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Abstract: The high annual losses of managed honey bees (Apis mellifera) has attracted intensive
attention, and scientists have dedicated much effort trying to identify the stresses affecting bees.
There are, however, no simple answers; rather, research suggests multifactorial effects. Several works
have been reported highlighting the relationship between bees’ immunosuppression and the effects of
malnutrition, parasites, pathogens, agrochemical and beekeeping pesticides exposure, forage dearth
and cold stress. Here we analyze a possible connection between immunity-related signaling pathways
that could be involved in the response to the stress resulted from Varroa-virus association and cold
stress during winter. The analysis was made understanding the honey bee as a superorganism, where
individuals are integrated and interacting within the colony, going from social to individual immune
responses. We propose the term “Precision Nutrition” as a way to think and study bees’ nutrition in
the search for key molecules which would be able to strengthen colonies’ responses to any or all of
those stresses combined.
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1. Introduction

Honey bees (Apis mellifera) are key pollinators, playing a vital role in ecosystem maintenance
and the stability of crop yields [1]. Unfortunately, colony losses and colony depopulation of the
European honey bee A. mellifera was reported for several years, being particularly high in the USA [2–5],
where this phenomenon reaches levels up to 50% [6]. The losses of managed honey bees are of great
concern, and this has attracted intensive attention, where scientists have dedicated much of their work
to uncover the stresses affecting bees [4,7].

Deciphering the complex interactions between diseases, environmental factors and internal colony
conditions, which can influence fitness and survival of honey bees, is very important.
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Natural and/or anthropogenic stresses include exposure to agrochemicals and beekeeping
pesticides, forage dearth, seasonal changes, environmental stress, among others [7–9]. Internal
colony factors that are known to impact colony survival include parasites, pathogens, nutrition and
genetics [8,9]. Diet and malnutrition are presently considered to be crucial, not only to individual
health, but also to colony fitness [10]. Now, as a general consensus, it is considered that multifactorial
elements contribute to the bees’ immunosuppression, leading to the weakening of the colonies and to
the reported worldwide colony losses [7,10,11].

Based upon published research to date, it seems that the biggest challenge for honey bees derives
from the immunosuppression produced by the combined effects of the Varroa mite (Varroa destructor),
viruses, pesticides and malnutrition. At the same time, the compound effects of malnutrition, Varroa
and viruses have been reported to have a greater impact during the winter season [12–14]. In addition
to the forage dearth and host-parasite dynamics associated with winter, cold stress per se represents
another threat to be overcome by weakened honey bee colonies [12–17].

Understanding the consequences of the factors detailed above should help to improve the
management of honey bees under commercial beekeeping regimes. Below, we describe the scenario
affecting A. mellifera with focus upon: Immunity, nutrition, the overwintering phase, Varroa parasitism
and the main viruses vectored by the mite. Then, we explore a possible connection between the
combination of different stresses and the main signaling pathways that could be involved in bees’
immune response.

Within the context described before, we will focus on the possible roles that could be played by
two natural-occurring molecules: Abscisic acid (ABA) and nitric oxide (NO). We will explain how ABA
could represent a key phytochemical, and NO a key signaling molecule involved in our honey bee’s
immunity. Both molecules, ABA and NO, have been proven to be involved in honey bees’ immunity
(see below for citations and details). At the same time, these two molecules are directly (ABA) or
indirectly (NO, being synthesized from the essential amino acid L-arginine, see below) connected to a
bee’s nutrition. Together, ABA and NO gather a substantial amount of evidence that could justify our
analysis. This evidence was obtained at individual and colony level, using molecular, cellular and field
approaches, among others (detailed below). However, we would like to highlight that the integrative
analysis performed here should be taken just as an example, aiming to illustrate our vision.

In this review, we pretend to challenge our view regarding nutrition and bees’ strength. At the
end, we propose a way to think and study about honey bees’ nutrition in the search for complementary
practices to boost colonies’ fitness associated with beekeeping operations: “Precision Nutrition”.

2. Honey Bee Immunity

There is a major paradox in our understanding of honey bee immunity: As a social insect gathered
within colonies, bees count on a particular level of immunity which is social immunity (see above).
However, the high population density in a bee colony also implies a high rate of disease transmission
among individuals, and this could represent a major challenge for individual immunity. Thus, the
combined social and individual defense mechanisms of A. mellifera are necessary to confront any threat
that could compromise the colony’s fitness [14,15,17].

2.1. Social Immunity

As eusocial insects, honeybee colonies form superorganisms, in which nest mates cooperate and
use collective behaviors to combat parasites. Cremer et al. [18] introduces the term “social immunity”
to describe the colony-level disease protection achieved through collective defenses of colony members.
These defenses include behavioral, organizational and physiological components.

Social immunity behaviors are based on the ability of each individual bee to communicate
and to respond to nest conditions, and to subsequently make individual choices that affect the
collective superorganism.
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The social immune processes deployed by honeybees include nest hygiene, secretion of antiseptic
compounds to reduce or prevent disease, collection of plant-derived compounds that enhance colony
health, thermoregulation changes associated with disease detection and control and defensive behaviors
to protect the nest [19].

2.1.1. Nest Hygiene

Nest hygiene [20,21] was first described in the context of American foulbrood disease, and
includes several types of behavior, expressed by individual worker bees (females), which result in
the removal of diseased and/or dead individuals from the hive space. In the case of the detection of
a Varroa-infested pupa, the infested individual is removed, thus reducing or preventing the mite’s
reproduction [22,23]. This last phenomena is a heritable trait, commonly known as Varroa sensitive
hygiene (VSH), or suppressed mite reproduction (SMR) [24]. When worker bees perform hygienic
behavior within a colony, this action confers colony-level resistance against bee brood diseases [25].

However, it is important to highlight that brood removal involves the sacrifice of the infested
individual. Thus, the chemical or temperature cues utilized should be very accurate, and hypothetically,
once the brood cells are capped, the detection of abnormalities in developing (pre)-pupae could be
more challenging for bees.

Hygienic behavior can also include grooming behaviors among nest mates, which enables bees
to remove ectoparasites (like Varroa), dust and pollen from their own bodies, and helps disperse
pheromones [26]. Autogrooming stimulates the allogrooming, which starts when bees perceive another
bee performing the grooming dance, and generally involves several nestmates acting collaboratively.
Both autogrooming and allogrooming could be useful in detecting and removing parasites [27].

2.1.2. Antiseptic Compounds

Honey bees secrete the antiseptic enzyme glucose oxidase (GOX) throughout their colonies’
brood food and honey reserves, providing social immunity to nest mates. GOX is produced in the
hypopharyngeal glands, and catalyzes the oxidation of β-d-glucose to gluconic acid (C6H12O7) and
hydrogen peroxide (H2O2). H2O2 acts an antiseptic, inhibiting pathogen growth in the larval food of
honey bees [28]. Thus, the larval food is known to have a high antibiotic power, due to food gland
secretions containing potent antimicrobial compounds [29,30].

2.1.3. Plant-Derived Compounds for Nutrition and Defense

The foraging bees provide carbohydrates, protein, mineral elements, lipids and water to satisfy
the nutritional requirements of the colony [31,32]. While collecting plant products (nectar, pollen and
plant resins), these foragers will inevitably also gather associated secondary plant metabolites that
would impact upon the individual bee and the colony health [33,34].

Social living allows bees to store food while providing them with an opportunity to selectively
choose among the variety of the stored products to satisfy individual needs and/or the colony’s
health. Finstrom and Spivak [35] show that chalkbrood-infested colonies increased propolis foraging,
leading to a decrease in the infection intensities. Results of Borba and Spivak [36] indicate that the
propolis envelope serves as an antimicrobial layer around the colony, helping bees to protect the brood
from Paenibacillus larvae infection. Gherman et al. [37] demonstrates that workers infected with the
microsporidium parasite Nosema spp. prefer to consume honeys with a higher antibiotic activity,
leading to a reduction of the microsporidian infection.

To survive seasonal changes in forage quality and availability, honey bees store resources within
the hive, and complex nutrients within the bodies of long-lived workers [38,39]. These “diutinus” (long
lasting) bees represent a good example of how individual endocrine signaling defines social behavior,
being modulated by the environment and as one adaptation of bee colonies to temperate climates [40].
During winter, this diutinus phenotype achieves long life span, but they are not in diapause like other
species of insects [40]. This superorganism-level nutritional adaptation is characterized by a high rate
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of the expression of vitellogenin (Vg) during the months leading up to winter [41–43]. The produced
Vg plays important roles related to the tolerance to starvation, immunological function, oxidative stress,
regulation of worker ontogeny and life span [38,44]. However, other stress conditions could alter the
expression patterns of Vg. For example, the disease caused by Nosema ceranae reduces the transcripts
of Vg [45,46], which in turn could lead to a reduction of its antioxidant capacity and immune priming.

2.1.4. Thermoregulation

Honey bees are able regulate their nest temperatures with high precision, maintaining the
right temperatures inside their nests to support brood development [47]. Besides, thermoregulation
can also be part of the defense against pathogens through what is known as “behavioral fever”.
Starks et al. [48] report an increase in brood temperature associated with the occurrence of Ascosphaera
apis, a heat-sensitive fungal pathogen that causes the disease commonly known as chalk brood.

Among all other honey bee stresses, temperature is one ecological factor that affects honey bee
survival [17]. In temperate climates, honey bees survive throughout winter by entering a distinct
physiological and behavioral state [49]. Honey bee colonies spend much energy to maintain brood
nest temperature in the range of 32–36 ◦C [17,47]. Indeed, the brood reared at temperatures below
32 ◦C shows delayed development, increased mortality, abnormal nervous system development and
poor behavioral performance as adult bees [50,51].

Despite all the honey bee studies related to the overwintering period, we know little about
the mechanisms related with the effects of cold temperatures per se at physiological level [13,14,17].
Understanding how low-temperature stress per se affects honey bee physiology and longevity could
help to shape management strategies to improve overwintering success [17]. Yet, the impact of low
temperature stress on the mortality of brood has not been systematically investigated [52].

2.1.5. Nest Defense

Adult bees react against predators and conspecific thieves, defending the nest collectively,
and depending on the subspecies, more or less aggressively. This defensive behavior is primarily
defined by genetics, but it is also socially modulated by pheromone cues and occurs in response to
ecological conditions [53,54]. Some reports suggest that high aggression could be associated with
lower parasitization by V. destructor, and that low aggression could be linked to increased pesticide
susceptibility [55,56]. Consequently, in high aggression colonies, the spread of the mites could be
regulated according to the variation in adult grooming or hygienic behaviors, which results in reduced
mite reproductive success [57]. Moreover, more aggressive colonies may have better food resources
because they tend to forage at higher rates [58].

2.2. Individual Immunity: A Brief Summary

At the individual level, honey bees have several lines of innate immune defense against parasites
and pathogens [59,60]. Physical and chemical barriers, including the exoskeleton cuticle and the
peritrophic membranes lining the digestive tract, are a first line of defense that prevent invaders from
adhering to or entering the body [10]. If a parasite or a pathogen breaches the physical and chemical
barriers, honey bees can protect themselves with cellular and humoral immune responses which
represent a second line of defense [10].

Humoral defenses refer to soluble effector molecules, such as antimicrobial peptides,
complement-like proteins and enzymatic cascades that regulate melanin formation and clotting. Cellular
immunity is comprised by cell-mediated responses like phagocytosis, nodulation, encapsulation and
wound closure [10].

Innate immune responses are activated and/or modulated through the action of the
highly-conserved pathways Toll, immune deficiency (Imd), Janus kinases/signal transducer and
activator of transcription proteins (JAK/STAT) and c-Jun N-terminal kinase (JNK) [59,60]. First,
bees were predicted to express only two-thirds of the immunity genes expressed in solitary insects,
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e.g., mosquito or fruit fly [59]. From this, it was suggested that the immune response in bees should rely
on social immunity, while some specific immune factors are upregulated in response to infection [59].
Later, Barribeau et al. [60] found similarities in the immunity studied across a gradient of sociality
in insects, suggesting that the reduced immune repertoire predates the evolution of sociality in bees.
The authors proposed that those differences regarding the quantity of the expressed immunity genes
might be the result of selection ruled by divergent pressures exerted by parasites and pathogens within
the context of eusociality.

One of the most important immune responses (generally, but also for the present work) reported to
date to play a key part in insects’ immunity is the one based on the action of phenoloxidase (PO) [61,62].
PO is involved in the formation of melanin, which produces pigmentation, but it can also be employed
in the immune response to confront pathogens and parasites [63]. Upon injury, coagulation and
melanization are characteristic responses integrated in the wound-healing process in insects [63].
The lower activity of PO during the early stages of larvae development seems to be correlated with
the susceptibility to infection [61]. The relevance of PO activation in melanin synthesis, and thus in
A. mellifera immunity, has been related with the bees’ ontogeny [64–66]. Indeed, melanization has
been proposed to be a major immune response in adult bees through the evaluation of the enzymes’
activity [64–66]. It is important to note that this PO response comes at a high energetic cost to the
individual insect; the enzyme’s main activating system (pro-PO) depends upon tyrosine, which
derives from phenylalanine, a compound that can only be obtained from ingested food. In addition,
the resulting defensive compounds that are produced are rich in nitrogen, which requires a resource
investment on the part of the insect [63].

The honey bees’ antioxidant enzymes are of particular interest too, because these are those
responsible for the detoxification of reactive oxygen species (ROS). All aerobic organisms generate
ROS in the process of their oxidative metabolism [67,68]. These reactive oxygen species include the
superoxide anion (O2

· –), the hydroperoxyl radical (HO2
·), hydrogen peroxide (H2O2) and the hydroxyl

radical (·OH) among others. The ROS can cause the oxidation of proteins, RNAs and DNAs, and
the peroxidation of membrane lipids. Imbalances between the production of free radicals and the
generation of antioxidants (to detoxify the reactive intermediates or to repair the resulting damage)
causes oxidative stress in living cells [67]. Both, Superoxide dismutases (SODs) and catalase (CAT)
are the first lines of defense against oxygen free radicals; also others like glutathione S-transferase,
glutathione peroxidase and glutathione reductase, all of which have been reported to occur in insects.
Interestingly, the melanogenic processes (described above) contribute to the formation of cytotoxic
molecules that have the capacity to interact with ROS and reactive nitrogen species (RNS) to provide
an effective immune response for insects [62]. Indeed, ROS and RNS generated during melanogenesis
have been implicated in the killing of parasites by insects [62].

Nitric oxide (NO) is a highly reactive RNS, being an unstable free radical gas that is produced
by the oxidation of L-arginine to citrulline mediated by the enzyme NO synthase (NOS) [69]. Due to
its nature, NO could either act as a second messenger within each cell, or work as a signal between
contiguous cells [70]. Indeed, it has been proposed that NO could be a key molecule of invertebrate’s
immune responses to confront parasites [70]. In fact, NO has been reported to exert a potent bactericidal
effect, as well as a key signaling role triggered upon gut infection in mosquitoes and the common
fruit fly (Drosophila melanogaster) [70–72]. In honey bees, it has been documented that NO acts as a
signaling molecule during the first steps of hemocyte activation after non-self recognition, in wound
healing/encapsulation and in response to lipopolysaccharide injection (LPS) [73–75].

Although a considerable amount of information is available about humoral immune reactions
(represented mainly by antimicrobial-peptides-based defenses [10]), less is known about the cellular
immune system in honey bees. The cellular immune response comprises wound healing, phagocytosis,
virus killing, nodulation and the encapsulation of the intruder. All of these reactions are mediated by
the insect blood cells, the hemocytes [76], and new published results reinforce the relevance of the
hemocytes in honey bees’ immune defenses [77–80]. Relevant studies were performed in the last years
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regarding A. mellifera hemocytes’ characterization [81,82]. A deeper analysis about the relevance of
studying honey bees´ immunity, integrating cellular and humoral responses, is presented below in
this review.

2.3. Interaction Between Social and Individual Immunity

The paradox of honey bee social immunity is that individual bee immunity does matter. In a nest
environment where everything is shared, the potential risks of infection are high. However, there are
also advantages to the superorganism lifestyle; in particular, the ability of a colony to tap into diverse
individual genetics, behavioral responses and environmental resources to enhance communal health.

One of the key components of eusociality is the overlap between generations, and in the case of
honey bees there is extensive and intimate contact between adult and developing bees. Social behavior
in the colony leads to nurturing behavior towards larvae, and in contrast, social immunity to control
the spread of disease. Through the active removal of a sick brood, honey bees face the dangerous
trade-off between the sacrifice of parasitized individuals and the growth of the colony as a whole:
Hygienic behavior itself may also break down through Varroa-transmitted virus epidemics, placing
limits upon its ability to control mite infestation [15,83]. Avoiding this breakdown is therefore critical
to colony survival [15,83].

Interestingly, reported evidences show that immune-challenged bees with injected bacteria receive
more allogrooming assistance than non-injected ones [84,85]. This suggests that bees can detect
individuals that have an activated immune system [19], and possibly, that an enhanced individual
immune response could trigger a more efficient social defense. This ability to respond to the health
status of an individual of the colony may boost the overall immune response as a superorganism.
The phenomena described above is also supported by the findings of Harpur et al. [86], describing
the absence of genetic trade-offs between hygienic behavior and innate immunity in honey bees.
These evidences suggest that artificial selection to increase hygienic behavior in honey bee colonies
should not be expected to consequently compromise the individual innate immunity of such bees.

The high frequency of interactions and contact of adult nurse bees with developing larvae within
uncapped cells provides an ample opportunity to develop and utilize social immunity mechanisms.
In contrast, the capped brood phase presents a very different scenario, where an age group is almost
physically isolated from the rest of the colony (Figure 1). Capped brood phase then acquires special
significance within the epidemiological structure of the colony, as it represents a potential haven for
pathogens and parasites seeking to avoid detection and removal. Pathogens may indeed adjust their
virulence, either to escape detection during the open brood period, or to ensure the completion of the
capped brood phase and the emergence of the (infected) young adult. Consequently, the virulence
of brood pathogens at an individual level is often inversely correlated with the virulence of the
pathogen at the colony level [15]. An interesting example of this is represented by the variability in
the pathogenicity of the bacterial disease American foulbrood, related to the genotype of the strain:
Members of ERIC II–IV were found to be highly virulent for individual larvae, which died in a short
time. In contrast, larvae infected with the genotype ERIC I survived up to 12 days; hence, this strain
was considered less virulent than ERIC II–IV for this life stage. Then, the opposite was found in the
colony, where a higher virulence at the larval level was related to a lower virulence at the colony
level [87,88].

All in all, the revelations stated before highlight the importance of studying individual immunity
in bee brood to complement the latest advances regarding individual and social defenses in A. mellifera.
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Figure 1. Schematic summary illustrating the relevance of nutrition during spring, summer and fall for
colony growth before entering winter, which is characterized by forage dearth and cold temperatures.
A good nutrition (green area of the diagram) is based upon the great diversity of floral resources and
the availability of key molecules, like for example abscisic acid (ABA). In contrast, the lack of floral
diversity combined with reduced amounts of key molecules leads to a poor nutrition (blue). Differences
in nutrition lead to dissimilar levels of colony growth (represented visually in the figure as the different
number of honeycombs). These colony-level variations in bee population lead to different capabilities
to mount a socially-based immune response to confront winter-associated stresses. During winter, the
immune strength of the colony is based in the interaction between social and individual immunity.
Once any or all of these stresses escape the social level of defenses, the signal is captured, transduced
and amplified by activated hemocytes (cellular) through the main signaling pathways reviewed here in
association with Varroa, virus (deformed wing virus, DWV) and cold (Janus kinases/signal transducer
and activator of transcription proteins (JAK/STAT) and Toll). The interaction between signals and
effector pathways is illustrated in the right side of the main figure. In this model, nitric oxide (NO)
represents a key molecule playing a role within the cross-talk between the responses triggered by
Varroa (viruses and wounding) and cold. At the same time, ABA is proposed as a cytokine playing a
priming effect over those responses, exerting its role through NO production activation. At the start of
the foraging season (spring in the diagram), the post winter colonies may also differ in the number of
forager bees able to start the cycle again when the blooming periods arrive.

3. Nutrition and Immunity

3.1. Generalities

The connection between nutrition and immunity has been demonstrated in numerous organisms,
and honey bees are not the exception. The study of nutrition’s impact is one of the most rapidly
expanding research areas in bee biology, largely due to the association of colony losses with malnutrition
and accompanying pathologies [9,10,32]. The combination of new molecular techniques with the
availability of the honey bee genome are enhancing the power of our interpretation regarding the role
of nutrition in honey bee health [10].

During the early stages of honey bees’ development, royal jelly makes up a great part of the
larvae’s diet, while its quality strongly influences the in vitro rearing success as well [89]. The presence
of the antibacterial substance 10-hydroxy-2-decenoic acid (10-HDA) suggests that royal jelly could
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play a significant anti-pathogenic role in the mid-guts of bee larvae [90]. Besides, within royal jelly,
nurse bees secrete large amounts of unique major royal jelly proteins (MRJPs) [91]. These proteins are
synthesized endogenously in the hypopharyngeal glands located in the head of the honey bee [91].
The functions of MRJPs go from nutritional contributions [92], to antibacterial activity protecting bee
larvae [93] and participation as structural proteins increasing food jelly viscosity [94].

Honey bees find dietary protein basically in pollen, which contributes to the immune response by
providing the essential amino acids needed for the synthesis of peptides [10]. A bee’s immunity is
also boosted by carbohydrates from nectar and honey that provide energy for metabolic processes
associated with both innate humoral and cellular reactions [10]. Thus, the impact of abundant and
diverse floral plant sources among different bee species has been extensively studied [95,96].

In 2010, Alaux et al. [97] tested whether dietary protein quantity (represented by monofloral pollen)
and diet diversity (presented as polyfloral pollen) could shape the baseline immuno-competence (IC)
of A. mellifera. IC was evaluated by measuring the parameters of individual immunity, like hemocyte
concentration and phenoloxidase activity (among others), and GOX activity as a parameter of social
immunity. The results of this work suggest that there is a link between protein nutrition and immunity
in honeybees, highlighting the critical role of resource availability on pollinator health. Recently, within
the context of honey bees’ nutrition and floral resources, Ricigliano and co-workers [39] study the effects
(pre and post-winter) of the forage environment in apiaries close to agricultural or non-agricultural
landscapes (Conservation Research Program (CRP) lands) over the bees’ colonies strength. They find
that the performance of honey bee colonies (adult bee mass and brood) and biomarkers associated
with adequate nutrition (e.g., vitellogenin) are positively influenced by their foraging proximity to
CRP lands. In straight relationship with the work described above, Branchiccela et al. [98] recently
demonstrated that the nutritional state is related to the variety of pollen in the bees’ diet, and has a
severe impact on bee colony strength and health, with both short and long-term consequences.

In 2016, Di Pasquale et al. [99] reported that changes in bee health were not connected to variations
in pollen diversity, but rather to variations in pollen depletion and the quality related with an intensive
agricultural system. The authors suggest that, even though pollen can be available in great quantities
during the mass-flowering of some crops, it could fail to provide bees with a diet adequate for their
development. Interestingly, Kriesell et al. [100] find that various bumblebee species visit different
floral spectra for pollen collection, but nevertheless have highly similar pollen amino acid profiles.
This suggests that, despite the different pollen foraging patterns, distinct bumblebee species share
similarities regarding the requirement of specific amino acids in their diet. All in all, the findings cited
above highlight the relevance of studying more about the precise nutritional requirements of most
bee species.

The evidences described in the paragraphs above is integrated and illustrated in Figure 1.
A diverse set of effects of carbohydrate and protein sources over the transcriptional profiles of

bees is evidenced lately through genomic approaches. It is reported that constituents found in honey
up-regulate the detoxification pathways in the gut and genes associated with protein metabolism and
oxidative reduction [101]. Those effects are not found to be induced by a sucrose solution or high
fructose corn syrup, commonly used to feed bees in managed colonies [102]. Besides, pollen activates
nutrient-sensing and metabolic pathways, and influences the expression of genes involved in longevity,
immune function, the production of certain antimicrobial peptides and pesticide detoxification [42,103].
At the same time, it is important to take into consideration that protein sources based on pollen mixes
could be contaminated with different pesticides [98].

Also, it is described that resins collected by bees affect the expression of immunity genes [104], and
that propolis extracts reduce the toxicity of mycotoxins [105]. Indeed, it is demonstrated that nectar,
pollen and resins contain secondary plant metabolites that have antimicrobial properties [34,106]
and key molecules involved in A. mellifera immune response [101,107,108]. The harvesting, storage,
and/or ingestion of non-nutritive compounds and plant materials are part of a self-medication
strategy employed by social bees [19,35]. A review by Erler and Moritz (2016) distinguishes between
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defense compounds directly related to the bees’ diet, that is, pharmacophagy, which focuses upon the
health-related benefits of the nectar and pollen consumed by the bees, and pharmacophory, which
focuses on the role of the chemicals collected, but not eaten, such as resins that add protection to all the
inhabitants of the colony [34].

Up to this point and as a general proposal, we would like to summarize that: (a) Honey is basically
made from the flowers’ nectar (and also honeydew) collected by forager bees and (b) Honey contains
pollen also. Thus, it could be hypothesized that: (a) Plant-derived compounds present in pollen and
nectar should end up in honey and (b) the concentration of those compounds could change throughout
the process, leading to honey as the final product. By this mean, honey could be interpreted as a
potential pre-winter storage for self-medication throughout the season of forage dearth. With this,
we also want to suggest that the concentration of phytochemicals should be studied also in honeys
from different origins and regions.

3.2. Particularities: Phytochemicals as Dietary Treatments for Medication

In 2013, Mao et al. [101] determined that p-Coumaric acid (CouA), a phytochemical found in
pollen and honey, up-regulates genes involved in detoxification processes as well as select antimicrobial
peptides’ synthesis. Interestingly, when CouA was added to the diet, the metabolism of the acaricide
coumaphos in the bees’ mid-gut increased significantly (Table 1). In 2017, Liao et al. [109] conducted a
series of experiments in which they test if CouA or quercetin (Quer) enhances longevity and pesticide
tolerance. Both dietary phytochemicals are associated with extended lifespan. They also showed that
Quer enhanced the tolerance to two pyrethroids, while CouA follows a similar trend, but of a reduced
magnitude (Table 1). Then Wong et al. [110] report that CouA and Quer, incorporated in the diet,
enhances the survival of honey bees exposed to imidacloprid (IMI) at low concentrations. However,
they find that both molecules have a negative effect at higher concentrations individually in chronic
toxicity bioassays. Working with combinations of different concentrations of those phytochemicals,
the authors find a biphasic concentration-dependent response of the honey bees’ IMI. These authors
conclude that the protective effects of these plant-derived compounds against neonicotinoids effects
over bees are limited based on their own inherent toxicity (Table 1).
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Table 1. Summary of the evidences found in literature related with phytochemicals and bees’ medication.

Evidences Phytochemical ABA CouA Quer Nic Ana Caff

Level of organization

Molecular [52,107,109] [101] [110,111] [112] [112] [113,114]

Cellular [75,107]

Individual (organism) [52,107] [110,111,114] [110,111] [112,115,116] [112,116] [113,114]

Colony (superorganism) [107,117]

Experimental system

In-vitro rearing [52,75,109] [112]

Laboratory [111] [101,110,111,114] [110,111] [112,115,116] [112,116] [113,114]

Field [107,117]

Ontogeny

Larva [52,75,107,109,117]

Pupa [52,117]

Adult [52,107,117] [101,110,111,114] [110,111] [112,115,116] [112,116] [113,114]

Related with

Immune response [75,107,109] [112]

Parasite/Pathogen [107,117] [114] [112,115,116] [112,116] [113,114]

Pesticides [107] [101,110,111] [110,111]

Abiotic stressors (not pesticides) [52,109]

Total references 5 4 2 3 2 2

ABA: Abscisic acid; CouA: P-Coumaric acid; Quer: Quercetin; Nic: Nicotine; Ana: Anabasine; Caff: Caffeine. Numbers within square brackets [] represent the citations found in the text
and in the references list.
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In 2014, Strachecka et al. [113] reported that honey bees that consume caffeine (Caff) live longer, and
were not infested with Nosema spp. Caff-treated honey bee workers have higher protein concentrations,
and show increased activities of physiologically-relevant enzymes like the ones involved in the
antioxidant response (Table 1). Recently, Bernklau et al. [114] studied the effects of Caff, gallic acid
(GA), kaempferol (Kaemp) and CouA on survival and pathogen tolerance in honey bees. They show
that bees supplemented with dietary phytochemicals survive longer and this enables bees to combat
infection with N. ceranae by reducing spore-loads (Table 1). In addition, the relevance of incorporating
GA into dietary supplements combined with nanotechnology to counteract P. larvae infection in honey
bees is reported recently [118].

In 2015 it was reported that bumble bees infected with the intestinal parasite Crithidia bombi
preferably choose to consume artificial nectar that contains nicotine (Nic), which at the same time
reduces their parasite load [115] (Table 1). Then, Thorburn et al. [116] tested for interactions between
the effects of Nic and anabasine (Ana) (found in the nectar of Nicotiana spp. plants) on the C. bombi
load and the mortality in bumble bees (Table 1.). They find that when the experimental environmental
conditions setup is variable, each alkaloid alone significantly decreases parasite loads. Interestingly,
this effect is not observed when the alkaloids are combined, suggesting an antagonistic interaction.
When the experiments are performed in stable environmental conditions, Nic significantly increases
parasite loads, the opposite of its effect in the variable setup. In stable conditions, the authors find a
positive relationship between Ana and parasite loads. Interestingly, these authors suggest an interesting
interaction between phytochemicals, parasites and environmental variables, and they evidence that
plant-derived compounds could be either toxic or medicinal, depending on context. This last work
is very relevant for the purpose of the present review, highlighting the relevance of the effect of
environmental conditions over the bees’ immunity and response to phytochemicals.

More recently, Palmer-Young et al. [112] examined the effects of amygdalin (Amyg), Ana, aucubin
(Auc), catalpol (Catal), clove oil (Cloil), fumagillin (Fuma), Nic and thymol (Thym), after feeding
honey bees with those phytochemicals (Table 1). They evaluate whether phytochemical consumption
would counteract preexisting infection in mature bees, or mitigate infection in young bees. Generally,
phytochemicals are well-tolerated at levels documented in nectar, honey and pollen, with the exception
of the Cloil and Thym that increases mortality at high doses. They find that short-term phytochemical
consumption reduces levels of deformed wing virus (DWV), significantly in young bees that are
released into field colonies. However, the non-toxic doses of the phytochemicals evaluated do not alter
infection with Lotmaria passim or N. ceranae. With the exception of Amyg, all the tested phytochemicals
significantly increase the antimicrobial peptide hymenoptaecin expression in older bees after long-term
consumption. Interestingly these authors describe that phytochemicals lack antiviral effects for
pollen-deprived bees reared outside the colony.

During the past years it is reported that abscisic acid (ABA), a natural component present in nectar,
honey and pollen [119,120], as well in honey bees [107,119], plays an important role in bees’ health.
In 2015, Negri et al. [108] evaluated the effects of ABA on the bees’ immune responses by analyzing the
effects of this molecule over the performance of small A. mellifera colonies throughout the winter season
(Figure 1) (Table 1). They observe that ABA has an important effect at the individual level, stimulating
the cellular and humoral innate responses, and at a colony level, where populations of adult bees
supplemented with ABA are significantly bigger than control populations after winter. Then, in 2017,
Negri et al. [75] reported new evidences regarding ABA and the activation of the cellular immune
activation response in response to a bacterial elicitor (Table 1). At the same time, Ramirez et al. [52]
showed that supplementing bees’ diets with ABA prevents low survival rate and accelerated adult
emergence of in vitro reared honey bee larvae exposed to suboptimal temperatures below 32 ◦C
(25 ◦C). In this work, the authors also show that ABA enhances the expression of genes involved in
metabolic and stress responses (Table 1). Using the same experimental approach, Negri et al. [109]
study the relationship between cold exposure, dietary ABA supplementation and the expression of
genes involved in the immune response.
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They find that low temperatures and ABA induce the expression of several immune-associated
genes in honey bee larvae, supporting that the immune system is active during cold stress response
and reinforcing the connection between honey bees’ response to cold stress and ABA (Table 1).
Recently, Szawarski et al. [117] evaluated the effects of ABA in combination with two different
beekeeping nutritional strategies to confront overwintering, one based on honey and the other on
syrup supplementation. The results indicate that the ABA supplementation has positive effects on the
population dynamics of the A. mellifera colonies during overwintering and decreased Nosema loads at
colony level (prevalence) in both the nutritional strategies evaluated (Table 1).

Below we show an example of the kind of integrative analysis that could lead to the discovery of
key phytochemicals that could be included into the bees’ diet to enhance their overall performance.
We will focus on ABA as the phytochemical involved in the analysis. The reasons to focus on ABA are
summarized in Table 1. Through a series of correlative papers, ABA gathers the greatest amount of
evidence we could find in comparison with the other most cited phytochemicals at the moment (CouA,
Quer, Nic, Ana and Caff). Abscisic acid is proven to be related to bee nutrition and immunity through
different experimental approaches, at different levels of organization and in response to different kinds
of threats (Table 1). The other phytochemicals found in the Table 1 represent also a great field for future
research, and with great potentiality. However, more studies have to be performed to understand
more about the effects of ABA, CouA, Quer, Nic, Ana and Caff over bees’ physiology at individual and
colony level, integrating individual and social immunity with both biotic and abiotic stressors.

4. Honey Bees Within the Context of Innate Immunity Research

The insects’ innate immune system involves a diverse set of responses, including the production
and secretion of antimicrobial peptides, phagocytosis and the degradation of pathogens, melanization
and encapsulation [121]. Indeed, insect immune pathways share specific orthologous components with
the innate immune system of vertebrates [122]. This suggests a shared root for the immune pathways
and a selection to conserve many components over hundreds of millions of years [59,60]. What is
descripted above highlights the relevance of performing integrative analyses, combining what has
been reported in different species within the context of innate immunity, when looking for traces to
understand a particular response in our model of study. In this case, the model of study is the honey
bee, and we should put it into the context of what has been reported about insects’ and vertebrates’
innate immunity responses.

The global distribution of honey bees has resulted in an increased exposure of this species to
pathogens and parasites from diverse origins. As such, this insect has now been added to the list
of biological models used to study innate, immune non-self recognition [77]. Based primarily upon
extensive searches for orthologs of well-studied insects including fruit flies, mosquitoes and moth
species, Evans et al. [59] propose honey bee models for four non-autonomous pathways implicated in
inducible host defense, i.e., Toll, Imd, JAK/STAT and JNK. While these pathways engage in cross-talk
and can direct some of the same immune effectors, they have well-defined structures and interaction
sets, and are best tackled as individual entities [59].

Below, we will focus on the JAK/STAT pathway and its relationship with NO and ABA. Then, the
relevance of this analysis will be revealed within the context of V. destructor parasitism and winter
(where the Toll pathway will play a key part, as well) (Figure 1).

4.1. Janus Kinases/signal Transducer and Activator of Transcription Proteins (JAK/STAT) and Nitric Oxide
(NO) Signaling

The JAK-STAT pathway, initially characterized for its role in development and hemocyte
proliferation, is shown to also respond to bacterial and viral infections [123]. The family of transcription
factors’ signal transducers and activators of transcription (STAT) activates the expression of immune
genes in response to cytokine signaling [124]. Indeed, cytokines such as interleukins and interferons
play a central role in regulating and coordinating the immune response through this pathway [125].
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This pathway, which allows organisms to respond to extracellular signals, appears to be shared
among many different groups of animals; from the cytokine-driven regulation of innate and acquired
immunity responses in mammals [125], to the immune responses in insects.

Bioinformatic analysis reveals the presence of the cytokine receptor homolog Domeless, and four
complement-like thioester-containing proteins (TEPs) indicate that this mechanism may be common
across insects, and is intact in honey bees as well as in flies [59]. Thus, cytokine-like molecules
should play a key role in an insect’s immune response through the action of the JAK/STAT pathway.
The relevance of cytokine-like molecules and JAK/STAT activation shall be highlighted below in
this work.

For the purpose of this work, it results relevant that a member of the STAT family has been reported
to regulate the transcriptional activation of nitric oxide synthase (NOS, the enzyme responsible for
nitric oxide production [69]) in response to interferon-gamma (IFN-γ) [124]. As it was mentioned
before, NO is produced by the action of NOS enzymes [69] and crosses cellular membranes with
ease, enabling very efficient responses by transmitting both intra- and intercellular signals [69,70].
In addition, members of the families of transcription factors Rel/NF-κB and JAK/STAT, which play
central roles in the cytokine-driven regulation of both innate and acquired immunity in vertebrates,
are activated by NO [126].

Besides playing the role of a signaling molecule, when produced in big amounts, NO is toxic to
many kinds of pathogens, including viruses, fungi, bacteria and parasites; the latter include intracellular
and extracellular invaders [70]. Interestingly, after being produced by activated immune cells, NO can
diffuse from where it was synthesized, and can initiate cytotoxic reactions at distant sites, either by
reacting per se, or together with other molecules [69], including melanin [62]. The relevance of the
participation of NO in this kind of response in honey bees’ immunity will be highlighted below in
this work.

In vertebrates, two main types of NOS enzymes are found: Constitutive (cNOS) and inducible
(iNOS). The cNOS are part of the basal metabolism of cells, and are rapidly activated through changes
in intracellular calcium levels [70]. By contrast, the iNOS isoform is absent in non-activated cells, but
is rapidly synthesized in response to the pro-inflammatory cytokines. Inducible NOS catalyzes NO
synthesis until the substrate is depleted, being able to produce up to 1000 times more NO than do
the constitutive enzymes [70]. It is established that NOS enzymes found in invertebrates function
either as an inducible or as a constitutive form depending on the insult (reviewed in [70]). This last
means that insects’ NOS can increase the levels of NO by having its expression up-regulated or by
being activated. Although the presence of a single NOS gene is reported within the A. mellifera genome
(AmNOS, AB204558) more efforts should be done to characterize this enzyme.

To achieve pleiotropic effects, NOS induction is critical in responses under the control of JAK/STAT
signaling [127,128]. IFN-γ interacts with its membrane receptors and activates a Janus kinase (JAK),
which in turn activates STAT-1 by phosphorylating specific residues [124]. Indeed, IFN-γ is well known
to play crucial roles in several aspects of the immune response, like the activation of the iNOS gene
expression [127,128].

The JAK/STAT pathway is also shown to participate in an antiviral response in Drosophila [129].
In the mosquito Anopheles gambiae the JAK/STAT pathway is shown to be activated in response to
bacterial challenge [130]. Indeed, AgSTAT-A mediates the transcriptional activation of NOS in response
to infection [124]. These findings provide direct evidence that, in insects, NOS expression is also
regulated by the STAT pathway, and this suggests that the organization of this signaling cascade
precedes the divergence of insects and vertebrates [124]. Recently, it was demonstrated that ABA
supplementation of a Plasmodium falciparum-infected blood meal increased expression of a mosquito’s
NOS and reduced infection prevalence in a NO-dependent manner [131]. This last evidence represents
that: a) ABA could be considered as a medicinal phytochemical and/or play an active role within the
immune response of another insect model besides bees, and b) that JAK/STAT, NO and ABA signaling
could be related.
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4.2. Abscisic acid in Animals’ Immunity

Historically, ABA is studied as a phytohormone involved in the fundamental physiological
processes of higher plants, including responses to abiotic stresses (temperature, light, drought) [132]
and to pathogens [133], the regulation of pollen germination [134], the regulation of seed dormancy
and germination [132] and the control of stomatal closure [132]. As mentioned above in this review,
the presence of ABA is demonstrated in nectar and honey [119,120,135,136], as well as in honey
bees [52,107,119,120].

In animals, ABA is considered as a pro-inflammatory cytokine involved in key processes leading
to the activation of innate immune responses like phagocytosis, reactive oxygen species and NO
production, and the chemotaxis of human granulocytes [137]. Through a series of correlative works, it is
reported that ABA plays a role in immune and anti-stress responses in honey bees [52,75,107,109,117].
Here we would like to highlight the relevance that studying, connecting and integrating the evidences
found in both vertebrates and invertebrates might have to understand the effects of plant-derived
compounds over animals’ innate immunity.

Below we integrate responses to diverse stresses, considering the possible relation between ABA
acting as a cytokine in animals, the JAK/STAT pathway (activated by cytokines, see above) and NO.

4.3. JAK/STAT and Cold Stress

Evidence of immune response enhancement after cold exposure suggests that cold activates the
insects’ immune system, particularly trough the JAK/STAT pathway [138–142]. In flies, the extracellular
glycosylated protein unpaired (Upd) acts as a ligand that activates the JAK/STAT pathway and regulates
the expression of members of the TEP (see above for reference to TEPs) and TOT families (TotA, TotC
and TotM), which in turn promotes the phagocytic activity of hemocytes in response to bacterial
challenge [125]. Zhang et al. [138] find that TotA, TotC and TotM were up-regulated after cold exposures
in D. melanogaster. Vermeulen et al. [140] report that cold stress induces the up-regulation of several
TEPs, and considers that the activation of the immune system may be part of a specific aspect of the
cold stress response rather than a general stress response. Another work finds that the expression of the
genes of this family could be induced in D. melanogaster by varied stressors, including heat shock, cold
shock, septic injury or bacterial infection [141]. More recently, Salehipourshirazi [141] found that acute
cold exposure increased hemocyte concentration and wound-induced melanization and triggered the
up-regulation of the JAK/STAT pathway. Working with another insect model, Krams et al. [139] find
that an enhanced encapsulation response (which is a JAK/STAT-driven response [125]) is associated
with higher winter survival in water striders.

4.4. JAK/STAT and Wound-Healing

The JAK-STAT pathway is reported to participate in multicellular-humoral responses in insects,
where the co-participation of hemocytes with the melanization and coagulation responses are essential,
like wound-healing and encapsulation [125]. Indeed, the JAK/STAT pathway plays a key role during
the response of Drosophila to the invasion of parasitic wasps [125], which are known to introduce
viruses and anticoagulant molecules into the hemolymph to counteract the immune defenses of the
host [143]. Such defenses include hemocyte proliferation and differentiation, and the activation of
the phenoloxidase cascade leading to melanization, all of them being signaled by the JAK/STAT
pathway [125]. As could be expected, the wound-healing response of honey bees is also impaired
by V. destructor [143,144]. Indeed, the relative expression of pro-phenoloxidase gen (proPO) as well
as PO activity, decreases in Varroa-infested individuals [144,145]. This last indicates that V. destructor
significantly influences the phenoloxidase-dependent response of melanization in honey bees, which is
a multicellular-humoral defense reported to be under the control of JAK/STAT (see above).
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4.5. Wound-Healing, NO and ABA in Honey Bees

Regarding the wound-healing/encapsulation response in honey bees, previous reports show that
a wound injury induces the proliferation/differentiation of granulocytes, which at the same time shows
its response through an increased production of NO [74]. The over-proliferation of certain kinds of
hemocytes, which at the same time are the ones producing NO, could be indicative of JAK/STAT
participation in the wound healing response of A. mellifera. As it was mentioned before, ABA is
considered as a cytokine in animals’ immunity, and this kind of molecule is involved in the activation of
the JAK/STAT pathway (see above). ABA has also been described to participate in honey bees’ immune
responses, and specifically, an enhanced wound healing response was reported in ABA-fed honey bee
larvae which had been previously challenged with Varroa [107]. In a subsequent study, the wound
healing response, including the over proliferation/differentiation of granulocytes, was found to be
enhanced by dietary ABA supplementation [75]. Interestingly, the over proliferation of hemocytes has
been related with the action of the JAK/STAT pathway (please see this above in Section 4.1.). However,
specific experiments should be performed to better describe the possible roles of NO and ABA during
the wound healing response in honey bees.

5. Varroa-DWV Within the Context of Innate Immune Responses

5.1. The Importance of the Hemocytes’ Role

Varroa destructor and the associated DWV are a major threat to the world’s honeybees [146].
The active role of V. destructor in the dispersal and enhanced replication of the virus, related with
the parasite’s feeding, indicates that the mite–virus association has clear benefits for the latter, and
an adaptive value for the mite is also proposed [15,147]. Indeed, the delicate immune balance
underpinning the covert infections of DWV can be destabilized by Varroa feeding, resulting in intense
viral proliferation [146,148].

The feeding behavior of V. destructor is complex: The reproductive phase of the mite’s life
cycle is characterized by a perforation of the abdominal sternites of the bee pupa by the mother
mite. Through this open wound both the mother and its offspring repeatedly feed on the bee’s
hemolymph [143,149–151]. Recently, Ramsey et al. [151] reported that Varroa also feeds from the fat
body tissue of adult bees. The wound produced by the mouthparts of the mite should elicit a humoral
and/or cellular immune response, including hemolymph clotting, melanization, or encapsulation,
which would interfere with the parasite’s food uptake, and may result in reduced mite’s fitness.
Thus, it is understandable that Varroa secretes anticoagulant factors into the mite’s saliva to counteract
those responses [143]. In addition, the melanization and encapsulation responses are negatively
correlated with DWV titer [16,81] and a significant negative correlation between DWV and immune
gene expression (including PPOact) is reported [14,143,145,148].

In other insect species it has been extensively demonstrated that the activation of melanogenesis
and encapsulation is directly linked to the immune activation of insects’ hemocytes [152,153].
These humoro-cellular responses are mediated by a number of genes that control the formation
of a cellular capsule around foreign intruders and the deposition of melanin and other toxic molecules
on their surface like ROS and RNS [62,126]. PO is initially synthesized by the hemocytes and released
into hemolymph as inactive proPO, which is activated by a serine protease cascade upon the recognition
of foreign invaders [153]. Interestingly, Ling and Yu [154] describe that the activation of proPO in the
surface of Manduca sexta hemocytes may initiate melanin synthesis, leading to the systemic melanization
of hemocyte capsules.

It is proposed that in honey bees, and more generally in insects, inducible antiviral barriers besides
RNAi-mediated mechanisms may play an important role [16]. A recent study by Annoscia et al. [81]
shows that mite feeding destabilizes viral immune control through the removal of both virus and
immune effectors, triggering uncontrolled viral replication. But, by contrast, they do not find consistent
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support for alternative proposed mechanisms of viral expansion via mite immune suppression or
within-host viral evolution.

Their results suggest that hemolymph removal, observed in the presence of feeding Varroa mites,
plays a key role in the enhanced pathogen virulence, probably as a result of the reduction of the
bee’s hemocytes. The latter is in great concordance with the relevance of hemocytes in the insect’s
immunity (see above), particularly associated with the activation of the melanization response involved
in wound-healing/encapsulation processes, which are critical to respond to parasites like Varroa, and
had been linked to the JAK/STAT pathway (see above).

Possibly, as it is recently evidenced by Annoscia et al. [81], and previously proposed by
Negri et al. [77], hemocytes could play a key part in defending the host, highlighting the relevance of
cellular immunity in honey bees (Figure 1).

5.2. Varroa-DWV and Immune Response: Pathways Shared by JAK/STAT, Toll, ABA and NO Signaling

The impact of seasonal cold stress in association with high V. destructor infestation levels is of great
concern from a practical and scientific perspective. The overwintering colony must have a large-enough
bee population and food resources to support thermal stability. At the same time, the developing
brood and adult bees should be able to deploy immune defenses to counteract physical injury and
viral infections associated with the mite’s feeding.

The activation of the enzymatic cascade leading to melanization has been reported to be
down-regulated by the Varroa-DWV association [144,145,148] in correlation with overwintering [14].
Interestingly, ABA-supplemented larvae were found to be able to revert the anticoagulant effects of
Varroa, showing an improved cicatrization leading to a total closure of a wound injury [108]. Recent
results show that ABA supplementation induces the up-regulation of the PPOact gene in A. mellifera
larvae reared in vitro under standard temperature [109]. The effects of dietary ABA supplementation
are also related to an augmented melanization response in adult bees, evidenced by an enhanced
PO activity [107]. However, when ABA supplemented larvae are also submitted to cold stress,
the up-regulation of PPOact is not observed [109].

Varroa secretes virus and anticoagulant factors into the bee larva’s blood to impair humoral and
cellular immune responses related with wound-healing and encapsulation, such as melanization and
hemocyte spreading [14,16,144]. Recently, it was demonstrated that V. destructor parasitism also affects
honey bees through the remotion of hemocytes [81]. In the same work, the authors show that, as a
consequence of that remotion, the encapsulation response is significantly diminished in Varroa-infested
bees. Interestingly, in collapsing colonies affected by the Varroa-DWV association, the barrier under
JAK-STAT control appear to be targeted [16] (Figure 1).

The immunosuppression related with viral replication is also caused by an upstream alteration of
the Toll pathway [16]. Recently, Zhao et al. [155] reported that low DWV titers at early time-points
coincide with high levels of the Toll pathway transcription factor Dorsal, a gene encoding a protein
in the NF-κB family. Interestingly, when the viral titers of the bees increases, the levels of Dorsal
decreases [155]. In concordance, Annoscia et al. [81] show a significant decrease in the expression of
Dorsal 1A in bees with high levels of DWV. These results provide additional evidence for the active
immune suppression by the DWV associated with the Toll pathway. Recently, Quintana et al. [156]
found that bees with deformed wings and increased levels of DWV have upregulated expression of
the genes Domeless and TEPa (JAK-STAT pathway), and also NOS. Interestingly, in the same study,
no differences in Toll Wheeler (Toll18W) mRNA levels are found, but, an up-regulation of the NF-κB
inhibitor (IκB) gene Cactus is detected in bees with deformed wings and increased levels of DWV.
Together, the results described above suggest that the JAK-STAT pathway could be activated while the
Toll pathway is inactivated in relation with Varroa infestation and high levels of DWV (Figure 1).

As it was previously described in this study, NO activates NF/κB-dependent cascades [126],
is involved in response to viral infection [69,70] and is produced in honey bees’ hemocytes, participating
in wound-healing responses [74]. Possibly, there could be a relationship between the level of Varroa
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parasitism (in time and/or number of mites), viral titers, the amount of NO-producing hemocytes,
NF-κB signaling and the balance of the overall immune response of A. mellifera to V. destructor-virus
association (Figure 1). However, this should be considered as a hypothesis, and specific experiments
should be performed to test it.

Recently, Negri et al. [109] found that both the Toll18W and Cactus are induced by cold stress
in A. mellifera larvae. Interestingly, in the same study, the expression of Toll18W is both induced in
ABA-supplemented larvae reared in standard temperature conditions and also under cold stress.
In both cases, when larvae are fed with ABA, the expression of Cactus is similar to the control situation
(normal diet under standard rearing temperature). The results described above suggest that the Toll
pathway is activated in response to low temperatures and ABA per se (Figure 1).

In the same study described before, both Domeless and TEPa from the JAK/STAT pathway are
induced by cold stress in A. mellifera larvae [109]. In addition, NOS expression is both induced by cold
stress and ABA supplementation alone, meaning that NO signaling could play a role in response to
cold, and that ABA per se could induce NO synthesis in honey bees. At the same time, ABA does
not induce the expression of Domeless or TEPa. Previously in this work, we also described that ABA
augments the levels of NO production in hemocytes in honey bee larvae [75]. Here, we also reviewed
that NO plays a crucial role signaling the activation of the JAK-STAT pathway and mediates the
transmission of both intra- and intercellular signals in different model organisms. Thus, a possible
connection between ABA and the JAK-STAT pathway could be suspected through the action of NO in
A. mellifera (Figure 1).

It is important to highlight that in both works from Negri et al. [75,109] the experiments were
performed using in vitro reared larvae. This is relevant to this analysis, because rearing bee larvae
in vitro reduces the chances of having significantly different levels of DWV between the sampled
individuals. Gregorc et al. [157] find augmented levels of DWV within in vitro reared larvae only
when they artificially parasitize the larvae with V. destructor. In another work, Ryavob et al. [158] find
augmented levels of sack brood virus (SBV) and DWV, and a response to those viruses, this in in vitro
reared larvae only when they feed the larvae with the viruses. Together, the results described above
seem to indicate that in standard conditions or larval rearing, the levels of SBV and/or DWV should
not be significant.

As was mentioned in the introduction, bees’ immune suppression resulting from pesticides is
an important factor that could seriously synergize with biotic stressors like V. destructor [159,160].
The phagocytosis innate immune response is activated through both the Toll and JAK/STAT
pathways [59,161]. In 2013, Di Prisco et al. [162] found that clothianidin, a neonicotinoid insecticide,
negatively affects NF-κB signaling in the Toll pathway of both flies and honey bees. Recently, Walderdorff
et al. [79] demonstrated that the neonicotinoid imidacloprid (IMI) affects the immunocompentence of
honey bees. In that work, they show evidences suggesting the interaction between IMI, LPS challenge,
phagocytosis, H2O2 (a ROS, see above in the immunity section) and NO production in A. mellifera
hemocytes. In 2017, Negri and co-workers [75] showed that hemocytes from LPS-injected A. mellifera
larvae produce increased amounts of NO. In the same work, the authors show that when the larvae
are fed with L-arginine (the natural substrate for NO production through NOS) the levels of NO
in response to LPS increases. In some way, this last evidence connects NO with nutrition, because
L-arginine has been reported to be an essential amino acid for bees [100].

Arefin et al. [163] find that the consumption of L-arginine enhances the melanization response in
flies through NO production. These results are in concordance with previous data demonstrating that
adding L-arginine to the food of D. melanogaster increases the ability of larvae to encapsulate the eggs of
the parasitoid Asobara tabida [164]. In addition, Sanzhaeba et al. [165] demonstrate a dual effect of NO
on the PO-mediated DOPA oxidation process of the melanogénesis process. A dual dose-dependent
effect of NO on melanin generation is also demonstrated for isolated hemocytes of Galleria mellonella
larvae [166]. The authors propose that the effects of NO take place in vivo, and that enhancement of
melanization by NO may occur upon the encapsulation response within insects’ blood.
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The activation of melanogenesis is triggered in response to wounding and encapsulation, and it
depends on the immune activation of insects’ hemocytes [152,153]. It is reported that the activation of
honey bee hemocytes is dependent of NO [73], and that A. mellifera granulocytes generate increased
amounts of NO in response to wounding [74].

Interestingly, the effect of NO seems to be hemocyte-specific both in D. melanogaster, where NO
production is related with lamellocytes [163,164] and A. mellifera, where this radical is shown to be
generated in granulocytes [73–75]. Taking into consideration the results described in the two previous
paragraphs, it could be speculated that NO could also play a (direct or indirect) role in melanogenesis
in A. mellifera.

The results discussed above suggest that NO plays a key role in the innate immunity response of
bees and other insect species. NO participates in responses from hemocyte’s activation (spreading) to
melanization, contributing in encapsulation and wound healing, which are critical during V. destructor
parasitism (Figure 1). The possible cytokine-like role of ABA and the interaction with NO and the
pathways and responses described above should be further investigated (Figure 1).

5.3. Varroa-DWV and Environmental Factors: The Interaction Between the Immune System and
Cold Temperatures

The concept of host regulation involves a wide range of host physiological and behavioral changes
induced by parasites which are especially investigated in insect parasitoids [16]. Typical models of
study are the parasitic wasps, which are able to colonize and exploit living insect hosts, using a wealthy
repertoire of virulence factors [143]. The Varroa–DWV association could be considered a similar system
where the vector role of Varroa is paid back by a DWV-induced fitness enhancement mediated by host
immunosuppression, but at an earlier stage and with a less intimate level of integration [16]. A series of
correlative studies also provides evidence supporting a major role of DWV in the immune suppression
process, characterized by a negative impact on a member of the NF-κB protein family [16,81].

Recent reports suggest that winter cold weakens bee colonies by decreasing the expression of
immune genes [14,17]. Steinmann et al. [14] hypothesize that while detrimental effects of V. destructor
infestation (promoting DWV replication) occur during the whole life cycle of honey bees, its effect
becomes critical in fall and winter when increasing mite infestation levels are concomitant with a
seasonal decline in immune function, and the expected extended longevity of fall and winter bees.
These authors support the hypothesis that fall represents a critical period when honey bee colonies
experience important nutritionally-dependent, physiological adaptations to survive winter, and that
food stores and V. destructor infestation levels are key factors determining the destiny of the colonies
(Figure 1). Indeed, a number of studies identify and connect the effects of cold, the parasitic mite
V. destructor and vectored viral pathogens, particularly DWV, in contributing to significant changes in
the global viral landscape and a continuing decline in honey bee health [7,9].

If A. mellifera brood susceptibility to V. destructor infestation and other diseases is linked to cold
and virus-induced immunodeficiency, studying the bees’ immune responses to biological threats and
environmental stressors should help to alleviate the losses of managed honey bees. Still, few studies
have bridged the gap between individual bee immunity and colony level defenses, and related to these
combined elements, to useful measurable outcomes for beekeeping operations [9].

In respect with the discussion above, ecological immunology reveals an increasing web of
relationships between immune responses, behavior and stress in a wide range of organisms [167].
In this context, it is important to consider that due to insects’ immune responses being energetically
costly, they can compromise fitness [168] or be compromised by environmental stressors [169]. This last
highlights the relevance of taking into consideration the integration of environmental factors that could
be related with the time of the year associated with a particular disease affecting bees.

Insects are proposed to be the most successful group of terrestrial animals, having overcome
the challenge of thermal variability [170]. In combination with this abiotic stress, there are biotic
stresses like a diverse set of parasites and pathogens that affect the performance of insects’ immune and
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anti-stress responses [170]. Thus, overwintering temperate insects are useful models for understanding
the interactive nature of multiple abiotic and biotic stressors, because cold stress during overwintering
is frequently related with a trade-off with energy-consuming processes like immune responses [170].

Honey bees in temperate regions fit perfectly within the scenario described above.
However, the interactions between the immunity and environmental stress are complex and,

interestingly, not necessarily negative [167]. Main components of the insect immune system like
phagocytosis and encapsulation still operate (albeit slowly) at low temperatures [171]. Besides,
insects exposed to cold show increased tolerance to fungal infection and an upregulated expression
of immune-related genes [170]. This cold-associated upregulation may have ecological relevance;
for example, a better encapsulation response is associated with enhanced winter survival in water
striders [139]. Conversely, bacterial infection increases the time taken to recover from chill coma
(i.e., reduces cold tolerance) in D. melanogaster [172]. Thus, there appear to be links between the
responses to cold and infection and the nature of those responses and their adaptive significance
represents an amazing field to explore in depth. This last paragraph leads us to the idea involving the
possible cross-talk between shared routes in response to different stressors and the concept around
“immune priming”, which is discussed below.

6. Key Molecules and Priming Effects

The primary immune responses of insects are innate, including both humoral and cellular defenses
against parasites and pathogens. However, there are interesting evidences of the priming of the insect
immune system by prior exposure to pathogens [173,174] or environmental stressors [175]. Interestingly,
Le Bourg et al. [175] find that flies subjected to cold survive longer against fungal infection, while other
stresses have no positive effect. This effect appears even when the cold pre-treatment is applied to
young-aged flies, increasing their survival to infection throughout life [175]. However, we could also
interpret immune priming beyond the boundaries of individual immunity, taking into consideration
a superorganism as a model of study, in which overall immunity is built upon the integration of
individual and social responses. In the case of honey bees, Richard and co-workers [85,176] demonstrate
that individual immunity (stimulated both with bacterial elicitors or bacterial injection) triggers the
social response of allogrooming, which is a social behavior associated with Varroa parasitization.
Interestingly, these authors demonstrate that both the JAK/STAT and Toll pathways are significantly
regulated in response to bacterial challenge. It could be hypothesized that social immunity could be
induced (or primed) through the stimulation immune defenses at the individual level, thus enhancing
the overall immune response of the superorganism, and that the JAK/STAT and Toll pathways should
be a possible target to achieve those effects (Figure 1).

In this sense, we hypothesize that ABA treatment could be exerting a priming effect over the
response to low temperatures, allowing honey bee larvae to be better prepared to confront cold
stress or any related immune challenge sharing the JAK/STAT and Toll pathways and NO production
as a common response (like for example, wound healing or virus infection) (Figure 1). At least in
part, the hypothesis proposed in this work could explain the results obtained in field experiments
where ABA-supplemented colonies [107] show an improved fitness, evidenced by the level of winter
bees’ population, to pass through the winter season (Figure 1). However, more experiments should
be performed to evaluate the possible relationship between ABA, bees’ physiology, immunity and
Varroa-DWV parasitism. Future experiments should also evaluate the role of ABA integrating individual
and social defenses, from molecular assays to field tests.

A schematic summary of everything analyzed, integrated and proposed in this review is shown
in Figure 1.

7. Conclusions and Perspectives

The question of domestication, genetic diversity and colony survival is more relevant in recent
times as researchers and honey bee breeders search for evidence of increased resistance to pathogens
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and parasites. Youngsteadt et al. [177] show that managed honey bee colonies have lower levels of
immunocompetence than feral ones exposed to natural selective pressures, and this resistance appears
to be linked to a higher genetic diversity [178]. These results highlight the high impact of anthropogenic
selection on A. mellifera, and suggest that impaired immunocompetence acts as a key weakness in the
bees’ capacity to face the biotic stress factors occurring in the hive ecosystem [7].

We need to search for natural solutions to respond to short and long term threats to honey bee
health. In the short term, the goal is to reduce the rapid rate of colony loss, and hopefully try to stop it.
In the long term, we should surround bees with favorable floral environments, and human actions
must be in tune with the environment, its biology and its ecology.

If indeed nutrition can be used to maintain and/or elevate the immune defenses of bees, then the
long term strategy must involve the preservation of natural environments and an increase in the
availability of diverse floral resources in agro-productive ecosystems (Figure 1). This means including
the best selection of flowers for bees, considering the floral design in relation with the seasons and crop
production schemes. In the short term, one possibility is to supplement the diet with key molecules
(like phytochemicals) found in the natural diet and physiology of bees (Figure 1).

Providing key molecules is different from standard supplemental feeding. The criteria around
focusing on key molecules is related with achieving the desired effect via the addition of a small
amount of the chemical within the bees’ diet. To be effective, these key compounds must participate
in important signaling pathways for the immunological defense of bees. For that it is important to
understand the signaling pathways and their relationship with the different stressors that are affecting
the bees. Also, the levels and concentrations of any possible key molecule should be analyzed in
natural foods sources as well as in the bee’s physiology. At the same time, it is important to take into
account that, as mentioned above, social defenses could be triggered by the activation of immunity at
the individual level. For that, it could be interesting to analyze the relationship between key molecules
and the interaction of signaling pathways activation at individual and social immunity levels. This last
would give us information regarding the roles of different molecules at the superorganism level,
and that is a goal which any bee scientist should pursue.

As it was mentioned previously, immune pathways engage in cross-talk and can direct some
of the same immune effectors [59]. This means that we could study which are the factors (biotic or
biotic signals or stresses) that trigger each immune pathway, and if there is any cross-talk between the
different signaling cascades. Then, understanding how different pathways could be induced, we could
search for “priming” molecules, which hopefully could activate more than one response at the same
time (through cross-talk).

The signaling pathways have well-defined routes and interactions sets, which can be examined to
understand the resulting cascade of events, triggered by certain factors, related with each pathway.
This kind of detailed examination could lead us to detect which signaling molecules are those
responsible to connect the signal with the transduction in each pathway, which in turn could provide
clues to what we call “key molecules”. In a sense, we could also take advantage of the cross-talk
between different pathways to search for shared signals that boost those pathways or turn one “on”,
while also switching the other “off”.

The last could lead to one of the keys to find what we call “key molecules”. Then we could select
different combinations of “key molecules” to design, precisely, the diet of our bees. This could be
achieved through adding the molecule itself, or adding the necessary molecules to induce the synthesis
of a particular signal, etc.

In this way, we could develop what we call “Precision Nutrition”, within the framework of
precision agriculture, and particularly, of precision beekeeping.
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