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Abstract Demyelination is a pathological process char-

acterized by the loss of myelin around axons. In the central

nervous system, oligodendroglial damage and demyelina-

tion are common pathological features characterizing white

matter and neurodegenerative disorders. Remyelination is a

regenerative process by which myelin sheaths are restored

to demyelinated axons, resolving functional deficits. This

process is often deficient in demyelinating diseases such as

multiple sclerosis (MS), and the reasons for the failure of

repair mechanisms remain unclear. The characterization of

these mechanisms and the factors involved in the prolif-

eration, recruitment, and differentiation of oligodendroglial

progenitor cells is key in designing strategies to improve

remyelination in demyelinating disorders. First, a very

dynamic combination of different molecules such as

growth factors, cytokines, chemokines, and different sig-

naling pathways is tightly regulated during the remyelina-

tion process. Second, factors unrelated to this pathology,

i.e., age and genetic background, may impact disease

progression either positively or negatively, and in partic-

ular, age-related remyelination failure has been proven to

involve oligodendroglial cells aging and their intrinsic

capacities among other factors. Third, nutrients may either

help or hinder disease progression. Experimental evidence

supports the anti-inflammatory role of omega-6 and

omega-3 polyunsaturated fatty acids through the

competitive inhibition of arachidonic acid, whose metab-

olites participate in inflammation, and the reduction in T

cell proliferation. In turn, vitamin D intake and synthesis

have been associated with lower MS incidence levels,

while vitamin D–gene interactions might be involved in the

pathogenesis of MS. Finally, dietary polyphenols have

been reported to mitigate demyelination by modulating the

immune response.
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Abbreviations

OLs Oligodendroglial cells

CNS Central nervous system

MS Multiple sclerosis

EAE Experimental autoimmune encephalomyelitis

CPZ Cuprizone

OPCs Oligodendroglial progenitor cells

PDGFRa Platelet-derived growth factor receptor a
GFAP Glial fibrillary acidic protein

SVZ Subventricular zone

PLP Proteolipid protein

MBP Myelin basic protein

CNPase 20,30-Cyclic nucleotide 30-phosphodiesterase

TNFa Tumor necrosis factor-a
IL Interleukin

NPCs Neural precursor cells

EGFR Epidermal growth factor receptor

LINGO-1 Leucine-rich repeat- and Ig domain-containing

NOGO receptor-interacting protein 1

Shh Sonic hedgehog

Hes Hairy/enhancer of split

aTf Apotransferrin

IGF-1 Insulin growth factor-1
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PUFAs Polyunsaturated fatty acids

TGF-b Tumor growth factor-b
PPAR Peroxisome proliferator-activated receptors

25(OH)D 25-Hydroxyvitamin D

Introduction

Myelin biology dates back to 1,717, when Leeuwenhoek

established the existence of nervules surrounded by fatty

parts (Rosenbluth 1999). Two and a half centuries later,

such fatty parts were shown to belong to a highly spe-

cialized membrane, i.e., myelin, generated by mature oli-

godendroglial cells (OLs) in the central nervous system

(CNS) and by Schwann cells in the peripheral nervous

system. Myelin is a very special membrane, with unique

molecular composition and architecture. One of its main

functions is to isolate axons and cluster sodium channels at

Ranvier nodes, thus allowing for saltatory transmission of

action potential between nodes (Waxman 2006). Myelin

development and saltatory nerve conduction constitute the

basis for fast information processing in a relatively small

space.

Demyelination is a pathological process consisting in

the loss of myelin sheaths around axons. In the CNS,

demyelination is usually a consequence of OL damage and

is referred to as primary demyelination, as opposed to that

occurring as a consequence of primary axonal loss, regar-

ded as secondary demyelination or Wallerian degeneration

(Franklin and Ffrench-Constant 2008).

Demyelinating diseases

From a clinical standpoint, white matter disorders involv-

ing myelin affect approximately a million people around

the world and include a wide range of pathologies. Two

key causes of primary demyelination are the following: (1)

genetic abnormalities affecting OLs (leukodystrophies) and

(2) inflammatory damage affecting myelin and OLs.

Genetic abnormalities affecting glia comprise inherited

lysosomal storage diseases, including metachromatic leu-

kodystrophy and Krabbe disease; peroxisomal disorders,

including X-linked adrenoleukodystrophy; and deficiency

or misfolding of select myelin proteins, including Peliza-

eus–Merzbacher disease, among others. Multiple sclerosis

(MS) is the most prominent among inflammatory demye-

linating diseases and, unlike leukodystrophies, is charac-

terized by the presence of focal neurological lesions. It is,

however, a complex disease whose clinical features vary

among patients.

Multiple sclerosis clinical progression is variable, gen-

erally beginning with reversible episodes of neurological

disability between the third and fourth decades of life and

progressing to continuous and irreversible neurological

disability between the sixth and seventh decades (Trapp

and Nave 2008). MS symptoms are the result of myelinated

tract interruption in the CNS. Several lines of mice carry-

ing myelin protein null mutations provided the proof that

axonal degeneration is a consequence of chronic demye-

lination (Trapp and Nave 2008). In this context, remyeli-

nation is defined as the process through which myelin

sheaths are restored to demyelinated axons, which is

associated with functional recovery (Franklin 2002). Re-

myelination is the response to demyelination and is nec-

essary for axon survival. Thus, it should be considered as a

regenerative process, similar to other regenerative pro-

cesses taking place in other tissues. In toxic-based models

of demyelination, as opposed to experimental autoimmune

encephalomyelitis (EAE) or virus-induced demyelination,

full remyelination takes place spontaneously, which allows

for a thorough study of the mechanisms involved in

demyelination/remyelination processes.

Demyelination is undoubtedly part of MS pathology;

however, in recent years, neuronal loss and axonal loss

have been proven to be a consequence of chronic demye-

lination and the main driving force for neurodegeneration

(Trapp and Nave 2008) in demyelinating disorders.

Underlying mechanisms in demyelination/

remyelination processes

Animal models widely used to study demyelination pro-

cesses include (1) EAE, (2) virus-induced models such as

Theiler’s murine encephalomyelitis virus, and (3) toxin-

induced models, such as cuprizone (CPZ) administration

and focal demyelination through lysolecithin injection.

These experimental models have provided a vast amount of

information on remyelination. Findings in this field have

established that (1) the number of oligodendrocytes present

in a remyelinated area is larger than the number of these

cells present in the area previous to demyelination, which

indicates that new oligodendrocytes are generated (Pray-

oonwiwat and Rodriguez 1993), and (2) post-mitotic oli-

godendrocytes that survive the lesion produced by the

demyelinating agent do not contribute to remyelination

(Keirstead and Blakemore 1997). The question raised from

these findings refers to the origin of these new oligoden-

drocytes. There is a consensus in the hypothesis that most

of them, probably all of them, derive from oligodendroglial

progenitor cells (OPCs) widely spread throughout the CNS

(Wood and Bunge 1991; Blakemore and Keirstead 1999),

which are usually identified through the expression of
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proteoglycan NG2 or platelet-derived growth factor

receptor-a mRNA (Wilson et al. 2006). In addition, re-

myelination can be mediated by periventricular cells, such

as progenitors derived from the rostral migratory stream or

from glial fibrillary acidic protein–positive B-type stem

cells present in the adult subventricular zone (SVZ) (Menn

et al. 2006). It is worth pointing out that these alternative

sources of OPCs only contribute to remyelinating areas that

are anatomically close to the SVZ, and, even in these cases,

their relative contribution is uncertain. For remyelination to

actually take place, it is necessary to populate the demye-

linated area with enough OPCs, either those resident in the

area or those that can be recruited from neighboring white

matter (Carroll and Jennings 1994). Recruitment involves

both the proliferation and migration of OPCs, which, once

in the area, have to differentiate to mature OLs with

myelinating capacity in order to complete remyelination.

The toxin-induced models mentioned above have pro-

ven NG2-positive cell recruitment from the SVZ to the

demyelinated area. These cells differentiate and become

mature OLs sequentially expressing myelin proteins such

as proteolipid protein (PLP), myelin basic protein (MBP),

and 20,30-cyclic nucleotide 30-phosphodiesterase. These

findings prove that remyelination mechanisms are tightly

regulated and involve a wide range of molecules, including

cytokines (Mason et al. 2001) and chemokines (Patel et al.

2010), transcription factors (Qi et al. 2001), growth factors

(Aguirre et al. 2007; Murtie et al. 2005), micro-RNA

(Junker et al. 2009), and different signaling pathways (John

et al. 2002).

Cytokines mediate the inflammatory response that pro-

motes pathogen removal and thus prevents excessive tissue

damage. However, excessive cytokine production may lead

to exacerbated inflammation and consequent cell death. In

the CNS, in particular, certain cytokines play a key role in

regenerative processes. Tumor necrosis factor-a (TNFa),

through TNFa receptors R1 and R2, activates cell death, on

the one hand, and NFjB-mediated survival, on the other.

MS patients tend to have higher levels of TNFa, both in

cerebrospinal fluid and in serum, than control patients. In

turn, these values correlate with disease severity (Beck

et al. 1988; Maimone et al. 1991). Interleukin (IL)-1b is

another pro-inflammatory cytokine related to the physio-

pathology of demyelinating diseases such as MS and,

similarly to TNFa, is associated with the worsening of

CNS pathology (de Jong et al. 2002).

Chemokines induce chemotaxis, which is necessary to

attract cells to take part in the immune response at the

infected or injured site. Certain chemokines, such as

CXCL12 and CXCL1, are induced during CNS develop-

ment and coordinate the proliferation, migration, and dif-

ferentiation of neural precursor cells (NPCs) (Stumm et al.

2007; Tsai et al. 2002), which suggests they might also

participate in CNS regenerative processes. In this way,

Patel et al. (2010) demonstrated that CXCR4 (the receptor

of CXCL12) activation is important for the remyelination

of the CPZ-demyelinated mouse by induction of OPC

differentiation.

Growth factors are biologically active polypeptides

controlling target cell growth and differentiation and are

important during the remyelination process. Thus, it was

demonstrated that epidermal growth factor receptor sig-

naling is involved in both the repopulation by OPCs and

the remyelination of lysolecithin-induced corpus callosum

demyelination (Aguirre et al. 2007).

Signaling pathways possibly involved in the remyeli-

nation process include those mediated by leucine-rich

repeat- and Ig domain-containing NOGO receptor-inter-

acting protein 1 (LINGO-1), Wnt, Sonic hedgehog (Shh),

and Notch1. LINGO-1 has been identified as a negative

regulator of OL differentiation (Mi et al. 2005). The

treatment of OPC cultures with anti-LINGO-1shRNA has

been reported to generate an increase in cell morphological

differentiation. On the other hand, LINGO-1-deficient mice

or mice treated with an anti-LINGO-1 antibody exhibited

greater remyelination and functional recovery when sub-

mitted to EAE (Mi et al. 2007). The same observations

were made when animals were submitted to toxin-induced

demyelination (Mi et al. 2009). As for the Wnt signaling

pathway, Fancy et al. (2009) identified pathway-associated

genes that are induced during remyelination in mice sub-

mitted to experimental demyelination. During remyelina-

tion, Tcf4-mediated activation of Wnt negatively regulates

OPC differentiation (Fancy et al. 2009; Ye et al. 2009).

During CNS development, the secretion protein Shh is

necessary for the commitment of the first wave of OPCs

arising from the ventral region of the spinal cord and

forebrain (Fuccillo et al. 2006). In the adult brain, Shh

delivery induces an increase in the population of OPCs in

the cerebral cortex and corpus callosum (Loulier et al.

2006). Recent studies using lysolecithin-induced corpus

callosum demyelination showed that the Shh signaling is

activated during remyelination and that adenovirus-medi-

ated Shh delivery stimulates OPC proliferation and matu-

ration (Ferent et al. 2013).

The Notch signaling pathway has been implicated in the

selection process of neural progenitors present in the neural

tube of vertebrates (Lewis 1996). Notch is a type I trans-

membrane receptor which responds to the binding of spe-

cific ligands and consequently undergoes a sequence of two

proteolytic cleavages. The c-secretase complex releases the

Notch intracellular domain (NICD), which translocates to

the nucleus and activates the transcription of Notch target

genes (Kopan and Ilagan 2009), such as the bHLH-type

transcriptional repressors known as hairy/enhancer of split

(Hes) genes. Upon binding to canonical Delta, Serrate/
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Jagged, and Lag-2 ligands, Notch activation maintains the

pool of NPCs in their undifferentiated state and allows for

the generation of OPCs (Artavanis-Tsakonas et al. 1999),

thus blocking OL maturation through these ligands (Wang

et al. 1998). In addition, NB-3 and F3/contactin, two neural

cell adhesion molecules, act as non-canonical Notch

ligands participating in OL generation (Cui et al. 2004; Hu

et al. 2003). NB-3 triggers NICD nuclear translocation,

promoting oligodendrogenesis from progenitor cells and

OPC maturation via Deltex1 (Cui et al. 2004). We found

that the treatment of demyelinated rats with a single apo-

transferrin (aTf) (350 ng) injection at the time of CPZ

withdrawal induces a marked increase in myelin deposition

as compared to the spontaneous remyelination observed in

control animals (Adamo et al. 2006). Accordingly, differ-

ent authors have reported the relevant role of aTf during

myelination increasing brain myelin content, including

proteins and their mRNAs (Escobar Cabrera et al. 1997,

1994, 2000), regulating MBP gene transcription (Espinosa

de los Monteros et al. 1989, 1999), synergizing with insulin

growth factor-1 (IGF-1), and enhancing myelination in

myelin-deficient rats (Espinosa-Jeffrey et al. 2002). We

recently observed that both canonical and non-canonical

Notch signaling pathways are involved in demyelination/

remyelination. Notch activation was observed to trigger

Hes5 expression as a consequence of lysolecithin-induced

focal demyelination of corpus callosum, which might

promote OPC proliferation. During aTf-induced remyeli-

nation, the expression of F3/contactin appeared to mediate

Notch activation and thus induce aTf-mediated OL matu-

ration (Aparicio et al. 2013).

In summary, remyelination occurring after demyelinat-

ing injuries is a very complex process involving different

cellular populations, regulated by several molecules (e.g.,

growth factors, cytokines) and involving multiple signaling

cascades (e.g., Notch signaling, Shh signaling). Knowledge

of these events has significantly advanced in the last dec-

ades. However, many aspects remain unknown, and re-

myelinating therapeutic approaches remain limited and

constitute a challenging field of research.

Remyelination and aging

Remyelination occurs efficiently in some situations and

fails in others. This irregularity in remyelination has been

studied using toxin-induced demyelination models. In this

context, age was demonstrated to be one of the most

important factors influencing CNS remyelination after a

demyelinating event. In particular, the rate of remyelina-

tion is what changes in the aging CNS rather than its extent

(Shields et al. 1999). The decrease in CNS remyelination

rates occurring as a consequence of aging is a major

complication for remyelinating therapies, in particular for

long-lasting demyelinating disorders such as MS. It is also

important to consider the age-related modifications of the

innate immune and growth factor responses to the demy-

elination process which interfere with myelin repair (Hinks

and Franklin 2000; Zhao et al. 2006). Studies of OPC

response during remyelination of toxin-induced demyelin-

ation in the caudal cerebellar peduncle from young and old

adult rats indicate that the inefficiency of remyelination

associated with aging is due to the impairment of OPC

recruitment and the subsequent failure of OPCs in differ-

entiating into myelinating OL (Sim et al. 2002). In this

regard, it was demonstrated that the epigenetic control of

gene expression related to aging regulates remyelination.

Therefore, in young animals, remyelination occurs as a

consequence of the downregulation of inhibitors of OPC

differentiation, concomitantly with the recruitment of his-

tone deacetylases to promoter regions. In old animals, this

recruitment is inefficient and thus hinders efficient re-

myelination due to a decrease in the ability of OPCs to

differentiate into mature OLs with myelinating capacity

(Shen et al. 2008). Using heterochronic parabiosis (Villeda

et al. 2011) in a toxin-induced focal demyelination model

of mouse spinal cord, Ruckh et al. demonstrated

improvements in the remyelination of aged brains mediated

by endogenous OPCs whose differentiation capacity was

restored by exposing them to a youthful systemic envi-

ronment. Considering previous hypotheses about the role

of the innate immune system in remyelination (Kotter et al.

2006), these results support the idea that young macro-

phages recruited during remyelination facilitate OPC dif-

ferentiation by removing inhibitory myelin debris (Ruckh

et al. 2012).

Taken together, the above findings give rise to the

notion that age-related remyelination failure may implicate

not only factors associated with aging OLs and their

intrinsic capacities, but also a number of external factors,

even outside the CNS, that affect OPC differentiation

capacity and ultimately impact myelin repair (Redmond

and Chan 2012).

Demyelination/remyelination and nutrients

MS is the most common CNS-specific demyelinating dis-

order affecting young adults, and it is a multifactorial

disease with unclear etiology. In addition to a genetic

predisposition (Ebers and Sadovnick 1994), epidemiologi-

cal studies suggest a strong association between increased

MS prevalence and particular diets (Antonovsky et al.

1965; Cendrowski et al. 1969; Berr et al. 1989; Tola et al.

1994). Studies conducted on dietary factors associated with

MS have included fat consumption, particularly saturated
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animal fat (Payne 2001); breastfeeding duration (Isaacs

et al. 2010); and the intake of sweets (Antonovsky et al.

1965), alcohol (Berr et al. 1989; Sepcic et al. 1993),

smoked meat products (Sepcic et al. 1993), coffee, and tea

(Tola et al. 1994). However, Agranoff and Goldberg (1974)

implicate foods rich in both omega-6 and omega-3 poly-

unsaturated fatty acids (PUFAs) in negative correlations

with MS—omega-3 PUFAs are derived from fish oils,

whereas omega-6 PUFAs are obtained from plants such as

sunflower, corn, wheat germ, and soybean oils. In partic-

ular, it was observed that linoleic (18:2n-6) and arachidonic

acids (20:4n-6) are decreased in plasma, platelets, eryth-

rocytes, leukocytes, and cerebrospinal fluid in patients with

MS (Baker et al. 1964; Sanders et al. 1968; Gul et al. 1970;

Neu 1983). The use of linoleic acid alone or oil containing

linoleic acid and c-linolenic acid (ratio 7:1) in the treat-

ment for EAE—an induced animal model of CD4 T cell-

mediated demyelination characterized by inflammation—

produced a partial suppression of the incidence and

severity of the pathology (Meade et al. 1978). It was further

demonstrated that the c-linolenic acid had a protective,

dose-dependent effect on EAE because of the increase in T

cell tumor growth factor-b (TGF-b) transcription and

prostaglandin E2 production (Harbige et al. 2000).

Even though the relationship between the dietary intake

of fat and the risk of MS is not clear, the anti-inflammatory

effects of omega-6 and omega-3 PUFAs are well known.

Both omega-6 and omega-3 PUFAs are competitive

inhibitors of arachidonic acid, whose metabolites are

involved in the inflammation process (Callegari and Zurier

1991; Gil 2002), and were demonstrated to decrease T cell

proliferation (Rossetti et al. 1997). On the other hand,

molecules derived from PUFAs could have positive effects

on the treatment of MS: Lipoxins might reduce inflam-

mation by decreasing neutrophil activity (Yacoubian and

Serhan 2007), while resolvins and protectins, derived from

omega-3 PUFAs, seem to control inflammation in the

nervous system (Serhan et al. 2002). An important role

assigned to PUFAs is that of ligands for peroxisome pro-

liferator-activated receptors (PPARs). PPARs are ligand-

activated nuclear transcription factors whose PPARc iso-

form is present in human T lymphocytes, and omega-3

PUFAs, acting as PPARc agonists, ameliorate inflamma-

tion in EAE rats (Niino et al. 2001). Furthermore, omega-3

PUFAs were demonstrated to promote, in vivo, the

expression of myelin-related proteins such as the PLP and

MBP (Salvati et al. 2008).

Considering the relevance of blood–brain barrier integ-

rity in MS physiopathology, Liuzzi et al. (2007) demon-

strated that the in vitro treatment of microglia with omega-

3 PUFAs decreases the LPS-induced production of matrix

metalloproteinase-9, which is involved in the mechanism

of blood–brain barrier disruption, the penetration of

inflammatory cells into the CNS, and, consequently,

demyelination.

Finally and most importantly, clinical trials have been

conducted over the last few years in MS patients, with

results supporting the positive role of dietary PUFAs in

disease progression.

The fact that MS has low prevalence in equatorial

regions and increasing prevalence toward the north and

south poles and that sun exposure is inversely related to the

risk for MS development (Munger et al. 2006) suggest that

vitamin D3 (cholecalciferol) could have a significant

influence on MS progression (Smolders et al. 2008a).

Vitamin D can be obtained directly from dietary sources or

through skin synthesis, in which case sunlight is essential

to the conversion of pre-vitamin D3 to active vitamin D3

through the cleavage of the B-ring. Vitamin D is hydrox-

ylated in the liver to render 25-hydroxyvitamin D

(25(OH)D). A high percentage of MS patients have low

plasma levels of 25(OH)D (Mahon et al. 2003; Nieves et al.

1994; Ozgocmen et al. 2005). In this regard, studies in

USA populations have proven that a 50-nmol increase in

25(OH)D correlates with a 40 % decrease in MS incidence.

Also, while low levels of vitamin D are associated with

relapse and disability in MS patients (Smolders et al.

2008b), high serum 25(OH)D levels reduce the hazard ratio

for new relapses in a dose-dependent manner (Simpson

et al. 2010). It has been proposed that the protective effects

of vitamin D on MS are mostly related to the critical

functions of this vitamin in the immune system. However,

in the cuprizone model of demyelination in rats, which is

independent of lymphocyte infiltration, vitamin D3 sup-

plementation decreases the magnitude of white matter

demyelination and mitigates the activation of microglia

(Wergeland et al. 2011). In a more recent study, involving

141 participants with relapsing–remitting MS, Lin et al.

studied 276 single nucleotide polymorphisms in 21 genes

related to vitamin D metabolism and vitamin D receptor

factor complex formation. They hypothesized that the

interaction between genes and vitamin D may affect the

clinical course of MS and, in particular, that the PKC

family genes may be involved in the pathogenesis of

relapsing–remitting MS modulating the association

between 25(OH)D and relapse (Lin et al. 2013).

On the other hand, vitamin B12 cyanocobalamin can also

have a positive influence on remyelination. B12 adminis-

tered concomitantly with interferon-b favors OL maturation

both in vivo, in non-autoimmune primary demyelinating

ND4 (DM20) transgenics, and in vitro, in the human MO3-

13 cell line and in rat spinal cord oligodendrocytes. These

actions involve a decrease in Notch1 signaling and an

increase in the expression of Sonic hedgehog and its

receptor, Patched, which induces OL maturation and helps

improve remyelination (Mastronardi et al. 2004).
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Dietary polyphenols could also mitigate demyelination

by modulating the immune response. In this regard, epi-

gallocatechin-3-gallate, a flavan-3-ol abundant in green tea,

reduces the autoimmune response in the EAE through the

inhibition of immune cell infiltration and the regulation of

pro- and anti-autoimmune CD4(?) T cells (Wang et al.

2012).

In summary, recent experimental evidence suggests that

nutrition could influence the development of demyelinat-

ing/remyelinating processes by mitigating demyelination

and favoring remyelination. Given the nutritional imbal-

ances associated with aging, further advances in the

knowledge of how nutrients impact myelination could be

of major relevance in the treatment of demyelinating

conditions.

Conclusions

In demyelinating disorders in general and MS in particular,

the failure of prompt remyelination is associated with

axonal injury and degeneration, which is accepted as the

major cause of neurological disability in the disease. Re-

myelination process recapitulates myelination during

development, but in a pathological environment. Different

molecules and signaling pathways are involved in the

remyelination process, inducing or inhibiting the prolifer-

ation and maturation of OPCs engaged in the generation of

new myelin sheaths around axons. In the same way, non-

disease-related factors, such as age and genetic background,

and environmental factors, such as dietary components,

could act as predisposition factors or exert a protective or

even therapeutic effect during certain disease stages, ren-

dering either negative or positive outcomes (Fig. 1).
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