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Large procyanidins (more than three subunits) are not absorbed at the gastrointestinal tract but could exert local
effects through their interactions with membranes. We previously showed that hexameric procyanidins (Hex),
although not entering cells, interact with membranes modulating cell signaling and fate. This paper investigated
if Hex, as an example of large procyanidins, can selectively interact with lipid rafts which could in part explain its
biological actions. This mechanism was studied in both synthetic membranes (liposomes) and Caco-2 cells. Hex
promoted Caco-2 cell membrane rigidification and dehydration, effects that were abolished upon cholesterol de-
pletion with methyl-3-cyclodextrin (MCD). Hex prevented lipid raft structure disruption induced by cholesterol
depletion/redistribution by MCD or sodium deoxycholate. Supporting the involvement of cholesterol-Hex bond-
ing in Hex interaction with lipid rafts, the absence of cholesterol markedly decreased the capacity of Hex to pre-
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Lipid rafts vent deoxycholate- and Triton X-100-mediated disruption of lipid raft-like liposomes. Stressing the functional
Membrane cholesterol relevance of this interaction, Hex mitigated lipid raft-associated activation of the extracellular signal-regulated
Flavanols kinases (ERK) 1/2. Results support the capacity of a large procyanidin (Hex) to interact with membrane lipid
rafts mainly through Hex-cholesterol bondings. Procyanidin-lipid raft interactions can in part explain the capac-

ity of large procyanidins to modulate cell physiology.
© 2013 Elsevier B.V. All rights reserved.
1. Introduction procyanidins are found throughout the gastrointestinal tract up to the

Procyanidins are oligomers of flavan-3-ols which are present in sig-
nificant amounts in different fruits and vegetables. Regular dietary con-
sumption of procyanidins has been inversely associated with the risk of
colorectal cancer [1]. Given their size and polarity, large procyanidins
(with three and more catechin/epicatechin subunits) are unlikely to
be absorbed at the intestinal epithelium. Being partially metabolized
by the gut microbiota to phenolic compounds [2], unmetabolized
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MCD, methyl-B-cyclodextrin; PBS, phosphate buffer saline; MEM, minimum essential me-
dium; PC, phosphatidylcholine; PE, phosphatidylethanolamine; R18, octadecyl rhoda-
mine; TEER, transepithelial electrical resistance; TNFo, tumor necrosis alpha
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colon [3,4]. Accordingly, the biological actions of intact large procyanidins
would be limited to the gastrointestinal tract.

Although not transported inside intestinal cells, large procyanidins
can exert certain biological actions through their interactions with the
cell plasma membrane [5]. We previously demonstrated that cocoa
procyanidins, which are composed by the flavan-3-ols (—)-epicatechin
and catechin linked by 43 — 8 bonds, interact with synthetic bilayers
altering their physical properties [6]. These interactions depend on the
size of the molecule, with larger procyanidins showing stronger interac-
tions. In this regard, the capacity of procyanidins to modify liposome
membrane potential correlates with their degree of polymerization
[6]. Large procyanidins also regulate important processes in an in vitro
model of intestinal epithelium. In this regard, hexameric procyanidins
(Hex) inhibited deoxycholate (DCA)-induced permeabilization of
Caco-2 cell monolayers, mitigating the underlying deregulation of
calcium transport, the activation of NADPH oxidase, and the associated
increase in oxidant production [7,8]. Furthermore, Hex attenuates
DCA-induced activation of protein kinase B (Akt), mitogen activated
kinases, extracellular signal-regulated kinases (ERK) and p38 [7]. Hex
also inhibits tumor necrosis alpha (TNFa)-induced increase in oxidant
production and the activation of transcription factor NF-<B in Caco-2
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intestinal cells [9]. Interestingly, several of the molecular targets and
events regulated by Hex are associated with lipid rafts (e.g. NADPH ox-
idase [10], TNFa receptor [11]). This suggests that rather than non-
specific interactions, Hex could interact with certain areas of the cell
membrane, like lipid rafts, and exert local and specific effects.

Lipid rafts are specialized areas of the plasma membrane characterized
by a high content of cholesterol, glycosphingolipids, and sphingomyelin
tightly packed in liquid-ordered state. These particular lipid domains
are more rigid than the remaining areas of the membrane which are or-
ganized in the typical liquid disordered state [12,13]. Lipid rafts recruit
specific proteins involved in cell signaling [14], transport, regulation of
cell survival [15], preservation of the intestinal barrier integrity [16]
and other major cellular events [17].

It has been recently shown that lipid raft disturbance in mouse and
human intestinal epithelium precedes the disruption of the epithelial
barrier during inflammatory processes [16]. Thus, the interaction of
highly polymerized procyanidins with lipid rafts may explain the
capacity of Hex to inhibit oxidant production, the activation of
proinflammatory signaling cascades, and alterations of intestinal epi-
thelium permeability [7,9]. Furthermore, findings showing that Hex
interactions with synthetic membranes vary with changes in the
composition of the bilayer (e.g. decreased binding in the presence of
negatively charged head groups [6]) suggest a degree of specificity in
procyanidin-membrane interactions.

Based on the above, the capacity of hexameric procyanidins to inter-
act with lipid rafts was investigated. These interactions were initially
evaluated in Caco-2 cells differentiated into intestinal epithelial cells.
Subsequently, the use of liposomes with a lipid raft-like lipid composi-
tion, allowed the assessment of the interactions of Hex with particular
lipid raft components. Results indicate that Hex interacts with lipid
rafts, being the presence of cholesterol essential for this interaction. Bind-
ing of Hex to lipid rafts can explain the capacity of large procyanidins to
regulate select cell signaling cascades and other events initiated at the
cell membrane.

2. Materials and methods
2.1. Materials

Hexameric procyanidins (Hex) were purified [18,19] and supplied
by Mars Incorporated (Hackettstown, NJ). Caco-2 cells were from the
American Type Culture Collection (Rockville, MA). Minimum Essential
Medium (MEM), non-essential amino acid mixtures, antibiotics, and
fetal bovine serum were from Invitrogen Life Technologies (Carlsbad,
CA). Primary antibodies for p-ERK1/2 (sc-7383) and ERK1/2 (sc-93)
were from Santa Cruz Biotechnology (Santa Cruz, CA). The fluorescent
probes 6-(9-anthroyloxy)stearic acid (6-AS), 16-(9-anthroyloxy)
palmitic acid (16-AP), 6-dodecanoyl-2-dimethyl aminonaphthalene
(Laurdan), and octadecyl rhodamine (R18) were purchased from
Invitrogen/Molecular Probes Inc. (Eugene, OR, USA). Porcine brain phos-
phatidylcholine (PC) was from Avanti Polar Lipids Inc. (Birmingham, AL).
Egg yolk phosphatidylethanolamine (PE), bovine brain asialoganglioside
GM1 (aGM1), bovine brain sphingomyelin (Spm), bovine serum albu-
min (BSA), cholesterol, sodium deoxycholate (DCA), Triton X-100, filipin,
FITC-conjugated subunit B of cholera toxin (CTX-FITC), methyl-3-
cyclodextrin (MCD) and all the other reagents were purchased from
Sigma Chem. Co. (St. Louis, MO).

2.2. Cell culture and incubations

Caco-2 cells were grown onto 24- or 48-well culture plates or
18 mm glass round coverslips, and cultured at 37 °C in a humidified,
5% CO, atmosphere in MEM supplemented with non-essential amino
acids, 0.1 M sodium pyruvate, 10% (v/v) fetal bovine serum and antibi-
otics (50 U/ml penicillin, and 50 pg/ml streptomycin). Cells were

differentiated by culturing them for 14 days after reaching confluence
[8]. The cell culture medium was replaced every 3 d.

2.3. Evaluation of plasma membrane fluidity

Cells were incubated at 37 °C for 30 min either in the absence or in
the presence of 2.5 mM methyl-B-cyclodextrin (MCD) in serum-free
MEM. The medium was replaced by serum-free MEM and cells were
further incubated at 37 °C for 30 min in the presence of 10 uM Hex.
Samples were subsequently added without or with either 0.2 mM
DCA or 0.1 mM Triton X-100 and incubated at 37 °C for 30 min. After
media removal, cells were added with 0.2 ml of Hank's balanced salt so-
lution containing 0.3 uM of the fluorescent probes 6-AS or 16-AP. After
15 min of incubation at 37 °C to allow the incorporation of the probe
into the plasma membrane, fluorescence anisotropy was measured
at 435 nm (Aexcitation: 384 nm) in a LS50 spectrofluorometer
(PerkinElmer Ltd., Beaconsfield, United Kingdom).

24. Evaluation of plasma membrane hydration

After cell incubation in the conditions described above, the culture
medium was removed and replaced by 0.2 ml of Hank's balanced salt
solution containing 0.3 uM of the fluorescent probe Laurdan. Cells
were incubated for 15 min at 37 °C to allow probe's incorporation to
the membrane. Laurdan generalized polarization (GP) was calculated
using the equation:

GP — I30—Is50
I3g0 + I350

where I350 and Isgg are the fluorescence intensities recorded at 430 nm
after exciting samples at 350 and 380 nm, respectively.

2.5. Cholesterol staining with filipin

Caco-2 cells were grown and differentiated onto 18 mm round glass
coverslips, and after replacing the culture media by serum-free MEM,
cells were incubated at 37 °C for 30 min in the absence or presence of
10 uM Hex. Samples were next added with 0.2 mM DCA, 0.1 mM Triton
X-100, or 2.5 mM MCD and further incubated at 37 °C for 30 min.
Cholesterol distribution in membranes was evaluated by filipin staining
[20]. Culture media were removed, and cells were fixed for 20 min at
room temperature with 1 ml p-formaldehyde 3.7% (w/v). After fixation,
samples were washed three times with PBS, and incubated for 20 min at
room temperature with 1 ml of glycine (1.5 mg/ml in PBS). Next, cells
were permeabilized by incubating samples with 0.5% (v/v) Triton X-
100. The excess of detergent was removed by washing cells with PBS,
and samples were incubated for 30 min at room temperature in the
dark and in the presence of filipin (0.05 mg/ml in PBS). Samples were
washed three times with PBS, mounted with 10 pl of glycerol (90% in
PBS), sealed with nail polish, excited under UV light and observed
through a blue filter in an Olympus IMT-2 (Melville, NY) fluorescence
microscope coupled with a Hamamatsu Orca II charge-coupled device
camera (Bridge-water, NJ). Captured images were processed using the
software Image Pro Plus 5.1 (Media Cybernetics Inc., Bethesda, MD,
USA).

2.6. Lipid raft staining

Caco-2 cells were grown onto 18 mm round glass coverslips, and in-
cubated in the conditions described above (Cholesterol staining with
filipin). Lipid rafts were evidenced by the specific reaction of endoge-
nous ganglioside GM1 (a lipid raft marker) with FITC-conjugated
cholera toxin (CTX-FITC) [21]. Briefly, after 30 min incubation in
the presence of 10 pM Hex followed by 30 min DCA (0.2 mM), Triton
X-100 (0.1 mM) or MCD (2.5 mM) treatment, culture medium was
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removed, and samples were incubated at 4 °C for 30 min in the pres-
ence of 10 pg/ml CTX-FITC in 0.5 ml NaHCOs-free MEM containing
25 mM HEPES and 0.5% (w/v) BSA. Next, samples were fixed for
20 min at room temperature with p-formaldehyde (3.7% w/v),
quenched with 1 ml of glycine (1.5 mg/ml in PBS), mounted and ob-
served in a fluorescence microscope.

2.7. Western blot analysis

For the preparation of total cell extracts, after the corresponding
treatment cells were rinsed with warm PBS, scrapped and centrifuged.
The pellet was rinsed with warm PBS, and suspended in 0.2 ml of
50 mM Hepes (pH 7.4), 125 mM KCI containing protease and phospha-
tase (1 mM Na3VO,, 10 mM NaF) inhibitors, and 2% (v/v) Igepal. The
final concentration of the protease inhibitors was 0.5 mM PMSF,
1 mg/l leupeptin, 1 mg/l pepstatin, 1.5 mg/l aprotinin, and 2 mg/l
bestatin. Samples were exposed to one cycle of freezing and thawing,
incubated at 4 °C for 30 min, and centrifuged at 15,000 xg for 30 min.
The supernatant was decanted and protein concentration was mea-
sured [22]. Aliquots of total cell fractions containing 30 pg protein
were separated by reducing 10% (w/v) polyacrylamide gel electropho-
resis and electroblotted to PVDF membranes. Colored (Bio-Rad Labora-
tories, Hercules, CA) and biotinylated (Cell Signaling Technologies,
Danvers, MA) molecular weight standards were ran simultaneously.
Membrane non-specific sites were blocked for 2 h in 5% (w/v) non-fat
milk, incubated overnight in the presence of the corresponding primary
antibodies (1:1000 dilution) in 5% (w/v) BSA in TBS buffer (50 mM
Tris, 150 mM NaCl, pH 7.6), containing 0.1% (v/v) Tween-20. After incu-
bation for 90 min at room temperature in the presence of the HRP-
conjugated secondary antibody (1:10,000 dilution) the conjugates
were visualized by chemiluminescence detection in a Phosphoimager
840 (Amersham Pharmacia Biotech. Inc., Piscataway, NJ).

2.8. Evaluation of liposome transition to micelles

The protective effect of Hex on detergent-mediated bilayer transi-
tion to micelle was evaluated as previously described [6,23]. For this
study, two kinds of liposomes were prepared. The first liposome popu-
lation had a lipid composition similar to enterocyte brush border lipid
rafts [24]: cholesterol:aGM1:PE:PC:Spm (32:35:13:11:9% on a molar
basis), whereas the second liposome population had PC:Spm:cholester-
ol (1:1:1 on a molar basis). Both kinds of liposome contained 1.5 mol%
of the fluorescent probe R18, and were prepared in 20 mM Tris-HCl,
140 mM Nadl buffer (pH 7.4). Samples containing 0.25 ml of liposomes
were placed into 96-well microplates apt for fluorescence measure-
ments and incubated for 10 min at room temperature in the presence
of 1.25-20 uM Hex. After incubation, samples were added with 0.5 pl
40 mM DCA or Triton X-100, mixed, and after 2 min the fluorescence
emission at 580 nm (N\excitation: 560 nm) was recorded. The addition
of the detergent was continued until the achievement of a constant fluo-
rescence emission corresponding to the micellar form of the lipids. Plots
were adjusted to sigmoidal curves, and the detergent concentration
necessary to reach half of the maximal fluorescence (C50) was calculat-
ed for each Hex concentration assessed [6].

2.9. Statistics

One-way analysis of variance (ANOVA) followed by Fisher's PLSD
(protected least square difference) test was performed using the rou-
tines available in StatView 5.0 (SAS Institute, Cary, NC, USA). Two-way
ANOVA was performed using the software GraphPad Prism 5.0 for
Windows (GraphPad Software, San Diego, CA, USA). A probability
(P) value lower than 0.05 was considered as statistically significant.

3. Results

3.1. Membrane cholesterol is involved in Hex interactions with
cell membranes

We previously demonstrated that the evaluation of changes in lipid
ordering using the probe 6-AS is a reliable indicator of the interaction of
flavonoids with membranes at a superficial level [7,25]. We initially
studied if the higher lipid packing induced by Hex in the Caco-2 cell
plasma membrane was affected upon cell exposure to DCA or Triton
X-100. Both of these compounds are known to promote changes in
membrane structure and physical properties [20,26]. When membrane
fluidity was evaluated using the probe 6-AS (Fig. 1A), 10 uM Hex caused
a significant increase in 6-AS anisotropy (P < 0.005 with respect to con-
trol cells), indicating a Hex-mediated decrease in membrane fluidity.
Cell treatment with DCA or Triton X-100 did not modify the fluidity of
the membrane. In cells pre-incubated with Hex, and subsequently treat-
ed with DCA or Triton X-100, plasma membrane fluidity was similar to
that measured in cells exposed to Hex alone. The integrity of lipid rafts
was next altered by partially removing cholesterol with MCD. In choles-
terol depleted cells, and in the absence or the presence of DCA or Triton
X-100, Hex lost its capacity to change plasma membrane fluidity
(Fig. 1A). UV-visible spectra (Supplementary Fig. 1) do not indicate
the existence of interactions between Hex and DCA, Triton X-100 or
MDC.

To investigate if the reduced fluidity in the Hex-exposed Caco-2 cell
plasma membrane was associated with a lower lipid hydration at the
water-lipid interface, changes in Laurdan generalized polarization
(GP) were evaluated. As depicted in Fig. 1B, Hex increased Laurdan
GP, which is indicative of a partial dehydration of the bilayer. Similar
to findings with the probe 6-AS, neither DCA nor Triton X-100 modified
per se membrane hydration nor affected Hex-mediated decrease in
membrane hydration (Fig. 1B). Again, cholesterol removal with MCD
prevented Hex-mediated changes in membrane hydration. Together,
the above results indicate that membrane cholesterol may be involved
in Hex binding to the membrane.

Finally, plasma membrane fluidity was evaluated at a deeper region
of the bilayer using the fluorescent probe 16-AP. Supporting the hy-
pothesis that the interaction of Hex with membranes occurs at a super-
ficial level, no alterations in membrane fluidity were observed for all the
experimental situations assessed (Fig. 1C).

3.2. Hex interacts with lipid rafts

Given the particularly high concentration of cholesterol in lipid rafts,
we next investigated whether Hex interacts with plasma membrane
lipid rafts. Cholesterol localization in Caco-2 cell plasma membrane
was evaluated by staining membranes with the cholesterol-specific
probe, filipin. Both in control and Hex-treated cells, cholesterol showed
a characteristic punctuated distribution in the plasma membrane
(Fig. 2) indicating the presence of cholesterol-enriched domains. In
cells exposed only to DCA, filipin labeling showed a more diffuse, ho-
mogenous pattern whereas cell preincubation with 10 pM Hex partially
prevented DCA-mediated cholesterol redistribution. On the other hand,
Triton X-100 did not modify cholesterol distribution, neither in the ab-
sence or presence of Hex. In cells where cholesterol was partially re-
moved with MCD, cholesterol labeling pattern was similar to that
observed in DCA-treated cells. Again, in cells preincubated with Hex
and subsequently treated with MCD, cholesterol removal was partially
prevented, with cells showing a pattern of cholesterol labeling similar
to that of control cells.

The possibility that Hex may prevent DCA-mediated lipid raft dis-
ruption was next investigated. For this purpose, the localization of the
endogenous ganglioside GM1, a lipid raft marker, was evaluated from
its reaction with CTX-FITC. In control cells, GM1 was observed in dis-
crete regions of the plasma membrane (Fig. 3). In cells pre-incubated
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Fig. 1. Hex interactions with Caco-2 cell plasma membrane rely on the presence of choles-
terol presence in the bilayer. Caco-2 cell plasma membrane cholesterol was partially re-
moved by incubating cells either in the absence ([J) or presence () of 2.5 mM MCD for
30 min at 37 °C. Cells were next incubated for 30 min in the absence or presence of
10 uM Hex, and subsequently treated with 0.2 mM DCA or 0.1 mM Triton X-100. The fol-
lowing plasma membrane physical properties were evaluated in intact cells: (A) membrane
superficial fluidity (probe 6-AS); (B) membrane hydration (probe Laurdan); and (C) mem-
brane fluidity at the hydrophobic core of bilayer (probe 16-AP). Results are shown as the
mean + SEM of four independent experiments. * indicates a significant difference respect
to the value measured in MCD-treated cells (P < 0.005, two-way ANOVA test).

with Hex, GM1 distribution was similar to that in control cells, although
the intensity of the fluorescence was consistently lower, suggesting a
decreased ability of CTX-FITC to reach GM1. Both in DCA- and MCD-

Control

Fig. 2. Hex prevents cholesterol redistribution and removal from the plasma membrane.
Caco-2 cells were incubated in the absence (C) or presence of 10 uM Hex (Hex). After
incubation, cells were treated for 30 min at 37 °C with or without 0.2 mM DCA, 0.1 mM
Triton X-100, or 2.5 mM MCD. Cholesterol distribution in the membrane was evidenced
by filipin staining, as indicated in Materials and methods, and observed by fluorescence
microscopy. Magnification: 400 x.

treated cells GM1 showed a different pattern of distribution, being the
labeling concentrated in highly fluorescent spots. This redistribution of
GM1 due to DCA or MCD was partially prevented in Hex-pretreated
cells. Both in the absence and presence of Hex, Triton X-100 did not af-
fect the pattern of GM1 labeling.

3.3. Hex inhibits MCD-induced ERK1/2 activation in Caco-2 cells

We previously showed that Hex inhibits DCA-induced activation of
the mitogen activated kinase ERK1/2 [7]. DCA was shown to activate
ERK by disrupting lipid raft organization [20]. Based on our current find-
ings (Figs. 2 and 3) showing that Hex can prevent MCD-mediated lipid
raft disruption, we next investigated if Hex can inhibit MCD-induced
ERK activation.

MCD promoted ERK phosphorylation within 15 min of incubation,
effect that increased continuously up to 3 h incubation (Fig. 4A). Hex
(10 pM) completely (at 30 min) or partially (39% at 3 h) inhibited
MCD-induced ERK activation (Fig. 4B). Thus, these findings suggest
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Hex
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Hex = DCA

Hex = TX-100

Fig. 3. Hex prevents DCA-mediated lipid raft disorganization. Caco-2 cells were incubated
in the absence (control) or presence of 10 uM Hex (Hex). After incubation, cells were
treated for 30 min at 37 °C with or without 0.2 mM DCA, 0.1 mM Triton X-100, or
2.5 mM MCD. Lipid raft distribution was evaluated by staining with CTX-FITC, as indicated
in Materials and methods, and observed by fluorescence microscopy. Magnification:
1000x.

that Hex mitigates lipid raft disruption by MCD, and as a consequence
prevents ERK activation. This supports the concept that Hex can bind
to particular components of lipid rafts and through these interactions
modulate cell function.

3.4. The differential interaction of Hex with asialoganglioside GM1 and
cholesterol affects its capacity to prevent liposome disruption by detergents

In a previous work [6] we demonstrated that Hex interacts with the
polar headgroup of phospholipids and prevents the mechanical disrup-
tion of the bilayer caused by membrane treatment with the detergent
Triton X-100. This protective effect of Hex was higher when membranes
contained galactolipids, a lipid bearing a galactose moiety in their
headgroup [6]. Therefore, we next investigated whether the presence
of another component of lipid rafts, aGM1, which contains four chained
sugar moieties in its polar headgroup, could enhance Hex protective ef-
fects on detergent-mediated liposome disruption. Liposomes were pre-
pared using a lipid composition similar to that found in lipid rafts of
brush border enterocytes [24].

A mMcD MCD + Hex
Time (min) 0 5 10 15 30 180 5 10 15 30 180
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Fig. 4. Hex inhibits MCD-induced ERK1/2 phosphorylation. Caco-2 cells were incubated for
30 min at 37 °C in the absence or the presence of 10 pM Hex, and subsequently in the
presence of 2.5 mM DCA for 0-3 h. (A) Representative Western blots images showing
phosphorylated ERK1/2 (p-ERK) and total ERK (ERK1/2) in total cell extracts. (B) Quanti-
fication of p-ERK to total ERK ratio. Results are shown as mean + SEM of 2-3 independent
experiments. * indicates a significant difference (P < 0.05) with respect to the value mea-
sured in MCD-treated cells (one-way ANOVA test).

In these liposomes, Hex prevented in a concentration (1.25-20 pM)-
dependent manner DCA (Fig. 5A)- and Triton X-100 (Fig. 5B)-mediated
liposome disruption as evidenced from the higher concentration of DCA
or Triton X-100 necessary to achieve 50% disruption of liposomes (C50).
This protective effect of Hex was significant in both liposome popula-
tions regardless of the presence of aGM1, even at the lowest concentra-
tion of Hex assessed (P < 0.005, one-way ANOVA). Interestingly, in
liposomes lacking aGM1, the protective effect of Hex was higher than
in liposomes containing aGM1. This difference in the magnitude of
Hex-mediated membrane protection was even more pronounced
when membranes were disrupted with Triton X-100 (Fig. 5B). These re-
sults suggest that the interaction of DCA and Triton-X100 with mem-
branes does not occur at the same domains of the bilayer.

Finally, the role of cholesterol in Hex-mediated prevention of mem-
brane disruption by detergents was investigated in lipid raft-like lipo-
somes. For this purpose liposomes containing PC:Spm (1:1 on a molar
basis) with or without cholesterol were used. In the absence of choles-
terol, Hex had a modest but significant effect protecting liposomes
from DCA (P < 0.001 at 20 uM Hex)- or Triton X-100 (P < 0.01 at
2.5 uM Hex)-mediated disruption (Fig. 6). When membranes contained
cholesterol (PC:Spm:chol, 1:1:1 on a molar basis), the protective effect
of Hex was significantly higher compared to cholesterol-free liposomes.
This different magnitude of protection was observed for both DCA- and
Triton X-100-mediated disruption (Fig. 6). The magnitude of Hex effects
was significant (P < 0.001) at 2.5 uM concentrations and higher.

Together, the experimental results suggest that Hex differentially in-
teracts with cholesterol and aGM1. While Hex-cholesterol enhances
Hex protective effect against detergent-mediated membrane disrup-
tion, Hex-aGM1 interaction decreases it.

4. Discussion

This work shows that hexameric procyanidins interact with in-
testinal cell membrane lipid rafts, mainly through their binding to
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Fig. 5. GM1 decreases Hex capacity to prevent detergent-mediated liposome to micelle
transition. Brush border lipid raft-like liposomes containing (®) or not (O) the
asialoganglioside GM1 (aGM1), and labeled with the fluorescent probe R18 were incubat-
ed for 10 min at room temperature in the presence of Hex (1.25-20 pM). After incubation,
liposomes were disrupted by the progressive addition of (A) DCA (0-5 mM), or (B) Triton
X-100 (0-2 mM). The amount of detergent required to cause a 50% rupture of liposomes
(C50) was calculated as indicated in Materials and methods. Results are shown as the ratio
of C50 calculated for Hex-treated samples to C50 in control liposomes, and are the
mean 4 SEM of at least four independent experiments. * indicates a significant difference
with respect to the value obtained in liposomes containing aGM1 (P < 0.01, two-way
ANOVA test).

cholesterol. Given the concentration at lipid rafts of proteins involved in
cell signaling, such interactions can explain the capacity of large
procyanidins to modulate cell signaling and fate [7-9] even when they
cannot enter cells.

The concept that flavonoids could interact with lipid rafts was previ-
ously proposed based on the different properties of flavonoids to mod-
ulate membrane physical properties [27]. However, the existence in the
gastrointestinal tract of a complex mixture of flavonoids/metabolites
with different chemical composition, conformation and polymerization
degree makes it impossible to predict a unique mechanism for such in-
teractions. Procyanidins can interact with synthetic [6,28] and biological
[7,28,29] membranes, having greater interactions with increasing
polymerization degree. We currently observed that Hex interacts with
Caco-2 cell membranes causing a decrease in membrane fluidity at the
surface but not at deeper regions of the bilayer, and also decreasing
membrane hydration. Partial removal of membrane cholesterol by cell
treatment with MCD prevented Hex-induced changes in Caco-2 cell
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Fig. 6. Cholesterol enhances Hex capacity to prevent detergent-mediated liposome to mi-
celle transition. PC:Spm liposomes containing (@) or not (O) cholesterol, and labeled with
the fluorescent probe R18 were incubated for 10 min at room temperature in the presence
of Hex (1.25-20 uM). After incubation, liposomes were disrupted by the progressive addi-
tion of (A) DCA (0-5 mM), or (B) Triton X-100 (0-2 mM). The amount of detergent re-
quired to cause a 50% rupture of liposomes (C50) was calculated as indicated in
Materials and methods. Results are shown as the ratio of C50 calculated for Hex-treated
samples to C50 in control liposomes, and are the mean + SEM of at least four independent
experiments. * indicates a significant difference respect to the value obtained in liposomes
lacking cholesterol (P < 0.001, two-way ANOVA test).

membrane fluidity. These results suggest that cell membrane cholester-
ol is required for the binding of Hex to the surface of the bilayer.

We next investigated the potential interactions of Hex with Caco-2
cell lipid rafts using fluorescent labeling of raft components (cholester-
ol, GM1). MCD-mediated depletion of membrane cholesterol disrupted
lipid raft structure (filipin distribution) in Caco-2 cells. A similar effect
was induced by DCA, which acts displacing raft cholesterol to other
areas of the membrane [20]. As expected, Triton X-100 did not affect
both filipin and GM1 pattern of distribution. In fact, Triton X-100 is
used to isolate membrane fractions enriched in lipid rafts given its rela-
tively very low capacity to disrupt lipid rafts [30]. Whereas Hex did not
affect lipid rafts in Triton X-100-treated cells, it mitigated the actions of
MCD and DCA disrupting filipin distribution. Caco-2 cell cholesterol de-
pletion also led to GM1 aggregation, as previously shown in Jurkat T
cells using GM1 fluorescence labeling [31]. We observed that MCD
and DCA induced GM1 aggregation in Caco-2 cell membranes, effect
that was prevented by Hex. The above findings indicate that this
procyanidin can interact with lipid rafts preventing the disrupting ef-
fects of MCD and DCA.
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The interactions of Hex with lipid rafts can explain the capacity of
Hex to modulate cell signaling [7,9]. This is in part supported by the find-
ing that Hex inhibited MCD-induced ERK1/2 phosphorylation. Mem-
brane cholesterol depletion modulates ERK activation in different cell
types, being the signaling pathway activated [32-34] or inhibited [31]
in part depending on the extent of cholesterol depletion [31]. Cholester-
ol depletion of COS-1 cells by MCD causes a ligand-independent activa-
tion (phosphorylation and dimerization) of the epidermal growth factor
receptor (EGFR) which leads to the downstream activation of ERK1/2
[34]. DCA also acts promoting EGFR tyrosine phosphorylation and
ERK1/2 activation in human colon adenocarcinoma (HCT-116) cells
through the promotion of membrane perturbations and membrane cho-
lesterol redistribution [20]. We recently showed that Hex also acts
inhibiting DCA-induced ERK phosphorylation in Caco-2 cells [7]. Thus,
the capacity of Hex to inhibit DCA- and MCD-mediated ERK activation
further supports the relevance of Hex-cholesterol binding, particularly
at lipid rafts, in the capacity of Hex to modulate cell signaling.

To further characterize the capacity of Hex to interact with lipid rafts
and the nature of these interactions, we used liposomes with a lipid
composition resembling that of brush border lipid rafts, and varying
the content of GM1 and cholesterol. These interactions were assessed
studying the capacity of Hex to inhibit DCA- and Triton X-100-induced
liposome disruption with the subsequent lipid rearrangement into mi-
celles. Previous evidence from our laboratory showing that Hex has a
preferential interaction with galactolipids [6] suggested that Hex
would interact with the carbohydrate moieties of GM1. On the contrary,
the presence of GM1 did not afford protection by Hex and even made
liposomes more prone to disruption. A plausible explanation for such
unexpected result may be related to the fact that the bulky polar
headgroup of GM1 protrudes from the membrane surface [35]. There-
fore, the interaction of Hex with GM1 may occur far from the water-
lipid interface, impeding Hex to protect GM1-containing membrane
clusters. Supporting the results obtained in Caco-2 cells, indicating the
involvement of cholesterol in Hex binding to membranes, the presence
of cholesterol in lipid raft-like liposomes significantly improved the ca-
pacity of Hex to prevent detergent-induced liposome disruption.

At the intestinal epithelium non-absorbable large procyanidins can
exert important biological actions through their interactions with lipid
rafts. Cholesterol plays a role in the regulation of tight junction struc-
ture, and is proposed to be essential in the preservation of the perme-
ability of the intestinal epithelial barrier. Removal of cholesterol from
Caco-2 cell membranes using MCD decreases transepithelial electrical
resistance (TEER), increases monolayer permeability, leading to a re-
distribution of tight junction proteins [36]. The association of tight
junctions to membrane rafts is evidenced by findings that tight junction
proteins reside in lipid rafts [37]. Furthermore, lipid raft protein compo-
sition is altered in the intestine of humans with ulcerative colitis and in
mice with induced colitis [16]. In mice, lipid raft disruption precedes the
increased permeability of the intestinal barrier, which stresses the
relevance of the preservation of lipid raft structure on intestinal perme-
ability [16]. Accordingly, we previously showed that Hex prevents
DCA-induced permeabilization (decreased TEER, increased paracellular
transport) of Caco-2 cell monolayers [8]. This can be in part explained
by the currently observed interactions of Hex with lipid rafts.

The interaction of Hex with lipid rafts can also explain its capacity to
inhibit DCA-induced oxidant increase in Caco-2 cells [7,8], in particular
by preventing NADPH oxidase activation [7]. In fact, NADPH oxidase 1
is present in large amounts at the plasma membrane of intestinal epi-
thelial cells [38]. Its co-localization with caveolin in vascular smooth
muscle cells [39], and the raft localization of NADPH oxidase subunits
gp91(phox) and p47(phox) upon adipokine stimulation in endothelial
cells [40] are evidence of its location to lipid rafts within the membrane.
Mitigation of oxidant production and oxidative stress by large
procyanidins can be an important mechanism on potential procyanidin
beneficial effects in processes of chronic colonic inflammation [41] and
oncogenesis [42].

In summary, the beneficial actions of large procyanidins on intestinal
health [1,7-9] and their capacity to mitigate oxidative stress, intestinal
barrier permeabilization, cytokine-induced inflammation, and the acti-
vation of oncogenic signals can be in part explained by their capacity to
interact with lipid rafts, membrane platforms of cell signaling, trafficking
and redox regulation. Even though these molecules cannot be absorbed
by intestinal epithelial cells, they can still exert a number of biological ac-
tions through specific interactions with lipid raft components (mainly
cholesterol) present in the exofacial leaflet of the plasma membrane.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbamem.2013.07.023.
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