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a b s t r a c t

The calculations carried out with the G-particle-hole hypervirial equation (GHV) method for a set of
ground-states dominated by a single determinant of electronic systems have yielded highly-accurate
results when compared to the equivalent full configuration interaction (FCI) quantities [26,28,30]. How-
ever, the results obtained when calculating states dominated by several determinants were not satisfac-
tory. This problem is common to other contracted equations methodologies. The reason for this apparent
shortcoming is that in these cases the existing algorithms yield inaccurate approximations for the 3-body
correlation matrices involved in the contracted equations. Here, we propose a new set of algorithms for
constructing the 3-order correlation matrix in terms of the 2-order one when a singlet zero-order wave-
function is formed by a single configuration state function (CSF) composed of two equally weighed Slater
determinants. This type of correlated states are of great general interest but in particular in spectroscopy
and quantum information. The results obtained are very satisfactory.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The concept of N-representability is at the core of the reduced den-
sity matrix (RDM) theory. Coleman introduced this concept in 1963 in
his famous paper [1], where he stated that a matrix represented in a
reduced space of 1, 2, . . . electrons can only be considered to be a 1-,
2-RDM, . . . when there exists a N-electron wave-function from which
it can be derived by integration of the corresponding
N-density over the variables of N � 1, N � 2, . . . electrons. As a conse-
quence of the need of this RDM property, when looking for a varia-
tional treatment for the 1-, 2-RDM, . . . one had to impose a set of
N-representability constraints. This implies the search for the set of
necessary and sufficient N-representability conditions for RDMs
[2–8]. In the book by Coleman and Yukalov [9] a clear and detailed ac-
count of the necessary conditions for the ensemble N-representability
condition of the 2-RDM is given. The different N-representability con-
ditions implicitlydefine a set of matrices closelyrelated to the 2-RDM;
in what follows we are particularly concerned with two families of
these matrices which describe the fermion correlation effects: the
correlation [10–14] and the G-particle-hole matrices [6,11–13,15].

As Löwdin mentions in his article on the N-representability prob-
lem published in the 1987 book in honor of A. John Coleman [3],

when a fundamental quantum mechanical equation expressed in
terms of the N-electron density operator Ĉ is exactly solved no need
for extra constraints exists; however when the solution is approxi-
mated the N-representability property of the matrices involved
must be ascertained. This is the case of the two main methodologies
which have been at the center of the work of our group: the solution
of the contracted Schrödinger equation (CSE) [5,16–25] and the
solution of the G-particle-hole hypervirial equation (GHV) [26–
32]. Thus, it must be ensured that the 2-RDM resulting from an
approximated iterative solution of these equations satisfies the
main necessary N-representability conditions with sufficient accu-
racy. In the CSE case, a purification procedure is applied to the
resulting 2-RDM after iteration [13,14]. This purification procedure
is partially based on Coleman’s unitarily invariant decomposition of
a 2-RDM [33]. In the GHV case, the solving procedure used preserves
to a great extent the N- and Spin-representability [34] of the initial
trial matrix, which is one of the advantages of this approach.

All contracted equations are hierarchy equations. Thus, the ana-
lytical form of the CSE, whose solution is the 2-RDM corresponding
to a given eigenstate, depends also on the 3- and 4-RDM; its antihe-
rmitian part, the antihermitian contracted Schrödinger equation
(ACSE) [35], and the GHV equation depend respectively not only
on the 2-RDM and the G-particle-hole matrix but also on the
corresponding 3-order density and correlation matrices. This hierar-
chy character renders operationally indeterminate the contracted
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equations. A way out of this difficulty was proposed by Colmenero
et al. in 1993 by approximating the 3- and 4-RDM in terms of the
1- and 2-RDM [36]. The algorithm used was an extension of Valdem-
oro’s proposal for approximating the 2-RDM in terms of the 1-RDM
[37]. In 1996 Nakatsuji and Yasuda, by analogy with the many-body
perturbation series, proposed a way to approximate the 3- and 4-
body correlation terms [20] and 2 years later Mazziotti [22] identi-
fied these approximating algorithms with the statistical expression
of the moment expansion of the 2-RDM. This author also proposed
another procedure for approximating the 3- and 4-order cumulants,
or equivalently, the 3- and 4-body correlation terms [38]. These, and
other posterior related proposals [28,39] can be considered to give
an answer to this question when the zeroth-order wave-function
is a single determinant. However, when this is not the case, neither
of these algorithms for approximating the 3- and 4-body correlation
effects gives acceptable results [29]. As a preliminary step in the
study of this open question we present here a set of algorithms for
approximating the 3-body correlation matrix elements for the par-
ticular case in which the zeroth-order wave-function is formed by
a single configuration state function (CSF) composed of two equally
weighed Slater determinants in order to describe a singlet state.
These 3-order matrices are of paramount importance in the GHV
equation which is at the center of our present work.

The GHV equation is the most recent member of the family of
2-order contracted equations. When solving this equation one does
not look for an N-electron function but for a 2-order matrix which is
a 2-electron quantum average of the electronic correlation of the N-
electron state considered which suffices to determine the energy of
the corresponding state. The calculations carried out with the GHV
method on the singlet, doublet and triplet ground states of a set of
atoms and molecules have yielded results that are similar in accu-
racy to those obtained with a coupled cluster with single, double,
and triple (CCSD(T)) treatment [26,28,30,32]. The common feature
to all those ground states is that a single Slater determinant consti-
tutes a reasonable zeroth-order trial function to start the iterative
procedure leading to the approximate solution of the GHV equation.
On the other hand, the multi-determinantal states which are highly
correlated are still an open question [29]. The main cause of this
problem is that the existing approximating algorithms for the 3-
body correlation matrices involved in the GHV equation are not
adequate when the occupation numbers of the natural spin–orbi-
tals are significantly different from 1 or 0. As mentioned above,
the aim of this work is to propose a new set of approximating algo-
rithms for constructing the 3-order correlation matrix in terms of
the lower-order matrices when the zero-order wave-function is
formed by two equally weighed Slater determinants in order to de-
scribe a singlet state. This type of correlated states are of great gen-
eral interest but in particular in spectroscopy and quantum
information as well as in a more general context [40,41].

This paper is organized as follows. The basic definitions, an over-
view of the contracted equations properties, and a general theoretical
background are given in the following section. In Section 3, it is shown
how the number of apparent unknowns to be approximated can be re-
duced when dealing with singlet states. In Section 4 we propose a new
set of approximating algorithms for the 3-body correlation matrices
of this type of excited states. In Section 5 we report the results ob-
tained when using these algorithms and give some final comments.

2. Basic definitions and relations

The Hamiltonian operator of a pairwise interacting N-electron
system may be written in the occupation number representation
within the second quantization formalism as:

bH ¼ 1
2

X
i;j;l;m

0Hij;mla
y
i a
y
j alam ð1Þ

where

0Hij;ml ¼
ð�i;mdj;l þ �j;ldi;mÞ
ðN � 1Þ þ Vij;ml ð2Þ

and the matrix � groups the one-electron integrals and V the 2-elec-
tron integrals. In (1) the fermion operators subscripts are the labels
of the spin–orbitals. In what follows the orthonormal basis set con-
sidered is formed by 2K spin–orbitals.

The state under study is denoted by W. This wave-function al-
lows to define the two following projector operators:
bQ W ¼

X
W0–W

jW0ihW0j bP ¼ jWihWj
as well as the set of relevant RDMs and related matrices.

2.1. Matrix definitions and their inter-relations

The RDMs and the correlation matrices are the matrices at the
center of this work. Their respective structures are defined, in the
occupation number representation of second quantization, as:

� The 1-RDM elements.

1Dp;r ¼ W aypar

��� ���WD E
ð3Þ

� The hole 1-RDM (1-HRDM) elements.

1Dp;r ¼ W arayp
��� ���WD E

ð4Þ

� The 2-RDM elements.

2!2Dpq;rs ¼ W aypayqasar

��� ���WD E
ð5Þ

� The 2-order correlation and the G-particle-hole matrix
elements.

Cpq;rs ¼ W aypar
bQ ayqas

��� ���WD E
� Gpr;sq ð6Þ

Using the fermion relations, it can be shown that:

2!2Dpq;rs ¼ 1Dp;r
1Dq;s � 1Dq:r

1Dp;s � 1Dq;r
1Dp;s þ Cpq;rs ð7Þ

� The form of the 3-order correlation matrices used here are:
ð3;2;1ÞCipr;jqs ¼ W ayi a

y
paqaj

bQ ayras

��� ���WD E
ð8Þ

ð3;1;1;1ÞCipr;jqs ¼ W ayi aj
bQ aypaq

bQ ayras

��� ���WD E
ð9Þ

and the relation linking these two matrices is:
ð3;2;1ÞCipr;jqs ¼ �dp;jCir;qs þ 1Di;jCpr;qs þ ð3;1;1;1ÞCipr;jqs ð10Þ

2.2. Brief overview on the contracted equations

The different 2-order contracted equations result from the inte-
gration over the variables of N � 2 electrons of the Schrödinger
[16,17] and the Liouville equations, or equivalently from the appli-
cation of a matrix contracting mapping to their matrix representa-
tions [18]. For the sake of brevity only a brief account of the main
features of the different contracted equations will be given in the
synopsis (Appendix A), where the information for each one of the
contracted equations is collected in the following form:

Acronym

Name
Compact form of the equation
Matrices involved
Conditions implied by the equation
Solution and computational scaling

8>>>>>><
>>>>>>:

It is important to recall that there is a one-to-one correspon-
dence between the solution of the Schrödinger equation and that
of the CSE [16], of the correlation CSE (CCSE) [42], and of the 3-order
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GHV equation [27], which depends also on the 4-order correlation
matrix. While no proof of the sufficiency of the GHV equation has
been found, no counter-example has been found either [29]. On
the other hand, a counter-example has been reported for the ACSE
[26,29]. It has also been proven that while the GHV solution implies
the ACSE’s one, the opposite is not true [26]. That is, the GHV im-
plies a stronger condition than the ACSE. This is the reason why
the former equation is at the center of our work. Let us also mention
that, in a similar way to other 2-order contracted equations
methods [5], evaluations in the GHV equation case have been also
implemented using sum factorization and multiple-matrix-multi-
plication in order to reduce the computational costs to be propor-
tional to K6 in floating-point operations and K4 in memory storage
[27,32]. For the sake of comparison, MP2, CCSD, and CCSD(T) meth-
ods scale in floating point operations as K5, K6, and K7, respectively.
It is difficult to ascertain if the GHV method is faster or not than
CCSD since present programs for the latter have been in use for a
long time and are fully optimized.

2.3. The singlet states: particular properties

In singlet states the Gab;ab spin-block determines all the other
spin-blocks of the G-particle-hole matrix [13]. As a consequence,
it can be shown that [43]

E ¼ Trðh1Da;aÞ � TrðHGab;abÞ ð11Þ

where

Him;lj ¼ ð20Hij;ml � 0Hij;lmÞ ð12Þ

and

hi;m ¼
X

l

Hil;ml ð13Þ

Note that the term involving explicitly the 1-RDM in (11) is lin-
ear, while the well known expression of the energy involving the
2-RDM is quadratic in the 1-RDM elements (see Eq. (7)).

2.3.1. Symmetry properties of the Gab;ab spin-block
It can be established that for this spin-block

Gss;ss; Gss0 ;ss0 ; Gs0s;ss0 ; Gs0s0 ;ss ð14Þ

are the only non-vanishing symmetry species, where s generically
denotes the orbital symmetry of the point group of the studied
molecular system.

It can also be shown that, for singlet states, in the natural spin–
orbital basis set, the off-diagonal elements satisfy the following
symmetry relations:

Gp�r;s�q ¼ Gq�s;r�p ¼ Gr�p;q�s ¼ Gs�q;p�r ð15Þ

where the bar over an index denotes that the spin–orbital has a b
spin. In practice, and in this representation, there are many ele-
ments which have a negligible value. Globally speaking, the Gab;ab

matrix can be considered to be sparse which indicates the conve-
nience, in large calculations, to carry out a preliminary selection
of the elements to be evaluated.

3. The GHV equation for singlet states

In this section we report an optimized form of the GHV equation
for singlet states. We start by considering the compact form of the
matrix-equation to be solved:

hWj½bH; bGq�p;m�l�jWi ¼ 0 ð16Þ

When developing this equation the resulting expression is a
functional of the ð3;2;1ÞCrr�r;r�rr and ð3;2;1ÞCr�rr;rr�r types of elements,
where r denotes any of the two spin-functions a or b. In order to

reduce to the outmost the number of correlation matrix elements
to be evaluated, we first convert all the (3;2,1)C types appearing in
the GHV equation to the form (3;2,1)Caab;aab. The first consideration
is to recall that for singlet states one may interchange the roles
played by the two spin-functions a and b. Hence, one may just
consider that the spin function r is a. Moreover, it can be shown
that:

ð3;2;1ÞCip�r;j�qs ¼ 22Dip;js
1D�r;�q � ð3;2;1ÞCip�r;js�q ð17Þ

ð3;2;1ÞCi�pr;jq�s ¼ �22Di�p;q�sdr;j þ 22Di�p;j�sdr;q � 22Dir;jqd�p;�s � ð3;2;1ÞCir�p;jq�s ð18Þ

These two relations allow to express all the (3;2,1)C-matrix elements
appearing in the GHV equation in a unique form, which implies that
for singlet states one has:

Wj½bH; bGq�p;m�l�jW
D E

¼ f ð0H; ð3;2;1ÞCaab;aabÞ ð19Þ

In our study of the weakly correlated ground-states Ref. [27],
a set of approximating algorithms for the (3;1,1,1)C were reported.
Therefore, in order to look for adequate algorithms to approxi-
mate the 3-order correlation matrix elements when the state is
highly correlated we wish to take advantage of the experience
gained in our previous study of weakly correlated states and
look for (3;1,1,1)Caab;aab instead of (3;2,1)Caab;aab by using relation
(10).

4. The approximating algorithms

As mentioned in Section 1, the so far proposed algorithms for the
calculation of higher order correlation matrices in terms of the
lower order ones, provide excellent results for singlet states domi-
nated by a single Slater determinant, i.e. for states whose natural
orbital occupation numbers are either close to 1 or to 0, close to
fully occupied or empty. Those states can be considered as slightly
correlated.

This paper is mainly devoted to the design of new approximat-
ing algorithms for states with stronger correlation effects. To solve
this open question is not an easy task, since it implies to approxi-
mate the 3-body correlation matrix for those states where the per-
turbation theory does not give a sufficiently accurate answer. Our
approach to this problem has been inductive. Thus, we have ana-
lyzed the numerical values of the correlation matrices obtained
with the FCI method for a series of states, and in particular for
the two states considered here. Our test system has been the
BeH2 in its linear symmetry, D1h, which is the most stable confor-
mation for the electronic ground state of this molecule. This sys-
tem has repeatedly been our test molecule in the past because
its structure – when calculated in a minimal basis set representa-
tion – is not trivial and yet, due to its high symmetry properties,
the number of non-vanishing elements of its third order matrices
is small, which significantly facilitates the analysis of the results.
The two excited states selected for our study are: a member of
the degenerate 1Pg level, and a 1R�u . These two states will be la-
belled in this paper as State A and State B. Both are dominated
by a single CSF composed of two equally weighed Slater determi-
nants to form a singlet state. As mentioned previously, these type
of states are highly correlated and of great interest both in spectro-
scopic studies and in quantum information. Their natural orbital
occupation numbers are, hence, close to fully occupied, close to
half-occupied or empty. The active role played by the frontier orbi-
tals in determining the values of the ground state cumulants, or
equivalently, the correlation terms, has been already signaled
[39]. Here the idea of frontier orbitals has been extended to those
orbitals with intermediate occupancies, according to whether their
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occupation numbers are above or below 0.5. The difference be-
tween the diagonal element in 1-RDM and in 1-HRDM classifies
an orbital as occupied or empty.

TðiÞ ¼ 1Di;i � 1Di;i > 0 i is occupied

TðiÞ ¼ 1Di;i � 1Di;i < 0 i is empty

In addition to the orbital classification by its occupation num-
ber, in what follows use is made of their spatial symmetry proper-
ties, the irreducible representation to whom they belong.

When considering their contribution to correlation effects, not
all the orbitals are similarly active. In fact, they can be classified
as follows.

� The active occupied orbitals (o), which are the orbitals with occu-
pation number larger than 0.5.
� The frontier occupied orbital (of), which is the o with the closest

to 0.5 occupation number. This is given as input datum in the
calculation.
� The active empty orbitals (e), which are the orbitals with occupa-

tion number lower than 0.5.
� The frontier empty orbital (ef), which is the e with the closest to

0.5 occupation number. This is given as input datum in the
calculation.
� The independent occupied orbitals (io), which do not contribute

actively to correlation and which have an occupation number
close to 1. These orbitals satisfy 1 � 1Di;i < �o where �o is an
input datum in the code.
� The independent empty orbitals (ie), which do not contribute

actively to correlation and which have an occupation number
close to 0. These orbitals satisfy 1Di;i < �e where �e is an input
datum in the code.

The relative positions of the orbital labels in a given matrix ele-
ment, the kind of orbitals involved, and whether one or various orbi-
tals are repeated determine the element type. Our first working
hypothesis is that its type determines the value of the correlation ma-
trix element considered. In principle, the whole set of types of ele-
ments in the correlation matrix may be rather large but those types
leading to non-negligible element values form, in practice, a small
subset of them, the active types. This is an ideal situation since, in that
case, only a small set of matrix elements need to be approximated.

In addition, subsets of active types for different stationary states
of the molecule may have common elements. Our working hypoth-
esis is, hence, that states with analogous zero-order wave-func-
tions share many common active types of significant elements in
their correlation matrices.

The results obtained when calculating the 3-body correlation ma-
trix of the two singlet states A and B of the linear BeH2 molecule with
the FCI method and with other approximate methods have been car-
ried out. In all these calculations a minimal basis set in the natural
spin–orbital representation was used. The FCI values of the 1-RDM
diagonal elements of these states in this representation are:

which implies that the orbitals in each of the two states considered
can be classified as:

State Orbital

1 2 3 4 5 6 7

A io o e of e ef e
B io o ef of e e e

This classification of the orbitals jointly with the exact value of
the (3;1,1,1)Caab;aab, in each of the states, allows to establish which
are the active types in these two excited singlet states. As expected,
most of the active types were common to both states.

Once this task was completed we based our research in our sec-
ond and main working hypothesis: the value of any given
(3;1,1,1)Caab;aab element is a functional of the Cab;ab.

Having in mind all these considerations we have constructed a
set of algorithms which have been subsequently codified in the
computational program used in the calculation of the 3-order cor-
relation matrices of the two states under study in order to compare
the results with the corresponding FCI ones.

4.1. The algorithms for the diagonal elements

The different active types for the generic diagonal element
ð3;1;1;1ÞCij�l;ij�l and their approximating algorithms are reported in Ta-
ble 1. In this table the generic i, j, l subscripts are replaced when
necessary by the symbols indicating the possible o, e, of, ef charac-
ter of the orbitals involved (the io and ie orbitals are not generally
involved in the active types).

4.2. The algorithms for the off-diagonal elements

In Table 2 we report the approximating algorithms for the off-
diagonal elements whose generic element is ð3;1;1;1ÞCij�l;pq�r .

State A 0.99998 0.95545 0.04003 0.50037 0.00210 0.50000 0.00207
State B 0.99998 0.97949 0.49012 0.50168 0.00779 0.01047 0.01047

Table 1
Main contributions to the third-order correlation matrix: diagonal elements.

(3;1,1,1)C type Algorithm

ð3;1;1;1ÞCof ef �ef ;of ef �ef Cof �ef ;of �ef � 1Def ;ef

ð3;1;1;1ÞCof ef �of ;of ef �of Cof �of ;of �of
� 1Def ;ef

ð3;1;1;1ÞCef of �ef ;ef of �ef Cef �ef ;ef �ef
� 1Dof ;of

ð3;1;1;1ÞCef of �of ;ef of �of
Cef �of ;ef �of

� 1Dof ;of

ð3;1;1;1ÞCef of �o;ef of �o Cof �o;of �o

ð3;1;1;1ÞCoef �ef ;oef �ef Co�ef ;o�ef
� 1Def ;ef

(s(o) – s(e))
ð3;1;1;1ÞCoef �ef ;oef �ef �Co�ef ;o�ef � 1Def ;ef

(s(o) = s(e))
ð3;1;1;1ÞCief �ef ;ief �ef

Ci�ef ;i�ef
� 1Def ;ef

ð3;1;1;1ÞCiof �of ;iof �of
Ci�of ;i�of

� 1Dof ;of

ð3;1;1;1ÞCiof �ef ;iof �ef
Ci�ef ;i�ef

ð3;1;1;1ÞCeof �ef ;eof �ef
�Ce�ef ;e�ef

� 1Dof ;of

ð3;1;1;1ÞCof ef
�l;of ef

�l �Cof
�l;of

�l � 1Def ;ef

ð3;1;1;1ÞCeef
�l;eef

�l
Ce�l;e�l

ð3;1;1;1ÞCoef �of ;oef �of
Co�of ;o�of

ð3;1;1;1ÞCeef �of ;eef �of �Ce�of ;e�of � 1Def ;ef

ð3;1;1;1ÞCef e�ef ;ef e�ef �Cef �ef ;ef �ef
� 1De;e

ð3;1;1;1ÞCof e�of ;of e�of
Cof �of ;of �of

� 1De;e

ð3;1;1;1ÞClef
�l;lef

�l Cl�l;l�l � 1Def ;ef

ð3;1;1;1ÞClof
�l;lof

�l Cl�l;l�l � 1Dof ;of

ð3;1;1;1ÞCef ef �ef ;ef ef �ef Cef �ef ;ef �ef
� 1Def ;ef

ð3;1;1;1ÞCoof
�l;oof

�l
Co�l;o�l

ð3;1;1;1ÞCoef
�l;oef

�l
Co�l;o�l

ð3;1;1;1ÞCef e�e;ef e�e Cef �e;ef �e

ð3;1;1;1ÞCeof �o;eof �o �Cof �o;of �o � 1De;e

ð3;1;1;1ÞCeef
�l;eef

�l �Ce�l;e�l � 1Def ;ef

ð3;1;1;1ÞCie�e;ie�e �Ce�e;e�e

(s(i) = s(e))
ð3;1;1;1ÞCie�e;ie�e Ci�e;i�e

(s(i) – s(e))
ð3;1;1;1ÞCie�i;ie�i

�Ce�i;e�i

(s(i) – s(e))
ð3;1;1;1ÞCie�i;ie�i

Ci�i;i�i

(s(i) = s(e))
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The numerous types which determine elements with non-negli-
gible value can be classified according to one characteristic. Thus, the
elements can be classified according to the following conditions:

� j = p2 e
� j = p2 o
� j = q2 e
� j = q2 o
� j = r2 e
� j = r2 o

Besides these main conditions, other inter-relations have, in
some cases, to be taken into account. As was the case for the diag-
onal elements we will mark in the (3;1,1,1)C the general subscripts
by using the symbols o, of, e and ef.

As was also the case in the diagonal elements, most of the off-
diagonal algorithms are rather simple. There are, however, some
special off-diagonal types whose approximation requires more
complex algorithms; these special cases are collected in Table 3.

5. Results

In this section we report the results obtained with the algo-
rithms previously reported for those elements of the (3;1,1,1)Caab,aab

corresponding to the two singlet states denoted state A and state B
above described. In Tables 4–7 (provided as electronic Supplemen-
tary material, Appendix B) our results are compared with the exact
FCI values thus showing the quality of the presently proposed
approximations. In order to show the improvement in accuracy
achieved when compared with previous approximations we also
report the value obtained when using the modified Nakatsuji–Yas-
uda (m-NY) algorithm [28,30] which was used in the successful
calculations of the ground states of a series of compounds with
the GHV [28,30–32] mentioned above.

5.1. Diagonal elements of state A

The values of the diagonal elements having an absolute value
larger than 0.002 are shown in Table 4. Only in seven cases the
m-NY algorithm yields a slightly better approximation to the cor-
rect value of the element considered; in all the remaining cases
the algorithm proposed here shows an unquestionable improve-
ment. The good performance of our algorithm is particularly strik-
ing when evaluating the two elements with larger absolute value
ð3;1;1;1ÞC46�4;46�4 and ð3;1;1;1ÞC46�6;46�6 which are both approximated with
a high accuracy. These elements are respectively of the following
types: ð3;1;1;1ÞCof ef �of ;of ef �of

and ð3;1;1;1ÞCof ef �ef ;of of �of
. This shows that all

the orbitals involved in the type of the higher valued (3;1,1,1)Caab,aab

elements of this state are frontier orbitals. The remaining elements
with a significant value involve one or two frontier orbitals.

5.2. Off-diagonal elements of state A

The values of the off-diagonal elements having an absolute va-
lue larger than 0.008 are shown in Table 5.

The values of the off-diagonal elements are significantly lar-
ger than those of the diagonal ones. Thus, the largest element,
which is well approximated, is ð3;1;1;1ÞC45�6;56�4 whose value is
0.45863. As was the case in the diagonal elements all the orbi-
tals involved in this element are frontier ones. In fact, the trends
shown by the diagonal elements (Table 4) are enhanced here,
thus the larger values correspond to the elements involving
more frontier orbitals.

The performance of the new algorithms is excellent and strik-
ingly better than the m-NY algorithm.

5.3. Diagonal elements of state B

The values of the diagonal elements having an absolute value
larger than 0.002 are shown in Table 6. Only very few diagonal
elements have significant values. However, as was the case in
state A, the two really large values correspond to elements
involving only frontier orbitals. An interesting feature is that,
while in state A the element with negative sign involved twice
the frontier occupied orbital, the negative element in the B
state, with a much higher energy value, involves twice the fron-
tier empty orbital.

Table 2
Main contributions to the third-order correlation matrix: off-diagonal elements.

(3;1,1,1)C type Algorithm

ð3;1;1;1ÞCief
�i;ef q�q Ci�i;q�q � 1Def ;ef

ð3;1;1;1ÞCief �of ;ef of
�i

Ci�of ;of
�i

ð3;1;1;1ÞCie�ef ;eef
�i Ci�ef ;ef

�i � 1De;e

(jT(e)j < �)
ð3;1;1;1ÞCie�l;eq�r

Ci�l;q�r

ð3;1;1;1ÞCiof
�i;of q�r Ci�i;q�r � 1Dof ;of

ð3;1;1;1ÞCiof �of ;of q�r Ci�of ;q�r

ð3;1;1;1ÞCij�ef ;jef
�i Ci�ef ;ef

�i � 1De;e

ð3;1;1;1ÞCij�of ;jof
�i Ci�of ;of

�i � 1Dof ;of

(jT(j)j < �)
ð3;1;1;1ÞCiof

�l;pof �r Ci�l;p�r � 1Dof ;of

ð3;1;1;1ÞCio�l;po�r
Ci�l;p�r

ð3;1;1;1ÞCief
�i;pef �p Ci�i;p�p � 1Def ;ef

ð3;1;1;1ÞCief �of ;pef �of
Ci�of ;p�of

� 1Def ;ef

ð3;1;1;1ÞCief �ef ;pef �ef
Ci�ef ;p�ef

� 1Def ;ef

ð3;1;1;1ÞCief
�l;lef

�i Ci�l;l�i � 1Def ;ef

ð3;1;1;1ÞCof ef
�l;of ef �r Cof

�l;of �r � 1Def ;ef

ð3;1;1;1ÞCief �of ;of ef
�i Ci�of ;of

�i � 1Def ;ef

ð3;1;1;1ÞCie�l;pe�r
Ci�l;p�r

ð3;1;1;1ÞCio�e;ie�o �Ci�o;i�o

ð3;1;1;1ÞCio�o0 ;po0�o Ci�o0 ;p�o0 � 1Do;o

ð3;1;1;1ÞCio�l;pq�o
Ci�l;p�q

ð3;1;1;1ÞCie�of ;pof �e �Ci�of ;p�of

ð3;1;1;1ÞCie�ef ;pef �e �Ci�ef ;p�ef

ð3;1;1;1ÞCof ef �e;oof �ef
Cof �e;o�of

ð3;1;1;1ÞCief �e;pe�ef
�Ci�ef ;i�ef

ð3;1;1;1ÞCeef �e;pe�ef
�Ce�ef ;p�ef

ð3;1;1;1ÞCie�l;pq�e
�Ci�l;p�q

ð3;1;1;1ÞCef j�ef ;pq�ef
�Cj�ef ;p�q � 1Def ;ef

ð3;1;1;1ÞCoj�l;po�r
�Cj�l;p�r

ð3;1;1;1ÞCoj�ef ;ef o�r �Cj�ef ;ef �r � 1Do;o

ð3;1;1;1ÞCol�l;po�p �Cl�l;p�p � 1Do;o

ð3;1;1;1ÞCoj�l;lo�j �Cj�l;l�j � 1Do;o

ð3;1;1;1ÞCof j�l;pof �p
�Cj�l;p�p

ð3;1;1;1ÞCij�of ;of e�e �Ci�j;e�e

ð3;1;1;1ÞCiof �of ;of q�r �Ci�of ;q�r � 1Dof ;of

ð3;1;1;1ÞCij�ef ;ef q�ef
�Ci�j;q�ef

� 1Def ;ef

ð3;1;1;1ÞCef j�ef ;ef q�ef
Cj�ef ;ef �q � 1Def ;ef

ð3;1;1;1ÞCef j�ef ;pef �r �Cj�ef ;p�r

ð3;1;1;1ÞCef e�e;pef �p Ce�e;p�p � 1Def ;ef

(s(e) = s(ef))
ð3;1;1;1ÞCef e�e;pef �p �Ce�e;p�p � 1Def ;ef

(s(e) – s(ef))
ð3;1;1;1ÞCef of

�l;pef �p
�Cof

�l;p�p

ð3;1;1;1ÞCij�ef ;pef �p Ci�j;p�p

ð3;1;1;1ÞCij�ef ;pef �r Ci�j;p�r

ð3;1;1;1ÞCof j�j;pq�of
�Cj�j;p�q
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5.4. Off-diagonal elements of state B

The values of the off-diagonal elements having an absolute va-
lue larger than 0.008 are shown in Table 7. The first noticeable
characteristic of this table is that there are fewer elements with a
significant value and, in general, all elements have much lower val-
ues than in state A. Apart from this characteristic, the performance
of the new algorithms is similar as in state A. Thus, the elements
involving more frontier orbitals have also here the larger value.
Also, as was the case in state A, the new algorithm performs well
and clearly much better than the m-NY.

It should be stressed that all these calculations have been car-
ried out with a unique code, thus showing that, as we expected,
a similar wave-function structure implies that the active types
coincide in both cases to a great extent.

5.5. Final comments and future work

The study presented in the previous sections can be considered
a strong inductive argument since it confirms our working hypoth-
esis that:

� The three-body correlation effects are somehow implicit and
can be estimated, or at least fairly well approximated, from
the two-body correlation effects.
� The type of a (3;1,1,1)Caab,aab element fixed by the o, e, of, ef char-

acter, the relative positions, and, in some cases, by the symme-
try of the natural orbitals involved in the element determines
its value.
� The value of a (3;1,1,1)Caab,aab element can be accurately deter-

mined by a simple functional of two-body correlation matrix
elements.

On the other hand we are aware that, while keeping the size of
the problem compatible with the possibility of a FCI treatment, it is
convenient to extend the sample for our enumerative inductive
argument to a system with a non-linear geometry so as to analyze
the influence of a different point-group symmetry of the orbitals.

The next aspect of the problem which will be studied concerns
the N-representability of the approximated matrix. However,
no particular N-representability condition is known for the
(3;1,1,1)Caab,aab spin-block. On the other hand, this spin-block is
directly related with the (3;1,1,1)Caba,aba spin-block whose elements,
in different matrix positions, form the (3;1,1,1)Gaab,aab spin-block
which is both symmetric and positive semi-definite [11]. There-
fore, the spin-block formed by the elements

ð3;1;1;1ÞCi�jl;p�qr ¼ ð3;1;1;1ÞGip�j;rl�q

must also be both symmetric and positive semi-definite.
Although these future studies may introduce some optimization

on the algorithms reported here, we do not expect that they will be
much modified. Therefore, we anticipate that the study of a large
class of correlated states using the GHV method will now be possi-
ble. At this respect it should be noted that the simplicity of the
algorithms is a very attractive feature since it largely compensates
the need to specify which are the active types. Another important
trait which, in future, will also greatly contribute to reduce the cost
of the GHV calculations is the fact that the Cab;ab matrix is rather
sparse and that its non-negligible types are easily foretold when
the 1-RDM is known. Consequently, for singlet states, only a small
number of the Gab;ab elements play an active role when solving the
GHV equations.

Another very interesting general property of the (3;2,1)Caab,aab

spin-block is the fact that only very few elements have large val-
ues. It suggests the possibility of designing a semi-empirical or
parametrized type method which could work for larger systems.

Excited states which require more than two Slater determinants
to reasonably describe their zero-order wavefunction will consti-
tute the next goal. In those cases the algorithms will be plagued
by the fact that many orbitals play the role of ‘‘frontier orbitals’’.
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Appendix A. Synopsis of the 2-order contracted equations

Table 3
Main contributions to the third-order correlation matrix: some special cases.

(3;1,1,1)C type Algorithm

ð3;1;1;1ÞCeof �ef ;pef �of Ce�ef ;p�ef
� 1

2 Ce�ef ;e�ef
þ Cp�ef ;p�ef

� �
ð3;1;1;1ÞCoof �ef ;pef �of �Co�ef ;p�ef

þ 1
2 Co�ef ;o�ef

þ Cp�ef ;p�ef

� �
ð3;1;1;1ÞCoef �of ;pof �ef Co�ef ;p�ef � 1

2 Co�of ;o�of þ Cp�of ;p�of

� �
ð3;1;1;1ÞCeef �of ;pof �ef �Ci�ef ;p�ef

þ 1
2 Ce�of ;e�of þ Cp�of ;p�of

� �
ð3;1;1;1ÞCoof �ef ;oef �of

¼ �ð3;1;1;1ÞCoef �of ;oof �ef
Co�of ;o�of þ Co�ef ;o�ef

ð3;1;1;1ÞCeof �ef ;eef �of � �ð3;1;1;1ÞCeef �of ;eof �ef � Ce�of ;e�of
þ Ce�ef ;e�ef

� �
ð3;1;1;1ÞCeof �e;pe�of

1
2 Ce�of ;e�of þ Cp�of ;p�of

� �
ð3;1;1;1ÞCof ef

�l;lof �r � 1
2 Cl�of ;l�of

þ Cl�r;l�r

� �
ð3;1;1;1ÞCeef �of ;of ef �o ¼ ð3;1;1;1ÞCof ef �o;eof �ef � 1

4 Co�of ;o�of
þ Co�ef ;o�ef

þ Cof �e;of �e þ Cef �e;ef �e

� �
� ð3;1;1;1ÞCof ef �o;eef �of � �ð3;1;1;1ÞCoof �ef ;of ef �e
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.comptc.2012.09.
021.
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