
Type Soundness for Path Polymorphism �

Andrés Visoa,1 Eduardo Bonellib,2 Mauricio Ayala-Rincónc,3

a Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET
Departamento de Computación

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires – UBA

Buenos Aires, Argentina
b Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET

Departamento de Ciencia y Tecnología
Universidad Nacional de Quilmes – UNQ

Bernal, Argentina
c Departamentos de Matemática e Ciência da Computação

Universidade de Brasília – UnB
Brasília D.F., Brasil

Abstract

Path polymorphism is the ability to define functions that can operate uniformly over arbitrary recursively
specified data structures. Its essence is captured by patterns of the form x y which decompose a compound
data structure into its parts. Typing these kinds of patterns is challenging since the type of a compound
should determine the type of its components. We propose a static type system (i.e. no run-time analysis)
for a pattern calculus that captures this feature. Our solution combines type application, constants as
types, union types and recursive types. We address the fundamental properties of Subject Reduction and
Progress that guarantee a well-behaved dynamics. Both these results rely crucially on a notion of pattern
compatibility and also on a coinductive characterisation of subtyping.
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1 Introduction

Applicative representation of data structures in functional programming languages
consists in applying variable arity constructors to arguments. Examples are:

s = cons (vl v1) (cons (vl v2) nil)

t = node (vl v3) (node (vl v4) nil nil) (node (vl v5) nil nil)
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These are data structures that hold values, prefixed by the constructor vl for “value”
(v1,2 in the first case, and v3,4,5 in the second). Consider the following function for
updating the values of any of these two structures by applying some user-supplied
function f to it:

upd = f �{f :A⊃B} ( vl z �{z:A} vl (f z)

| x y �{x:C,y:D} (upd f x) (upd f y)

| w �{w:E} w)

(1)

Both upd (+1) s and upd (+1) t may be evaluated. The expression to the right of
“=” is called an abstraction and consists of a unique branch; this branch in turn
is formed from a pattern (f), a user-specified type declaration for the variables
in the pattern ({f : A ⊃ B}), and a body (in this case the body is itself another
abstraction that consists of three branches). Type declarations bind variables in both
the pattern and the body. An argument to an abstraction is matched against the
patterns, in the order in which they are written, and the appropriate body is selected.
Notice the pattern x y. This pattern embodies the essence of what is known as path
polymorphism [17,19] since it abstracts a path being “split”. The starting point of this
paper is how to type a calculus, let us call it CAP for Calculus of Applicative Patterns ,
that admits such examples. CAP may be seen as the static patterns fragment of PPC
where instead of the usual abstraction we have alternatives. We next show why the
problem is challenging, explain our contribution and also discuss why the current
literature falls short of addressing it. We do so with an introduction-by-example
approach, for the full syntax and semantics of the calculus refer to Sec. 2.

Preliminaries on typing patterns expressing path polymorphism
Consider these two simple examples:

(nil � 0) cons (vlx �{x:Nat} x+ 1) (vl true) (2)

They should clearly not be typable. In the first case, the abstraction is not capable
of handling cons. This is avoided by introducing singleton types in the form of the
constructors themselves: nil is given type nil while cons is given type cons; these
are then compared. In the second case, x in the pattern is required to be Nat yet
the type of the argument to vl in vl true is Bool. This is avoided by introducing
type application [24] into types: vlx is assigned a type of the form vl @ Nat while
vl true is assigned type vl @ Bool; these are then compared.

Consider next the pattern x y of upd. It can be instantiated with different ap-
plicative terms in each recursive call to upd. For example, suppose A = B = Nat,
that v1 and v2 are numbers and consider upd (+1) s. The following table illustrates
some of the terms with which x and y are instantiated during the evaluation of
upd (+1) s:
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x y

upd (+1) s cons (vl v1) cons (vl v2) nil

upd (+1) (cons (vl v1)) cons vl v1

upd (+1) (cons (vl v2) nil) cons (vl v2) nil

The type assigned to x (and y) should encompass all terms in its respective column.
This suggests adopting a union type for x. On the assumption that the programmer
has provided an exhaustive coverage, the type of x in upd is:

μα.(vl @ A)⊕ (α @ α)⊕ (cons ⊕ node ⊕ nil)

Here μ is the recursive type constructor and ⊕ the union type construc-
tor. The variable y in the pattern x y will also be assigned the same type.
Note that upd itself is assigned type (A ⊃ B) ⊃ (FA ⊃ FB), where FX is
μα.(vl @ X)⊕ (α @ α)⊕ (cons ⊕ node ⊕ nil). Thus variables in applicative patterns
will be assigned union types.

Recursive types are useful to give static semantics to fixpoint combinators, which
embodies the essence of recursion and thus path polymorphism. Together with
unions, they allow to model recursively defined data types. Combining these ideas
with type application allows to define data types in a more intuitive manner, like
for example lists and trees

μα.nil ⊕ (cons @ A @ α) μα.nil ⊕ (node @ A @ α @ α)

The advantage of this approach is that the type expression reflects the structure
of the terms that inhabit it (cf. Fig. 3). This will prove to be convenient for our
proposed notion of pattern compatibility.

Compatibility is the key for ensuring Safety (Subject Reduction, SR for short,
and Progress). Consider the following example:

(vlx �{x:Bool} if x then 1 else 0) | (vl y �{y:Nat} y + 1) (3)

Although there is a branch capable of handling a term such as vl 4, namely the
second one, evaluation in CAP takes place in left-to-right order following standard
practice in functional programming languages. Since the term vl 4 also matches the
pattern vlx, we would obtain the (incorrect) reduct if 4 then 1 else 0. We thus
must relate the types of vlx and vl y in order to avoid failure of SR. Since vl y is
an instance of vlx, we require the type of the latter to be a subtype of the type of
the former since it will always have priority: vl @ Nat � vl @ Bool. Fortunately, this
is not the case since Nat �� Bool, rendering this example untypable.

Consider now, a term such as:

f �{f :A⊃B} ( vl z �{z:A} vl (f z)

| x y �{x:C,y:D} x y)
(4)
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This function takes an argument f and pattern-matches with a data structure to
apply f only when this data structure is an application with the constructor vl on
the left-hand side. Assigning x in the second branch the type C = vl is a potential
source of failure of SR since the function would accept arguments of type vl @ D.
Our proposed notion of compatibility will check the types occurring at offending
positions in the type of both patterns. In this case, if C = vl then C @ D � vl @ A

is enforced. Note that if C were a type such as μα.vl ⊕ α @ α, then also the same
condition would be enforced.

Let us return to example (1). The type declarations would be C = D =

μα.(vl @ A)⊕ (α @ α) ⊕ (cons ⊕ node ⊕ nil) and E = cons ⊕ node ⊕ nil. We now
illustrate how compatibility determines any possible source of failure of SR. Let us
call p, q and r the three patterns of the innermost abstraction of (1), resp. Since
pattern p does not subsume q, we determine the (maximal) positions in both pat-
terns which are sources of failure of subsumption. In this case, it is that of vl in
p and x in q. We now consider the subtype at that position in vl @ A, the type of
p, and the subtype at the same position in FA @ FA, the type of q: the first is vl
and the second is FA. Since FA does not admit vl (cf. Def. 3.5), these branches are
immediately declared compatible. In the case of p and r, ε is the offending position
in the failure of p subsuming r: since the type application constructor @ located
at position ε in vl @ A is not admitted by E, the type of r, these branches are
immediately declared compatible. Finally, a similar analysis between q and r entails
that these are compatible too. The type system and its proof of Safety will therefore
assure us that this example preserves typability.

Summary of contributions:
• A typing discipline for CAP. We statically guarantee safety for path polymor-

phism in its purest form (other, more standard forms of polymorphism such as
parametric polymorphism which we believe to be easier to handle, are out of
the scope of this paper).

• Invertibility of subtyping of recursive types. This is crucial for the proof of
safety (cf. next item). It relies on an equivalent coinductive formulation for
which invertibility implies invertibility of subtyping of recursive types.

• A proof of safety for the resulting system. It relies on the syntactic notion of
pattern compatibility mentioned above, hence no runtime analysis is required.

Related work
The literature on (typed) pattern calculi is extensive; we mention the most rel-

evant ones (see [17, 19] for a more thorough listing). In [2] the constructor calculus
is proposed. It has a different notion of pattern matching: it uses a case construct
{c1 �→ s1, . . . , cn �→ sn} · t in which certain occurrences of the constructors ci in t

are replaced by their corresponding terms. [24] studies typing to ensure that these
constructor substitutions never block on a constant not in their domain. Recursive
types are not considered (nor is path polymorphism). Two further closely related
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efforts merit comments: the first is the work by Jay and Kesner and the second is
that of the ρ-calculus by Kirchner and colleagues.

In [18, 19] the Pure Pattern Calculus (PPC) is studied. It allows patterns to be
computed dynamically (they may contain free variables). A type system for a PPC
like calculus is given in [17] however neither recursive nor union types are considered.
[17] also studies a simple static pattern calculus. However, there are numerous
differing aspects w.r.t. this work among which we can mention the following. First,
the typed version of [17] (the Query Calculus) omits recursive types and union
types. Then, although it admits a form of path polymorphism, this is at the cost
of matching types at runtime and thus changing the operational semantics of the
untyped calculus; our system is purely static, no runtime analysis is required.

The ρ-calculus [9] is a generic pattern matching calculus parametrized over a
matching theory. There has been extensive work exploring numerous extensions [5,
10–13, 22]. None addresses path polymorphism however. Indeed, none of the above
allow patterns of the form x y. This limitation seems to be due to the alternative
approach to typing cx adopted in the literature on the ρ-calculus where c is assigned
a fixed functional type. This approach seems incompatible with path polymorphism,
as we see it, in that it suggests no obvious way of typing patterns of the form x y

where x denotes an arbitrary piece of unstructured data. Additional differences with
our work are:

• [12]: It does not introduce union types. No runtime matching error detection
takes place (this is achieved via Progress in our paper).

• [10]: It deals with an untyped ρ-calculus. Hence no SR.
• [5, 11]: Neither union nor recursive types are considered.

Structure of the paper. Sec. 2 introduces the terms and operational semantics
of CAP. The typing system is developed in Sec. 3 together with a precise definition
of compatibility. Sec. 4 studies Safety: SR and Progress. For the benefit of the
reviewing process a full report with all details of the proofs is available online [27].

2 Syntax and Operational Semantics of CAP

We assume given an infinite set of term variables V and constants C. The syntax
of CAP consists of four syntactic categories, namely patterns (p, q, . . .), terms
(s, t, . . .), data structures (d, e, . . .) and matchable forms (m,n, . . .):

p ::= x (matchable)
| c (constant)
| p p (compound)

t ::= x (variable)
| c (constant)
| t t (application)
| p �θ t | . . . | p �θ t (abstraction)

d ::= c (constant)
| d t (compound)

m ::= d (data structure)
| p �θ t | . . . | p �θ t (abstraction)
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The set of patterns, terms, data structures and matchable forms are denoted
P, T, D and M, resp. Variables occurring in patterns are called matchables. We
often abbreviate p1 �θ1 s1 | . . . | pn �θn sn with (pi �θi si)i∈1..n. The θi are typing
contexts annotating the type assignments for the variables in pi (cf. Sec. 3).

Definition 2.1 The free variables of a term (notation fv(t)) and free match-
ables of a pattern (fm(p)) are defined inductively as follows:

fv(x) � {x}
fv(c) � ∅

fv(r u) � fv(r) ∪ fv(u)

fv((pi �θi si)i∈1..n) �
⋃

i∈1..n (fv(si) \ fm(pi))

fm(x) � {x}
fm(c) � ∅

fm(p q) � fm(p) ∪ fm(q)

Positions in patterns and terms are defined as expected and denoted π, π′, . . . (ε
denotes the root position). We write pos(s) for the set of positions of s and s|π for
the subterm of s occurring at position π.

A substitution (σ, σi, . . .) is a partial function from term variables to terms. If
it assigns ui to xi, i ∈ 1..n, then we write {u1/x1, . . . , un/xn}. Its domain (dom (σ))
is {x1, . . . , xn}. Also, {} is the identity substitution. We write σs for the result of
applying σ to term s. Matchable forms are required for defining the matching
operation, described next.

Given a pattern p and a term s, the matching operation {{s/p}} determines
whether s matches p. It may have one of three outcomes: success, fail (in which
case it returns the special symbol fail) or undetermined (in which case it returns
the special symbol wait). We say {{s/p}} is decided if it is either successful or it
fails. In the former it yields a substitution σ; in this case we write {{s/p}} = σ. The
disjoint union of matching outcomes is given as follows (“�” is used for definitional
equality):

fail 
 o � fail

o 
 fail � fail

σ1 
 σ2 � σ1 ∪ σ2

wait 
 σ � wait

σ 
 wait � wait

wait 
 wait � wait

where o denotes any possible output and σ1 ∪ σ2 denotes the standard union of
substitutions assuming that their domains are disjoint. To ensure this always holds
we assumed patterns to be linear (at most one occurrence of any matchable). The
matching operation is defined as follows, where the defining clauses below are eval-
uated from top to bottom 4 :

{{u/x}} � {u/x}
{{c/c}} � {}
{{u v/p q}} � {{u/p}} 
 {{v/q}} if u v is a matchable form
{{u/p}} � fail if u is a matchable form
{{u/p}} � wait

4 Specialization of the matching operation introduced in [19] to static patterns.
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For example: {{x � s/c}} = fail; {{d/c}} = fail; {{x/c}} = wait and {{c c/x d}} =

fail. We now turn to the only reduction axiom of CAP:

{{u/pi}} = fail for all i < j {{u/pj}} = σj j ∈ 1..n
(β)

(pi �θi si)i∈1..n u → σjsj

It may be applied under any context and states that if the argument u to an ab-
straction (pi �θi si)i∈1..n fails to match all patterns pi with i < j and successfully
matches pattern pj (producing a substitution σj), then the term (pi �θi si)i∈1..n u
reduces to σjsj .

The following example illustrates the use of the reduction rule and the matching
operation:

(true � 1 | false � 0) ((true � false | false � true) true)

→ (true � 1 | false � 0) {{true/true}} false

= (true � 1 | false � 0) false

→ {{false/false}} 0

= 0

(5)

Note that in (true � 1 | false � 0) false, the second branch is selected since
{{false/true}} = fail.

Proposition 2.2 Reduction in CAP is confluent (CR).

This result follows from a straightforward application of the CR proof technique
presented in [19] to our calculus. The key step is proving that the matching operation
satisfies the Rigid Matching Condition (RMC) proposed in the cited work. Our
contribution is on the typed variant of the calculus.

3 Typing System

This section presents μ-types, the finite type expressions that shall be used for typing
terms in CAP, their associated notions of equivalence and subtyping and then the
typing schemes. Also, further examples and definitions associated to compatibility
are included.

3.1 Types

In order to ensure that patterns such as x y decompose only data structures rather
than arbitrary terms, we shall introduce two sorts of typing expressions: types and
datatypes, the latter being strictly included in the former.

We assume given countably infinite sets VD of datatype variables (α, β, . . .),
VA of type variables (X,Y, . . .) and C of type constants (c, d, . . .). We define
V � VA ∪ VD and use metavariables V,W, . . . to denote an arbitrary element in it.
Likewise, we write a, b, . . . for elements in V ∪ C. The sets TD of μ-datatypes and
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(e-union-idem)
� A⊕A �μ A

(e-union-comm)
� A⊕B �μ B ⊕A

(e-union-assoc)
� A⊕ (B ⊕ C) �μ (A⊕B)⊕ C

(e-fold)
� μV.A �μ {μV.A/V }A

� A �μ {A/V }B μV.B contractive
(e-contr)

� A �μ μV.B

Fig. 1. Type equivalence for μ-types (sample)

T of μ-types, resp., are inductively defined as follows:

D ::= α (datatype variable)
| c (atom)
| D @ A (compound)
| D ⊕D (union)
| μα.D (recursion)

A ::= X (type variable)
| D (datatype)
| A ⊃ A (type abstraction)
| A⊕A (union)
| μX.A (recursion)

Remark 3.1 A type of the form μα.A is excluded since it may produce invalid un-
foldings. For example, μα.α ⊃ α = (μα.α ⊃ α) ⊃ (μα.α ⊃ α), since α is a datatype
variable and type abstraction is not a datatype. On the other hand, types of the
form μX.D are not necessary since they denote the solution to the equation X = D,
hence X is a variable representing a datatype.

We consider ⊕ to bind tighter than ⊃, while @ binds tighter than ⊕. Therefore
D @ A⊕A′ ⊃ B means ((D @ A)⊕A′) ⊃ B. Additionally, when referring to a
finite series of consecutive unions such as A1 ⊕ . . . ⊕ An we will use the simplified
notation ⊕i∈1..nAi. This notation is not strict on how subexpressions Ai are asso-
ciated hence, in principle, it refers to any of all possible associations. In the next
section we present an equivalence relation on μ-types that will identify all these asso-
ciations. We often write μV.A to mean either μα.D or μX.A. A non-union μ-type
A is a μ-type of one of the following forms: α, c, D @ A, X, A ⊃ B or μV.A with A

a non-union μ-type. We assume μ-types are contractive: μV.A is contractive if V
occurs in A only under a type constructor ⊃ or @, if at all. We henceforth redefine
T to be the set of contractive μ-types. μ-types come equipped with a notion of
equivalence �μ and subtyping �μ.

Definition 3.2 (i) �μ is the least congruence closed under the schemes in Fig. 1.

(ii) �μ is defined in Fig. 2 where a subtyping context Σ is a set of assumptions over
type variables of the form V �μ W with V,W ∈ V.

(e-contr) actually encodes two rules, one for datatypes (μα.D) and one for
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(s-refl)
Σ � A �μ A

(s-hyp)
Σ, V �μ W � V �μ W

� A �μ B
(s-eq)

Σ � A �μ B

Σ � A �μ B Σ � B �μ C
(s-trans)

Σ � A �μ C

Σ � D �μ D′ Σ � A �μ A′
(s-comp)

Σ � D @ A �μ D′ @ A′

Σ � A �μ A′ Σ � B �μ B′
(s-func)

Σ � A′ ⊃ B �μ A ⊃ B′
Σ � A �μ C Σ � B �μ C

(s-union-l)
Σ � A⊕B �μ C

Σ � A �μ B
(s-union-r1)

Σ � A �μ B ⊕ C

Σ � A �μ C
(s-union-r2)

Σ � A �μ B ⊕ C

Σ, V �μ W � A �μ B W /∈ fv(A) V /∈ fv(B)
(s-rec)

Σ � μV.A �μ μW.B

Fig. 2. Strong subtyping for μ-types (Sample)

arbitrary types (μX.A). Likewise for (e-fold). The relation resulting from drop-
ping (e-contr) [3, 6] is called weak type equivalence [8] and is known to be too
weak to capture equivalence of its coinductive formulation (required for our proof
of invertibility of subtyping cf. Prop. 3.12); for example, types μX.A ⊃ A ⊃ X and
μX.A ⊃ X cannot be equated. We can now use notation ⊕i∈1..nAi on contractive μ-
types to denote several consecutive applications of the binary operator ⊕ irrespective
of how they are associated. All such associations yield equivalent μ-types. Regard-
ing the subtyping rules, we adopt those for union of [28]. It should be noted that the
naïve variant of (s-rec) in which Σ � μV.A �μ μV.B is deduced from Σ � A �μ B,
is known to be unsound [1]. We often abbreviate � A �μ B as A �μ B.

3.2 Typing Schemes

A typing context Γ (or θ) is a partial function from term variables to μ-types;
Γ(x) = A means that Γ maps x to A. We have two typing judgments, one for
patterns θ �p p : A and one for terms Γ � s : A. Accordingly, we have two sets of
typing rules: Fig. 3, top and bottom. We write θ�p p : A to indicate that the typing
judgment θ �p p : A is derivable (likewise for Γ� s : A). The typing schemes speak
for themselves except for two of them which we now comment. The first is (t-app).
Note that we do not require the Ai to be non-union types. This allows examples
such as (5) to be typable (the outermost instance of (t-app) is with n = 1 and
A1 = Bool = true ⊕ false). Regarding (t-abs) it requests a number of conditions.
First of all, each of the patterns pi must be typable under the typing context θi,
i ∈ 1..n. Also, the set of free matchables in each pi must be exactly the domain
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Patterns

θ(x) = A
(p-match)

θ �p x : A
(p-const)

θ �p c : c
θ �p p : D θ �p q : A

(p-comp)
θ �p p q : D @ A

Terms

Γ(x) = A
(t-var)

Γ � x : A
(t-const)

Γ � c : c
Γ � r : D Γ � u : A

(t-comp)
Γ � r u : D @ A

[pi : Ai]i∈1..n compatible
(θi �p pi : Ai)i∈1..n (dom (θi) = fm(pi))i∈1..n (Γ, θi � si : B)i∈1..n (t-abs)

Γ � (pi �θi si)i∈1..n :⊕i∈1..nAi ⊃ B

Γ � r :⊕i∈1..nAi ⊃ B Γ � u : Ak k ∈ 1..n
(t-app)

Γ � r u : B

Γ � s : A � A �μ A′
(t-subs)

Γ � s : A′

Fig. 3. Typing rules for patterns and terms

of θi. Another condition, indicated by (Γ, θi � si : B)i∈1..n, is that the bodies of
each of the branches si, i ∈ 1..n, be typable under the context extended with the
corresponding θi. More noteworthy is the condition that the list [pi : Ai]i∈1..n be
compatible, which we now discuss in further detail.

3.3 Compatibility

Let us say that a pattern p subsumes a pattern q, written p � q if there exists a
substitution σ s.t. σp = q. Consider an abstraction (p �θ s | q �θ′ t) and two
judgments θ �p p : A and θ′ �p q : B. We consider two cases depending on whether
p subsumes q or not.

As already mentioned in example (3) of the introduction, if p subsumes q, then
the branch q �θ′ t will never be evaluated since the argument will already match p.
Indeed, for any term u of type B in matchable form, the application will reduce to
{{u/p}} s. Thus, in this case, in order to ensure SR we demand that B �μ A.

Suppose p does not subsume q (i.e. p �� q). We analyze the cause of failure of
subsumption in order to determine whether requirements on A and B must be put
forward. In some cases no requirements are necessary. For example in:

f �{f :A⊃B} ( vl z �{z:A} vl (f z)

| vl′ y �{y:B} vl′ y)
(6)
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no relation between A and B is required since the branches are mutually disjoint. In
other cases, however, B �μ A is required; we seek to characterize them. We focus
on those cases where p fails to subsume q, and π ∈ pos(p) ∩ pos(q) is an offending
position in both patterns. The following table exhaustively lists them:

p|π q|π
(a)

c

y restriction required

(b) d no overlapping (q �� p)

(c) q1 q2 no overlapping

(d)

p1 p2

y restriction required

(e) d no overlapping

In cases (b), (c) and (e), no extra condition on the types of p and q is necessary
either, since their respective sets of possible arguments are disjoint; example (6)
corresponds to the first of these. The cases where A and B must be related are (a)
and (d): for those we require B �μ A. The first of these has already been illustrated
in the introduction (3), the second one is illustrated as follows:

f �{f :D⊃A⊃C} g �{g:B⊃C} ( x y �{x:D,y:A} f x y

| z �{z:B} g z)

(7)

The problematic situation is when B = D′ @ B′, i.e. the type of z is another
compound, which may have no relation at all with D @ A. Compatibility ensures
B �μ D @ A.

We now formalize these ideas.

Definition 3.3 Given a pattern θ �p p : A and π ∈ pos(p), we say A admits a
symbol � (with � ∈ V ∪ C ∪ {⊃,@}) at position π iff � ∈ A‖π, where:

a‖ε � {a}
(A1 � A2)‖ε � {�} , � ∈ {⊃,@}
(A1 � A2)‖iπ � Ai‖π, � ∈ {⊃,@} , i ∈ {1, 2}
(A1 ⊕A2)‖π � A1‖π ∪A2‖π

(μV.A′)‖π � ({μV.A′/V }A′)‖π

Note that θ �p p : A and contractiveness of A, implies A‖π is well-defined for
π ∈ pos(p).

Whenever subsumption between two patterns fails, any mismatching position is
a leaf in the syntactic tree of one of the patterns. Otherwise, both of them would
have a type application constructor in that position and there would be no failure
of subsumption.

Definition 3.4 The maximal positions in a set of positions P are:

maxpos(P ) �
{
π ∈ P | �π′ ∈ P.π′ = ππ′′ ∧ π′′ �= ε

}
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The mismatching positions between two patterns are:

mmpos(p, q) � {π | π ∈ maxpos(pos(p) ∩ pos(q)) ∧ p|π �� q|π}

Definition 3.5 We say p : A is compatible with q : B, written p : A ≪ q : B, iff
the following two conditions hold:

(i) p� q =⇒ B �μ A.

(ii) p �� q =⇒ (∀π ∈ mmpos(p, q) .A‖π ∩B‖π �= ∅) =⇒ B �μ A.

A list of patterns [pi : Ai]i∈1..n is compatible if ∀i, j ∈ 1..n.i < j =⇒ pi : Ai ≪
pj : Aj .

As an example, recall the function upd (cf. (1)). Consider the first pattern of
its inner abstraction, namely vl z, and the second one, namely x y. Given that
vl z �� x y, in order to determine whether the former is compatible with the latter
we need to check item (ii) of Def. 3.5. Since mmpos(vl z, x y) = {1}, we analyze
(vl @ A)‖1∩(C @ D)‖1. Note that (vl @ A)‖1 = {vl} and thus, it is enough to check
whether vl ∈ (C @ D)‖1 = C‖ε or not, to know if the restriction C @ D �μ vl @ A

must be imposed. Since C = μα.(vl @ A)⊕ (α @ α)⊕(cons ⊕ node ⊕ nil), we deduce
C‖ε = {@, cons,node,nil}. Thus, (vl @ A)‖1 ∩ (C @ D)‖1 = ∅ and item (ii) holds
trivially.

As a further example, suppose we wish to apply upd to data structures holding
values of different types: say vl prefixed values are numbers and vl′ prefixed values
are functions over numbers. Note that upd cannot be typed as it stands. The
reason is that the last branch would have to handle values of functional type and
hence would receive type cons ⊕ node ⊕ nil ⊕ vl′ ⊕ (Nat ⊃ Nat). This fails to be a
datatype due to the presence of the component of functional type. As a consequence,
x y cannot be typed since it requires an applicative type @. The remedy is to add
an additional branch to upd capable of handling values prefixed by vl′:

upd′ = f �{f :Nat⊃B1} g �{g:(Nat⊃Nat)⊃B2} ( vl z �{z:Nat} vl (f z)

| vl′ z �{z:Nat⊃Nat} vl′ (g z)
| x y �{x:C,y:D} (upd′ f x) (upd′ f y)

| w �{w:E} w)
(8)

The type of upd′ is (Nat ⊃ B1) ⊃ ((Nat ⊃ Nat) ⊃ B2) ⊃ (FNat,Nat⊃Nat ⊃ FB1,B2),
where FX,Y is

μα.(vl @ X)⊕ (vl′ @ Y )⊕ (α @ α)⊕ (cons ⊕ node ⊕ nil)

This is quite natural: the type system establishes a clear distinction between semi-
structured data, susceptible to path polymorphism, and “unstructured” data repre-
sented here by base and functional types.

3.4 Basic Metatheory of Typing

We present some technical lemmas that will be useful in the proof of safety.
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Lemma 3.6 (Generation Lemma) Let Γ be a typing context and A a type.

(i) If Γ� x : A then ∃A′ s.t. A′ �μ A and x : A′ ∈ Γ.

(ii) If Γ� c : A then c �μ A.

(iii) If Γ� r u : A then:
(a) either ∃D,A′ s.t. D @ A′ �μ A, Γ� r : D and Γ� u : A′;
(b) or ∃A1, . . . , An, A

′, k ∈ 1..n s.t. A′ �μ A, Γ � r :⊕i∈1..nAi ⊃ A′, and
Γ� u : Ak.

(iv) If Γ � (pi �θi si)i∈1..n : A then ∃A1, . . . , An, B s.t. ⊕i∈1..nAi ⊃ B �μ A,
[pi : Ai]i∈1..n is compatible, dom (θi) = fm(pi), θi �p pi : Ai and Γ, θi � si : B

for every i ∈ 1..n.

The following lemma is useful to deduce the shape of the type when we know
the term is a data structure. Essentially it states that every data structure that can
be given a type, can also be typed with a more specific non-union datatype.

Lemma 3.7 (Typing for Data Structures) Suppose Γ � d : A, for d a data
structure. Then ∃D datatype such that D is a non-union type, D �μ A and Γ�d : D.
Moreover,

(i) If d = c, then D �μ c.

(ii) If d = d′ t, then ∃D′, A′ such that D �μ D′ @ A′, Γ� d′ : D′ and Γ� t : A′.

Some results on compatibility follow, the crucial one being Lem. 3.9. This next
lemma shows that matching failure is enough to guarantee that the type of the
argument is not a subtype of that of the pattern.

Lemma 3.8 Given Γ� u : B, θ �p p : A. If {{u/p}} = fail, then B ��μ A.

Define Pcomp(p : A, q : B) � ∀π ∈ mmpos(p, q) .A‖π ∩B‖π �= ∅, so that compat-
ibility can alternatively be characterized as:

p : A ≪ q : B iff Pcomp(p : A, q : B) =⇒ B �μ A

The Compatibility Lemma should be interpreted in the context of an abstraction.
Assume an argument u of type B is passed to a function where there are (at least)
two branches, defined by patterns p and q, the latter having the same type as
u. If the argument matches the first pattern of (potentially) a different type A,
then Pcomp(p : A, q : B) must hold. Since patterns in a well-typed abstraction are
compatible, whenever p comes before q we get B �μ A, and thus Γ� u : A too.

Lemma 3.9 (Compatibility Lemma) Suppose Γ� u : B, θ �p p : A, θ′ �p q : B

and {{u/p}} is successful. Then, Pcomp(p : A, q : B) holds.

We write Γ � σ : θ to indicate that dom (σ) = dom (θ) and Γ � σ(x) : θ(x), for
all x ∈ dom (σ).

The following lemma assures that the substitution yielded by a successful match
preserves the types of the variables in the pattern.
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Lemma 3.10 (Type of Successful Match) Suppose {{u/p}} = σ is successful,
dom (θ) = fm(p), θ �p p : A and Γ� u : A. Then Γ� σ : θ.

Finally, we have the standard Substitution Lemma.

Lemma 3.11 (Substitution Lemma) Suppose Γ, θ � s : A and Γ � σ : θ. Then
Γ� σs : A.

Type safety, addressed in the next section, also relies on �μ enjoying the funda-
mental property of invertibility of non-union types:

Proposition 3.12 (i) If D @ A �μ D′ @ A′, then D �μ D′ and A �μ A′.

(ii) If A ⊃ B �μ A′ ⊃ B′, then A′ �μ A and B �μ B′.

To prove this we appeal to the standard tree interpretation of terms and formulate
an equivalent coinductive definition of equivalence and subtyping.

For the latter, invertibility of non-union types is proved coinductively, entailing
Prop. 3.12 (cf. [27]).

4 Safety

Subject Reduction (Prop. 4.1) and Progress (Prop. 4.2) are addressed next.

Proposition 4.1 (Subject Reduction) If Γ� s : A and s → s′, then Γ� s′ : A.

Proof. By induction on s. The non-trivial case is when s = (pi �θi si)i∈1..n u and
s′ = {{u/pk}}sk for some k ∈ 1..n such that {{u/pk}} = σ and {{u/pi}} = fail for
every i < k. By Generation Lemma (iii.b), there exists C1, . . . , Cm, A′ such that
A′ �μ A, Γ� (pi �θi si)i∈1..n :⊕j∈1..mCm ⊃ A′ and:

Γ� u : Ck′ (9)

for some k′ ∈ 1..m. Applying once again the Generation Lemma, item (iv) this time,
to Γ� (pi �θi si)i∈1..n :⊕j∈1..mCm ⊃ A′, we get ∃A1, . . . , An, B such that:

⊕i∈1..nAi ⊃ B �μ ⊕j∈1..mCm ⊃ A′ (10)

dom (θi) = fm(pi), [pi : Ai]i∈1..n is compatible, θi�ppi : Ai and Γ, θi�si : B for every
i ∈ 1..n.

From (10), by invertibility of subtyping for non-union types, we have B �μ A′

and
⊕j∈1..mCm �μ ⊕i∈1..nAi (11)

We want to show that Γ� u : Ak. For that we need to distinguish two cases:

(i) If u is in matchable form, we have two possibilities:
(a) u is a data structure: then, by the Typing for Data Structures lemma, there

exists a non-union datatype D such that D �μ Ck′ and Γ� u : D.
(b) u is an abstraction: then, by Generation Lemma (iv), there exists types

C ′, C ′′ such that C ′ ⊃ C ′′ �μ Ck′ and Γ� u : C ′ ⊃ C ′′.
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Then, in both cases there exists a non-union type, say C, such that C �μ Ck′

and Γ� u : C. Then, from (11) we get:

C �μ ⊕i∈1..nAi

and, since C is non-union, C �μ Al for some l ∈ 1..n. Hence, by subsumption
Γ� u : Al.

If k = l we are done, so assume k �= l. Recall the conditions for the reduction
rule, where {{u/pi}} = fail for every i < k. Then, by Lem. 3.8, we have Al ��μ

Ai. Thus, it must be the case that k < l. By Lem. 3.9 with hypothesis Γ�u : Al,
θk �p pk : Ak, θl �p pl : Al and {{u/pk}} = σ we get that Pcomp(pk : Ak, pl : Al)

holds. Additionally, we already saw that the list [pi : Ai]i∈1..n is compatible,
thus pk : Ak ≪ pl : Al and by definition Al �μ Ak. Finally we conclude by
subsumption once again, Γ� u : Ak.

(ii) If u is not in matchable form, then pk = x and by the premises of the reduc-
tions rule we need {{u/pi}} = fail for every i < k. Thus, necessarily k = 1.
Moreover, since x � pi for every i ∈ 1..n, by compatibility we have Ai �μ Ak.
Then, from (11) we get

Ck′ �μ ⊕j∈1..mCj �μ ⊕i∈1..nAi �μ Ak

Thus, by subsumption, Γ� u : Ak.

Finally, in either case we have Γ� u : Ak. Now Lem. 3.10 and 3.11 with Γ, θk �

sk : B entails Γ � s′ : B and we conclude by subsumption, Γ � s′ : A (recall B �μ

A′ �μ A). �

Let the set of values be defined as v ::= x v1 . . . vn | c v1 . . . vn | (pi �θi si)i∈1..n.
The following auxiliary property guarantees the success of matching for well-typed
closed values (note that values are already in matchable form).

Proposition 4.2 (Progress) If � s : A and s is not a value, then ∃s′ s.t. s → s′.

The proof is by induction on the term analyzing those subterms that can still be
reduced to a value. Full details are available in the complete report [27].

5 Conclusions

A type system is proposed for a calculus that supports path polymorphism and two
fundamental properties are addressed, namely Subject Reduction and Progress. The
type system includes type application, constants as types, union and recursive types.
Both properties rely crucially on a notion of pattern compatibility and on invertibility
of subtyping of μ-types. This last result is proved via a coinductive semantics for
the finite μ-types. Regarding future work an outline of possible avenues follows.

• A syntax directed, alternative formulation of the system has been devel-
oped [16]. Based on this, a type-checking algorithm for CAP is defined and
implemented (also in [16]). By adapting extant techniques [15,20,21,23] we are
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able to produce efficient equivalence and subtype checking algorithms for the
relations presented in this article.

• We already mentioned the addition of parametric polymorphism (presumably in
the style of F<: [7,14,25]). We believe this should not present major difficulties.

• Strong normalization requires devising a notion of positive/negative occurrence
in the presence of strong μ-type equality, which is known not to be obvious [4,
page 515].

• A more ambitious extension is that of dynamic patterns , namely patterns that
may be computed at run-time, PPC being the prime example of a calculus
supporting this feature.
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