,
= = B6
a)’i (471,)2 t ( )
the fixed flow solution is given by
6Mly —1
G Ne 7 i=1,2 (B7)

ayi - 2(3 —+ ZNLNfl) )

and has positive solutions only if the gauge coupling is big
enough

N2 -1
6~ C
a, N

-1>0, (B8)

which reduces to a constraint on the number of Dirac
fermion fundamentals:

22 9 1 22
ZNC—i NL—Ni <NfU+NfI+Nf2<ZNC
(B9)

The RG equations for the scalar couplings are

da
1672 d—tl = 184} + 242 — 8NNy, y} + 8N Ny y}A1,
(B10)

diy

16722 = 1813 + 242 = 8N.N/,»4 + 8NN, 1o,

(B11)

di
167 i =82 + 6A(A) + Ay) + 4N (N y} + Ny, y3)A.
(B12)
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The ansatz

== (BI3)

reduces the system of ODEs (B10)—(B12) to a system of
algebraic equations

—a;, = 18a; +2a; —8N Ny &, + 8N Ny, a, @,
(B14)

—a;, = 18a; +2a; —8N Ny, &, + 8N Ny,a,,a,,,
(B15)

-y = _8&/21 + 6&/1(&11 + 5’/12) + 4NC(Nf1&YI + Nfza)’z)a/l'
(B16)

To this we add (B4) and (B7). We look for strictly
positive solutions for all 6 couplings &, y, 4, 1,4 With

Nc>17 Nfo_l_ZZO, Nf1>0 or Nf2>0

(B17)

and Ny, + Ny + Ny, in the interval (B9).
Once this is obtained one can compute the thermal mass
for the scalars:

2

2(T) = (47)% ——
m; (T) = (4x) DlogT

(3@, — &, + 2N N a,,). (B18)

It turns out that there are 1784 inequivalent (we do not
count those obtained by N, <> N,) choices of colors and
flavors which satisfy (B17) and (B9). However we are not
only looking for fixed flow solutions, what we also need is
that they lead to a negative thermal mass.

We will now prove in general that there are no solutions
with symmetry nonrestoration.

Let it be m?(T) < 0. To be so one needs

a, —2N Ny a, > 3a, > 0. (B19)

We can now rewrite (B14) as

2(@; — 4N Ny ;) + @, + 18a; + 8N Ny @, &, = 0.
(B20)
All the terms except the first one are manifestly positive,

so to satisfy the equation, the first term should be negative.
However, the first term can be rewritten as

&/21 _4NCNf1&}2‘1 = (aﬂ _2NCNf1a,V1)(a'ﬁ +2N0Nfla~"1)

+ 4NNy (N.Ny, = 1)&51. (B21)
This is positive, since the last term is non-negative, while
the first product is positive due to (B19). Equation (B20)
thus cannot have a solution.
We conclude this Appendix summarizing the result for
the model presented: there is no fixed flow solution once a
negative thermal mass is assumed.

APPENDIX C: GAUGED SCALARS

We consider in this Appendix various examples of
scalars in nontrivial representations of the gauge group.

1. SU(2) with two scalar triplets

First we take the two scalar fields as gauge SU(2)
triplets, coupled each to one fermion SU(2) doublet
(Ny, = Ny, = 1). To use almost all of the old results we
still keep the Z, x Z, discrete symmetry. There is now an
extra quartic term:

V=R 60502 227 -6 5052 5)

-2 ) ey
Denoting

¢ = (¢1.2) (€2)

we compute the quartic couplings directly from the
definition

v =t g ey (3)
1.e.,
A““FW’ a,b,ec,d=1,...,6. (C4)
For the Yukawa term we take
- 7
Lyukawa = ;yﬂ/_/i <§ : 5:’)1//1' (C5)

with 74, A = 1, 2, 3 the Pauli matrices.
The (reducible) generators for the fermions [two funda-
mental representations of SU(2)]
Y= (y1.v2) (Co6)

are
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1/ 0
TA = — , A=1,273. C7
(5 0) ()
The fixed flow RGE are
a, = 2bya2, (C8)
- 5 -~
% T 5 —9a,a,y,, (C9)

—y, = +220; +6a; + 4, @, +2a; — @, + 4,4,

+ 12a; — 24a,a,,, (C10)

&, = 6a, + 24a,a, +8a; —10a, (@, + @,)

+2a; =2, (@, + @,) = 2@, (&, + a,,),
(C11)
@, = 6@, + 24a,d,, + 164, &, + 10a;
—4a, (@, +ay,) = 2@y, (&, +a&,).  (C12)

The thermal mass squared results are

m(T) = (4x)? :

(@, + Sa,, + 6@, —3a, —a,,).

! 12log T
(C13)
The gauge beta function is known as
22 2 2 16 -2N; .
by=75-3WNp+2)—3=—7—"-0
3
= (C14)
4(8=Ny,)
from where, to get &, > 1/9, see (C8), we need
2 <Ny <8. (C15)

By explicit search one can find that there are no solutions
of the fixed flow RGE for positive &, @, ,, a;, and

real @y, ..

2. SU(2) with one scalar singlet and one scalar triplet

We take now one adjoint scalar and one singlet scalar
that couple to the fermions (again in the fundamental
representation, N, = N, = 1) with the following Yukawa
term:

-

_ (7 .
Ly = Y111y + 202 (E'(Pz)ll/z- (C16)

Now the first scalar is singlet, the second is triplet.
Obviously 4, cannot appear now. We will again call the
remaining mixed constant A;; = 1 in this section.

The fixed flow RGE are now

a, = 2byaz, (C17)
—a,, = 14&, - 9a,a,,, (C18)
55 oa s
=0y, =50, = 9a,a,,, (C19)
—a;, = 18a; + 6a; — 1643, + 16&, &,,, (C20)

—ay, = 12a; = 24a,q;, + 2a; + 220; - &, + 4,4,
(C21)
a, = 12a,a; — 6@, &, + 8a; — 10&,,
1
s, +1a,) )
while the thermal masses are
2 2 ?
mi(T) = (4n) 1210gT(4ay‘ +3a; —3a,), (C23)
2 2 T
mZ(T) :(47[) 1210g T (ayz + Sa,lz + 6a_q - ai). (C24)
The gauge beta function is
22 2 1
by = N 2)—=
0= 3 3( fo + ) 3
17 - 2N 3
fo ~
=— =— C25
5 "% oo,y (D)

from where, to get &, > 1/9, see (C18) or (C19), we need

2 < Ny <8 (C26)
We find only two solutions:
Nf =8: (Olg, yi? ‘z’a/h aﬁz’a/l)
= (1.5,0.893,5.0,0.518,0.182,0)  (C27)
Nfo == 8 . (&g, &yl N &yz, &,1] N &'/12, &,1)
= (1.5,0.893,5.0,0.518,0.5,0) (C28)

Since both have a; =
high enough 7.

0, symmetry is always restored at
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. i 1
3. SU(N,) with two scalar fundamentals Dot = —— (R + i), 0=12 k=1, . .N,
The potential is V2
(C30)
_)“l-’*—’21’2-’*-’2 Sk 2\ (2% 7
V= E((pl “$1) +3(§02 92)" + 4397 - 91) (93 - #2)
%k e % e /1 =k e /1* ok = h
R ) R U e (R )
(C29)
¢ = (RY.1T, RS, I5)". (C31)
with 1,34 real and in general As complex.
The relation between the complex and the real basis is as
usual We get
1 0*v 0V
) ) m—m —— X
N T2 090t Ot Ot
_22: i( A i A A 4 >
G2 2\ 09y 0w 00y D94 0w Owp Oy,
= Tr(M M} + 2M,M}, + M3M} + N\N| 4+ 2N,N} + N3N?) (C32)
with
My = (4(@1* - @1) + 43(@5 - $2))1 + 4157 ® §1 + 145 ® ¥r, (C33)
My = (A4(@} - #2) + 25(05 - $1))1 + 1367 ® ¢ + 4565 ® 1, (C34)
M3 = (2o(@5 - #2) + A3(471 - 61))1 + L] ® ¢1 + 105 @ ¢, (C35)
Ny =201 ® ¢ + A5¢> ® ¢, (C36)
Ny =361 ® ¢ + lapr ® 1, (C37)
N3 =4y ® ¢ + 1561 ® ¢y (C38)
This gives

1., .
Ve = (2N, + 8)2 + 2N 22 + 4dy s + 222 + 2)2s[?) 5 (@ @1)*

| R
+ (2N + 8)B + 2N + 4y + 28 + 205 ) 5 (7 - 52)°

+ (2(N + 1) (A1 + A2)A3 4 4243 + 2(4) + Ao)Ag + 245 + 2(451)) (P} - §1)(P5 - §2)
+ (24 + A)Ag + 8A3dy + 2N A3 + (4 + 2N )15 *) (@7 - 62) (65 - 1)

1. . 1. .
+2(A + 4, + 443+ 2(N,. + 1)14)/155 (@} - $2)* +2(4 + A + 443+ 2(N, + 1)/14)/1;5 (@5 - ¢1)% (C39)

We easily find

Vs = —3@¢4(TA(S)TA(S)),p 2 N -1 2< L OV 6V> N2-1

2 3 - ) = —6—S— PV, C40
aha¢a ZNL g (paa(pﬁ—'—(paka(ka Nc g ( )
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Using
d{TA(S). TB(S)}opd® = 2805 {TA. TP} 0, (C41)
and the usual
(e (74, = 2 (g0, - L go5e,)  (ca2)
b 2 d Nc b
we get
3 N2+2
VA_Z N2 (@7 G+ @5 32)?
3 N 4 - x> k= bt 2 d
+Z N (@1 -31)* +2(@102)(#361) + (@3- 72)?)
3 N 4NZ—4N. +2 . _ o -
ZZg“ N (@131 + (@3- 7))
3 N2+2, .
+29 N (@7 01) (95 ¢2)
3 N4 _
+§g“ N (@719:)(@5¢1). (C43)
By taking
16726 16727
2 = . = i C44
T =N =N (C44)

we get for constant a, 4; in the large N limit the following
fixed flow RGE:

W

Ay =243 4+ 22 - 6al, + Eaz, (C45)
3 72 32 =7 3.
—ly = 23 + 205 - 6@k, + &, (C46)
—13 = 2(1] + 12)13 - 6&13, (C47)
3 32 712 =7 3.5
—/14 = 2/14 + 2|/15| — 6(1/14 + Ea s (C48)
—Js = 445 — 6ils. (C49)

The thermal potential is

2 9V )
avr =15 (25 ¢u8¢a+6¢ (PSSt

72 &
:@Z

pr ( 8¢f‘8¢m

N,

N2 -1
2°'¢ a, %
+ 69 N §0i(/’ia>~

(C50)

Using (C33) and (C35)

Tr(M, + M3)

= ((Ne+ 1) + N3y + A) (@} - @)
+ ((Ne + D)o + NoAs + 4a) (@5 - §2).

(C51)
At large N,
2 ~ ~
AVr = (40 5o (00 + 1) +30) (@ 3)
+ (200 + 45) + 33)(@5 - 62))- (C52)

4. SU(N,,) x SU(N,,) with two scalar fundamentals

The model we will study now is similar to the previous
one, but now we have two simple groups, SU(N,,) X
SU(N., ), so that each ¢; is in a fundamental representation
of its SU(N ;) and a singlet under the other one. The most
general potential is

) _/1(401 fﬂl)(% $2)-
(C53)

Ao A
5(%'(#1)2 2(¢2

As before we derive the various pieces of the RGE using
(A20), (A23), (A24):

VAZ = ((2Ncl + 8))“2 + 2Nc212) (60) {0)1)2

1 -
(N +8) + 2N )L 35 5
= (2(Nody + Nody)d
+2( + 4)A = 422) (@} - 1) (@5 - §a),

N2 1 /1 N /1 oy o
Vs =—6—— N g1 <7( “p1)? 5((/’1 ‘Pl)((pf%))
N% -1 /1 A x = ox 2
-6 1\2@ g%(j(fﬂz #2)° —5(%'%)((/)2-(/’2))’
(C55)
3 N3 +NZ —4N, +2
V, =2 cl ¢ oF - 01>
A 4g Ngl (¢1 (Pl)
3 NS +NL—4N,+2 .
A (@36 (C56)
c2
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Defining
1672 1672,
=12 =i =20 (osT)
Nt N, it
16727
= - C58
VNL'INLQt ( )

with constant we get for the RG equations at large N

~ ~ ~ - 3
—Ay =223 + 22> — 6@,y + 5&%, (C59)

5 32 72 )
—/12 = 2/12 + 247 — 6(1212 + Eaz, (C60)
A =21y + I)A=3(@ + ). (C61)

The thermal effective potential
ci NZ —_ 1
AVy = + 697 —< 4o
B 3 I (AT Y

(C62)

1 N2, - 18
Vi =g (Trz‘l* (12&1,1’1 + 22 —)

4N2 —6

4N2 -6
— Tre3Trs3 </11/1(2N§l +2) + A4 T)

2] 3N%| + 9

becomes at large N,;

T2 - N -
2 (2| 7,=/=20 ) +3a, | (¢:-@
24logT<< < 1 N, >+ 0‘1)(401 ®1)
~ N1~ o o
+ (2 <lz— NCI/1> +3a2> ((p;(/&)) .
c2

5. SU(N,,) x SU(N,,

We now present a model again with two simple gauge

groups, SU(N,,)x SU(N,,), and one adjoint for each
gauge group. The potential is parametrized by

AV, =(4r)

(C63)

) with two scalar adjoints

7, 2 M
V= Z‘Trz‘l* —i—ZZTrZ‘z‘ +Z<

A
-3 TrEaTres.

A
TrEh? + 2 (1)

(Co4)

The one-loop corrections are (A20), (A23), (A24):

C1

+ (Trz%)2</1%(N3, +7)+ 44 N + A
+1 Tred( 124 /1'+/1'22 Ne
8 2 N

4N2 -6 3NZ,

2

Cl

18 2 -6
4) — Tre3Trs3 </12/1(2N32 +2) + A% 2—)
(%)

> + (Trs3)*2*(N?, — 1)) + Tre3Treia?

N

(&)

+ (Tr=3)? </1§(N§2 +7) + ks NZ + 22

5]

— ATrE3Trys)
— ATrE3Trs3),
(C66)

Vs = =3gIN. (L Tret + 4, (Trs})?
—3@3N ., (ATrEs + A (TrE3)?

Va, =3g1(N. Trst + 3(Trs})?)

+3g3(N,, Tr=3 + 3(Trx3)?). (C67)
We redefine the constants as
pi 1 pl 1
Moy= (@R 2x =, Q= @n)? 2 x—,  (C68)
' C12 Nc‘m t
A= (47) / X q (4)~2x (C69)
” ) 12— 47 e
Nclch €12

+9
v )+ respew - )

(C65)

with all tilded quantities constants, and eventually took the
large N , limit.
In the Veneziano limit the RGE are

s ley o 3., 1 5
- = Eﬁ + 22,41 +5/1’12 +§/12 - 12a,4, + 3641,
(C70)
ey a0 3a, 1 »
—,12:5,1§+2/12/1’2+§,1'22+§/12—12a2/12+36a§,
(C71)
~ (1 =~ ~ ~ ~
=A(300 2 + 5+ B 6l +a)). (C72)
A =1 = 12a,2) + 12a3, (C73)

Iy =22 — 12,0, + 1283, (C74)
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The thermal mass is

T2 2N2 -3
Cl
2 / 2N%2 — 2 2 2
X /IZ(NCZ + 1) +12N7_/1(N61 - 1) + 12Nc‘292 TrZZ (C75)
()
and becomes in the Veneziano limit
2 T2 7 2 NCz 3 ~ 2 7 2 NCl 7 ~ 2

VT = (4-7[) W Al + 2&1 - Ncl /1 + 12@1 Ter + /12 + 2&2 - NCZ /1 + 12(12 TrZz . (C76)
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