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Abstract Multiple factors determine the ability of a peptide
to elicit a cytotoxic T cell lymphocyte response. Binding to a
major histocompatibility complex class I (MHC-I) molecule is
one of the most essential factors, as no peptide can become a T
cell epitope unless presented on the cell surface in complex
with an MHC-I molecule. As such, peptide-MHC (pMHC)
binding affinity predictors are currently the premier methods
for T cell epitope prediction, and these prediction methods
have been shown to have high predictive performances in
multiple studies. However, not all MHC-I binders are T cell
epitopes, and multiple studies have investigated what addi-
tional factors are important for determining the immunogenic-
ity of a peptide. A recent study suggested that pMHC stability
plays an important role in determining if a peptide can become
a T cell epitope. Likewise, a T cell propensity model has been
proposed for identifying MHC binding peptides with amino
acid compositions favoring T cell receptor interactions. In this
study, we investigate if improved accuracy for T cell epitope
discovery can be achieved by integrating predictions for
pMHC binding affinity, pMHC stability, and Tcell propensity.
We show that a weighted sum approach allows pMHC
stability and T cell propensity predictions to enrich
pMHC binding affinity predictions. The integrated mod-
el leads to a consistent and significant increase in pre-
dictive performance and we demonstrate how this can
be utilized to decrease the experimental workload of
epitope screens. The final method, NetTepi, is publically
available at www.cbs.dtu.dk/services/NetTepi.
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Introduction

Cytotoxic T lymphocytes (CTL) play a critical role in cell-
mediated immunity by scanning peptides presented by major
histocompatibility complex class I (MHC-I) molecules on the
cell surface. The peptides bound by MHC-I molecules are
prevalently 8–11 residues in length and derived from intracel-
lular proteins. During protein degradation, peptides are sam-
pled by MHC-I molecules and transported to the cell surface.
CTL recognition of a peptide-MHC (pMHC) with a bound
non-self peptide triggers the release of cytotoxic effector
proteins, inducing the infected cell to undergo apoptosis
(Harty et al. 2000).

Knowledge of which peptides within an intracellular path-
ogen are most likely to elicit an immune response is essential
for the development of reagents, therapeutics, and diagnostic
tools. These immunogenic peptides, referred to as T cell
epitopes, can be identified experimentally, but due to the large
number of unique peptides in a virus or bacterial proteome,
epitope screens commonly incorporate a prefiltering step
using an in-silico T cell epitope prediction method (reviewed
in Lundegaard et al. 2012). Due to pMHC binding being the
most selective factor for potential T cell epitopes, this aspect
has been studied extensively (Yewdell and Bennink 1999).
More than 150,000 distinct pMHC binding affinity measure-
ments are contained in the Immune Epitope Database (IEDB,
Vita et al. 2010) facilitating the development of high perfor-
mance pMHC binding affinity prediction methods. The best
performing of these include NetMHC (Nielsen et al. 2003;
Lundegaard et al. 2008a), NetMHCpan (Nielsen et al. 2007;
Hoof et al. 2009), NetMHCcons (Karosiene et al. 2012), and
SMM (Peters and Sette 2005), all hosted at the IEDB Analysis
Resource (Kim et al. 2012).

While all T cell epitopes must be MHC binders, not all
MHC binders are T cell epitopes (Feltkamp et al. 1994). This
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observation has prompted several studies to investigate what
additional factors are required for a peptide to be immunogenic.
Earlier studies have analyzed the impact of including predic-
tions of other MHC-I pathway players, such as proteasomal
cleavage (Keşmir et al. 2002; Nielsen et al. 2005) and TAP
transport (Peters et al. 2003), on the ability to correctly identify
CTL epitopes (Tenzer et al. 2005; Larsen et al. 2005; Larsen
et al. 2007; Stranzl et al. 2010). While results from these
analyses are not fully consistent in terms of the relative impor-
tance of the different players, they all concur in the finding that
additional features beyond antigen processing and MHC bind-
ing affinity are determinants of peptide immunogenicity.

Recent studies have investigated the role of pMHC stability
in determining whether a peptide is a T cell epitope (Harndahl
et al. 2012; Jørgensen et al. 2014). Whereas pMHC binding
affinity defines the equilibrium between the association and
dissociation of the pMHC complex, pMHC stability defines
the rate of dissociation. The more stable the pMHC, the longer
a peptide is bound to the MHC molecule once loaded. The
rationale behind the importance of pMHC stability is that the
complex must stay intact during transportation to the cell
surface, and remain so on the cell surface, while waiting for
a naïve CD8+ T cell to bind it. The number of naïve CD8+ T
cells in a host specific for a given pMHC is extremely low, so
the longer a pMHC is stable on the surface of the cell, the
higher the chance of being recognized by a Tcell and initiating
an immune response. Following this argument, Jørgensen
et al. (2014) showed that a combination of binding affinity
and stability predictions had a greater predictive performance
for T cell epitope identification than either prediction type
alone. One should note that on-rates could be considered as
important as dissociation in determining peptide immunoge-
nicity, as they dictate which peptides will end up on the
surface of the presenting cell. However, to the best of our
knowledge no high throughput experimental and/or prediction
methods are currently available to estimate peptide on-rates in
situations corresponding to a live cell, making assessment of
this aspect of antigen presentation difficult.

In addition to being presented on an MHC molecule, it is
also required that the peptide is recognized by a Tcell receptor
(TCR) in order to elicit an immune response. As such, TCR
binding has been studied extensively (reviewed by Rudolph
et al. 2006). For pMHC binding, it has been shown that some
positions in the peptide, termed anchor positions, have a larger
impact on binding affinity than others, and that differentMHC
molecules have different amino acid residue preferences at
these positions (Falk et al. 1991). Similarly, certain positions
in the peptide have a larger impact on TCR binding compared
to others (Lee et al. 2004; Frankild et al. 2008). In general,
positions 4–6 are found to have the highest importance as
mutations in these positions affect TCR binding the most, but
other positions may also have an impact if they affect the
peptide conformation in the MHC binding pocket (Tynan

et al. 2005). The role of T cell cross-reactivity on peptide
immunogenicity has also been investigated, suggesting that
TCRs recognize peptides with similar biochemical properties
(Frankild et al. 2008). This has implications for peptide im-
munogenicity, as TCRs that recognize self-pMHCs are nega-
tively selected during T cell maturation (Huseby et al. 2005),
leaving “holes” in the T cell repertoire. Predicting pMHC
binders that are biochemically similar to self peptides has
proven to be a viable method for distinguishing non-
immunogenic peptides from T cell epitopes (Frankild et al.
2008; Calis et al. 2012).

Tung et al. have developed a method for the prediction of
peptide immunogenicity, POPISK (Tung et al. 2011). The
method uses support vector machines to predict T cell reac-
tivity and identify important positions for TCR binding in a
data driven manner. The method was trained only on HLA-
A02:01-restricted epitopes, which means predictions are only
available for that allele. Similarly, Calis et al. (2013) have
recently developed an immunogenicity model for the predic-
tion of a peptide’s T cell propensity. An important difference
between the two methods is that the latter was trained on
epitopes from 12 MHC-I molecules (six mouse and six hu-
man) with MHC anchor positions disregarded, meaning the
model can provide predictions for peptides presented by any
MHC-I molecule. The model suggests that positions 4–6 in
the peptide are the most important for TCR binding, consistent
with previous studies (Frankild et al. 2008). The model also
suggests that the TCR has a preference for residues with large
or aromatic side chains, consistent with previous studies that
have shown an association between immunogenicity and the
presence of large, aromatic amino acid residues (Alexander
et al. 1994).

In this study, we extend the work by Jørgensen et al. (2014)
with the aim of creating an integrated method for T cell
epitope prediction, combining pMHC binding affinity, pMHC
stability, and Tcell propensity predictions. Using a large set of
T cell epitope data obtained from the IEDB and SYFPEITHI
(Rammensee et al. 1999), we investigate if the integrated
method can outperform each individual prediction method,
and to what degree such an improvement in predictive perfor-
mance can be translated to a reduction in the experimental
workload for epitope screens that utilize in-silico prefiltering.

Methods and materials

Model training data

A T cell epitope data set previously compiled by Jørgensen
et al. (2014) was used to optimize the weight on each predic-
tion type used in the three combination models. The data set
contained 295 T cell epitopes downloaded from SYFPEITHI
(Rammensee et al. 1999) and 1,216 T cell epitopes
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downloaded from the IEDB (Vita et al. 2010), covering nine
HLA alleles. All epitopes in this data set were 9mers and
had been prefiltered to remove all epitopes that were
not predicted to be binders to their annotated HLA
molecule by NetMHCcons. Throughout this study, we
define an MHC binder as a peptide with either a pre-
dicted binding affinity stronger than 500 nM, or a
predicted rank score within the top 2 %. The data was
further filtered to remove any peptides present in the
data used by Calis et al. (2013) to create the T cell
propensity model. This removed 310 epitopes (21 %)
from the data leaving a total epitope count of 1,201.

An overview of the data set can be found in Table 1.
Allele-balanced training data sets were created by ran-
domly selecting 50 epitopes from each of the nine HLA
alleles. If less than 50 epitopes were available for an
allele, all epitopes were selected. The training data sets
contained a total of 378 epitopes.

Evaluation data

T cell epitopes were downloaded from the IEDB to create an
evaluation data set. Epitopes were selected based on the
following three criteria: (a) 9-10 amino acids in length, (b)
annotated to elicit a positive IFN-g response, and (c) annotated
to bind to one of the 13 HLA molecules for which stability
predictions are currently available in the NetMHCstab
method (as of November 2013). 1,428 epitopes were
identified and downloaded.

As in the Jørgensen data set, predicted non-binding epitopes
were filtered out of the evaluation data set. Affinity predictions
for all the epitopes were calculated using NetMHCcons and all
epitopes not predicted to be MHC binders were discarded
(Jørgensen et al. 2014). This filtered out 273 epitopes (19 %)
from the data set. The data was then filtered further to remove
any peptides also present in the Calis data set, removing 215
epitopes (15 %). Finally, the evaluation data set was filtered to

remove any peptides also present in themodel training data set.
This removed 375 epitopes (26 %) from the data. Due to the
low number of epitopes available for HLA-B27:05 and HLA-
B39:01 in the final evaluation data set, these alleles were
excluded from the evaluation. The final data set consisted of
557 epitopes covering 11 HLA molecules.

Source proteins for each of the epitopes were
downloaded from GenBank using the accession number
annotated in the IEDB. An overview of the 557 epi-
topes can be found in Table 2. All training and evalu-
ation data is available at www.cbs.dtu.dk/suppl/
immunology/NetTepi-1.0.

Evaluation methods

Area under the receiver operating characteristic curve (AUC)
scores were used to evaluate the performance of the different
models. More specifically, AUC0.1 scores, corresponding to a
specificity threshold of 0.9 were used, as the highest scoring
peptides are usually those of interest for users of epitope
prediction methods. Receiver operating characteristic (ROC)
curves were calculated by splitting the source protein into
overlapping 9 and 10mers where the epitope was considered
the sole positive and all other peptides were considered neg-
atives. In cases where a protein contained several known
epitopes from the evaluation data set, each epitope-HLA pair
formed an individual entry. When evaluating the performance
in such cases, the set of negative peptides were filtered for
these additional epitopes, removing what would have been a
large amount of false positives in the ROC analysis. One-
tailed binomial tests (excluding ties), based on the number of
instances where a method had higher predictive performance
than another, were used to evaluate whether there were
significant differences between the performances of the
different models.

Table 1 Overview of
the epitope data used for
training the three com-
bined prediction models

Allele No. of epitopes

HLA-A01:01 58

HLA-A02:01 673

HLA-A03:01 66

HLA-A11:01 89

HLA-A24:02 124

HLA-B07:02 111

HLA-B15:01 14

HLA-B35:01 52

HLA-B40:01 14

Total 1,201

Table 2 Overview of
the epitope data used for
the evaluation of the
three combined predic-
tion models and the three
individual prediction
methods

Allele No. of epitopes

HLA-A01:01 8

HLA-A02:01 203

HLA-A03:01 20

HLA-A11:01 71

HLA-A24:02 16

HLA-A26:01 10

HLA-B07:02 69

HLA-B15:01 31

HLA-B35:01 82

HLA-B40:01 20

HLA-B58:01 27

Total 557
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Model training

The models were fitted on the allele-balanced training
data using a 5-fold cross-validation (CV) strategy in
which 1/5 of the data is left out as test data and the
model is trained on the remaining 4/5. This was repeat-
ed three times, each time with a new training data set
obtained by randomly selecting up to 50 epitopes for
each allele from the training data set. In each run and
CV, optimal model parameters were selected based on
the highest test performance evaluated using AUC0.1.
As the training data consisted of solely 9mer epitopes,
only overlapping 9mers were here used as negatives in
the ROC analysis. The CV setup thus produced 15
optimal weights for each model and a majority vote
was used to select the final weights to be used for
further evaluation.

10mers

While NetMHCcons and NetMHCstab are able to make
predictions on 8–14mers, T cell propensity predictions
using the model described by Calis et al. (2013) were
only described for 9mers. We extended the immunoge-
nicity model to support 10mer predictions by using the
approximation method proposed by Lundegaard et al.
(2008b). In short, the approximation consists of gener-
ating six 9mer peptides for each 10mer peptide remov-
ing in turn one amino acid at P4, P5, P6, P7, P8, and
P9, and next predicting the score of the 10mer peptide
as the average score of the six 9mers.

Results

Three prediction types were used to create the integrated
T cell epitope prediction method: pMHC binding affin-
ity, pMHC stability, and T cell propensity. pMHC bind-
ing aff in i ty pred ic t ions were ob ta ined us ing
NetMHCcons-1.0 (Karosiene et al. 2012), a consensus
method utilizing optimized combinations of predictions
from the NetMHC (Nielsen et al. 2003; Lundegaard
et al. 2008a), NetMHCpan (Nielsen et al. 2007; Hoof
et al. 2009), and PickPocket (Zhang et al. 2009)
methods. pMHC stability predictions were obtained
using NetMHCstab-1.0 (Jørgensen et al. 2014), an arti-
ficial neural network-based method capable of predicting
the half-lives of pMHCs. T cell propensity predictions
were calculated using the immunogenicity model pro-
posed by Calis et al. (2013).

Using these prediction types, we constructed three different
models, one combining pMHC binding affinity and T cell

propensity (AT), another combining pMHC binding affinity
and pMHC stability (AS), and finally a model combining all
three predictions (AST). In each model, the predictions were
combined using a weighted sum:

AT ¼ t � T cell propensity þ 1– tð Þ � NetMHCcons
AS ¼ s � NetMHCstab þ 1– sð Þ � NetMHCcons
AST ¼ t � T cell propensityþ s� NetMHCstabþ 1–t–sð Þ � NetMHCcons

where t, s, and t+s fall in the range 0–1 and where the
NetMHCcons and NetMHCstab scores are the raw prediction
values falling in the range 0–1 The model combining pMHC
stability with T cell propensity was not included in the study,
as this model displayed inferior predictive performance
compared to the binding affinity-based model alone
(data not shown).

Weight optimization

From the balanced training data set, optimal relative weights
for each model were obtained. For the AT model the optimal
weight was s=0.11 +/− 0.037, for the AS model t=0.15 +/
− 0.034, and for the AST model the optimal weights were s=
0.1 +/− 0.035 and t=0.16 +/− 0.012, were values after the +/−
sign are the standard deviations of the 15 optimal weights
found in the CV procedure.

Model evaluation

Each model was evaluated on the evaluation data set.
An overview of the performances can be found in
Table 3. The reported AUC0.1 scores are the averages
of the AUC0.1 scores calculated for each epitope-
protein pair in the evaluation set. In addition to the
three models, performance measures for the individual
prediction types are included for reference. Performance
measures for the different models on the evaluation data
when split into 9 and 10mers, as well as when split into
the 11 HLA molecules are also included in Table 3.

Binomial tests were used to test for significant differences
in performance. When evaluating on all the data, the AST
model was the highest performing model, performing signif-
icantly better than all three individual methods (p<0.001 for
each method) and the AT model (p=0.002), but not the AS
model (p=0.062). The AT and AS models both performed
significantly better than NetMHCcons (p=0.025 and p<0.001,
respectively) as well as NetMHCstab and the immunogenicity
model alone (p<0.001 in all cases).

Looking at the length specific data, the AS model was
numerically the highest performing method for 9mers,
followed by NetMHCcons, the AST model, and finally
the AT model. In terms of the statistical test, on this data
set all three models performed significantly better than
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NetMHCstab and T cell propensity, but only the AS
model performed significantly better than NetMHCcons
(p=0.040). For 10mers, the AST model was significantly
better than the ATmodel (p=0.006) and ASmodel (p=0.027),
as well as each of the three individual methods (p<0.001 for
each method).

As can be seen in Table 3, the performance gain obtained
by adding T cell propensity and pMHC stability predictions to
pMHC binding affinity varies from allele to allele, with T cell
propensity adding more on some alleles, and pMHC stability
adding more on others. The AST model was not numerically
the highest performing model for all alleles. It achieved
higher performance than NetMHCcons for eight alleles
and a higher performance than the AT and AS models
for six alleles in each case.

To further quantify the performance difference be-
tween the four top performing methods, false positive
(FP) ratios for each epitope-protein pair were compared.
We define FPs as all peptides in a protein with a higher
prediction score than the known epitope, and the FP
ratio as the number of FPs normalized by the total
number of peptides in the protein. Both 9 and 10mers
were included in this analysis.

Figure 1 shows the fraction of epitopes in our eval-
uation data that would be identified given a certain FP
ratio. The insert shows the complete graph, and it can
be seen that all four methods achieve highly comparable
performance values reaching a sensitivity of 100 % at an
FP ratio of around 7 %. The outer plot shows the
sensitivity curves up to an FP ratio of 2 %. In the
majority of this plot, the yellow line (AST) is on the
top demonstrating the improved performance of the AST

model. For example, allowing for an FP ratio of 1.5 %,
NetMHCcons identifies 88.0 % of the epitopes, whereas
the AST model identifies 89.9 % of the epitopes, a
2.1 % increase. Likewise, at a sensitivity of 90 %,
NetMHCcons has an FP ratio of 1.7 %, whereas the
AST model has an FP ratio of 1.5 %.

As shown above, the absolute difference in predictive
performance between the different methods is relatively small
when measured in terms of difference in averaged
AUC0.1 and FP ratio values. However, as demonstrated

Table 3 Evaluation results for each of the combined models and individual prediction methods. The predictive performances are measured as average
AUC0.1 values. In each row, the model/method with the highest performance is highlighted in italics

No. of epitopes AST AT AS NetMHCcons NetMHCstab T cell
propensity

All Data 557 0.9305 0.9285 0.9301 0.9290 0.8746 0.0573

9mers 208 0.9466 0.9459 0.9474 0.9470 0.8851 0.0669

10mers 349 0.9209 0.9181 0.9199 0.9183 0.8682 0.0516

HLA-A01:01 8 0.9766 0.9768 0.9813 0.9822 0.9484 0.0000

HLA-A02:01 203 0.8991 0.8942 0.8997 0.8974 0.8656 0.0696

HLA-A03:01 20 0.9306 0.9256 0.9201 0.9130 0.7743 0.0605

HLA-A11:01 71 0.9056 0.9100 0.9024 0.9052 0.7860 0.0446

HLA-A24:02 16 0.9534 0.9591 0.9567 0.9600 0.8801 0.0887

HLA-A26:01 10 0.9657 0.9542 0.9555 0.9546 0.8693 0.0000

HLA-B07:02 69 0.9655 0.9661 0.9642 0.9641 0.9451 0.0412

HLA-B15:01 31 0.9542 0.9548 0.9523 0.9539 0.8946 0.0468

HLA-B35:01 82 0.9551 0.9523 0.9582 0.9557 0.8723 0.0561

HLA-B40:01 20 0.9792 0.9765 0.9795 0.9770 0.9723 0.0376

HLA-B58:01 27 0.9652 0.9617 0.9646 0.9628 0.9569 0.0874
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Fig. 1 Plot showing the sensitivity of each prediction method as a
function of the FP ratio. The insert shows the complete graph and the
outer plot focuses on the FP ratios from 0 to 0.02
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by the significant p values when comparing the com-
bined AST model to the other models, the increase in
predictive performance of the AST model is consistent
over the majority of the epitopes included in the bench-
mark analysis. This consistency in increased prediction
accuracy can be appreciated by calculating the accumu-
lative number of times each method achieves the
highest predictive performance as a function of de-
creased predicted binding strength. The results of such
an analysis are shown in Fig. 2. Here, the epitope-
protein pairs were sorted based on the predicted percen-
tile rank binding affinity of the epitopes, and number of
top performances (“wins”) for each method was accu-
mulated. All ties were disregarded in this analysis. A
similar figure showing the accumulative number of top
performances (“wins”) for each method as a function of
decreased predicted binding affinity in nM units is
shown in Supplementary Figure S1.

The figure clearly demonstrates that in the top rank
percentile ranges (strongest binders for each allele),
integration of binding stability predictions contribute
the most to the improved performance, with the AS
model being the top performing method in the 0.01–
0.2 rank percentile range. However, due to the very
small number of observations in this part of the figure,
none of the observed differences are statistically signif-
icant. As the rank percentile score is decreased, T cell
propensity predictions gain importance and the AST
model pulls ahead and achieves most wins, followed
by the AT and AS models. Comparing the AST model

to NetMHCcons, the AST model has 37 % more wins
across the entire evaluation set.

Discussion

No peptide can become a T cell epitope without first being
bound and presented by anMHC-I molecule. However, not all
peptide binders have the ability to activate CTLs, suggesting
that factors other than pMHC binding affinity play a role in
defining peptide immunogenicity. Due to pMHC binding
being the strongest selective step in CTL activation, pMHC
binding affinity prediction methods are currently the go-to
tools for T cell epitope prediction (Lundegaard et al. 2010).
Still, recent studies have demonstrated that other prediction
types are also relevant predictors of T cell epitopes (Frankild
et al. 2008; Tung et al. 2011; Calis et al. 2012; Harndahl et al.
2012; Calis et al. 2013; Jørgensen et al. 2014).

In this study, we combined pMHC binding affinity
predictions from NetMHCcons, pMHC stability predictions
from NetMHCstab, and T cell propensity predictions from the
immunogenicity model by Calis et al. (2013) to create three
linear integrative models for T cell epitope prediction. One
model combines binding affinity and stability, another com-
bines binding affinity and T cell propensity, and the last
combines all three prediction types. The relative weights on
the prediction types were estimated using an allele-balanced
training data set of 9mer T cell epitopes downloaded from the
IEDB and SYFPEITHI.

The models and prediction methods were all evaluated on
an evaluation data set of 9 and 10mer T cell epitopes
downloaded from the IEDB. The immunogenicity model
was extended to allow for 10mer predictions using a previ-
ously described approximation method used for pMHC bind-
ing affinity predictions (Lundegaard et al. 2008b). In this
benchmark, the AST model was the best performing model,
significantly outperforming the strongest of the solo predic-
tion methods, NetMHCcons.

We performed an analysis of FP ratios in the evaluation
data and found, at a sensitivity of 90 %, an FP ratio of 1.7 %
for NetMHCcons vs. 1.5 % for the AST model. While small,
this difference in FP ratio can be translated into an estimate of
the reduction in laboratory effort when running epitope dis-
covery experiments. For an epitope screen of 1,000 peptides
where a sensitivity of 90 % is desired, 17 peptides would need
to be tested when using NetMHCcons. Using the AST model,
15 peptides would need to be tested thus decreasing the
number of required peptides by 12%. This reduction becomes
especially meaningful when screening whole proteomes,
which may contain hundreds of thousands of unique peptides.

The previous study by Jørgensen et al. (2014) also inves-
tigated combining pMHC binding affinity predictions with
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pMHC stability predictions, as in the AS model described in
this study. To our knowledge, this is the first study where
pMHC binding affinity and stability predictions have been
combined with immunogenicity predictions. We show that
integrating these three prediction types leads to a consistent
and significant increase in performance for T cell epitope pre-
diction over binding affinity predictions alone. This significant
performance increase reinforces the notion that there are factors
outside pMHC binding that play a role in CTL activation.

Due to the historical emphasis on pMHC binding affinity
data generation, pMHC binding affinity prediction methods
currently have the highest predictive performance for T cell
epitopes. This observation is also reflected in the integrative
models. Here, the relative weight on NetMHCcons was 70–
90 % in all cases, suggesting that this method is the strongest
epitope predictor of the three independent methods used in
this study. This observation was supported when testing the
predictive performance of the three methods on an indepen-
dent evaluation data set. NetMHCcons is trained on a data set
consisting of over 100,000 data points, whereas NetMHCstab
has a training data set of around 5,500 and the immunogenic-
ity model is trained on just 650 data points. With this training
data mismatch in mind, it is no surprise that NetMHCcons is
able to contribute the most when combined with the other
prediction methods.

However, there is currently room for improvement in
pMHC stability and T cell propensity prediction. As more
data is generated for these prediction types, it is likely that
the weights on these prediction types will change in the
combined models. An issue that is making the development
of accurate peptide immunogenicity prediction methods diffi-
cult is the low number of highly confident non-immunogenic
MHC ligands (Calis et al. 2013). The low impact in reporting
negative results means there is little interest in thoroughly
testing and reporting non-responding peptides. However, in
order to develop a strong prediction method, a large amount of
positive and negative data is required. We hope more
groups will keep this in mind when deciding which data they
decide to release in the future.

While the AST model is a significant improvement over
NetMHCcons, it is apparent that the absolute gain in predictive
performance is relatively small. Two main reasons for this
exist. First of all, a large proportion of the epitopes present in
the IEDB have been identified using rational epitope discov-
ery approaches including in-silico binding affinity screenings
to identify potential epitopes. One such example is the subset
of dengue epitopes in the evaluation data set (Weiskopf et al.
2013). These epitopes were identified using an in-silico
prescreening where only peptides with high predicted binding
affinity were selected. Such a bias towards high affinity will
naturally favor affinity-based prediction methods in the eval-
uation, and as expected the AST method performs on par with
NetMHCcons on this data set. Concordantly, one would

expect that the performance gain by using the AST method
would be higher in situations where the evaluation data were
unbiased. Looking at another subset of the data in the evalu-
ation set supports this notion. A large proportion of the
Vaccinia epitopes were identified using a prescreening proce-
dure with a tolerant filter for binding affinity, hence imposing
a lesser bias in the final set of validated epitopes (Assarsson
et al. 2007). As expected, on this data set the performance gain
using the AST method compared to NetMHCcons is highly
statistically significant (data not shown). Given these consid-
erations, it is hence likely that the performance gain reported
in this work by using the AST method is underestimated, and
would come out higher in real-life situations where the meth-
od is used as a prescreening filter in a pipeline for rational
epitope discovery.

Another important issue of epitope characterization and
evaluation apparent from this study is the large amount of
ill-characterized data contained within the public databases.
Here, a large proportion of the reported epitopes do not match
the binding motif of the reported restriction element suggest-
ing incorrect assigned restrictions and/or suboptimal identifi-
cation of the minimal epitope. For example, the 273 epitopes
discarded in this study, due to not matching the binding motif
of the reported HLA restriction element, had an average
predicted binding affinity of 7,550 nM. Only in very few cases
(less than 10 %, data not shown) do these epitopes contain
nested epitope with high predicted binding affinity, thus
strongly suggesting an incorrect assignment of the restriction
element for these epitopes.

This study shows that a comprehensive T cell epitope
prediction method will very likely need to take multiple
factors into account, highlighting the importance in generating
novel pMHC stability data and immunogenic and non-
immunogenic peptide data. A webserver implementing the
final method is available at www.cbs.dtu.dk/services/NetTepi.
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