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CoI approaches are also used as seed solution for the ISS method and the performance of the recovered
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1. INTRODUCTION

In the last two decades, non-invasive measurements of me-
chanical deformation have received great attention in the mi-
crosystems industry due to the need of feedback about de-
vice behavior, system parameters, and material properties [1–
4]. As mechanical properties of bulk materials cannot be scaled
down to micron-sized systems, the development and qual-
ity control of miniaturized components in micro-sensors and
Micro-(Opto-)Electro-Mechanical Systems [M(O)EMS] require
dedicated, low-cost, fast and reliable testing methods. More-
over, full field testing methods are needed to reduce dynamical
and dimensional restrictions of the measurements of specimens
with nonhomogeneous states. Consequently, different alterna-
tives based on frameworks that pushes complexity to the nu-
merical processing stage must be explored.

In M(O)EMS, dimensional measurements are mainly carried
out by optical non-contact methods, including the performance
testing of dynamic final devices [5]. Speckle interferometry
techniques have been widely used for full-field displacement
measurements due to their sensitivity and adaptable experi-
mental arrangement [6]. The interferometric approach is based
on the evaluation of the optical phase changes that are coded in
speckle interferograms recorded by a spatial light sensor for dif-

ferent states of the specimen. The phase changes are associated
to a displacement field at the rough surface of the specimen ac-
cording to a sensitivity direction given by the optical setup.

Phase shifting interferometry (PSI) techniques are common
methods for decoding the optical phase changes [7], which
need a precise control of a piezoelectric or electro-optical ac-
tuator to modify the optical phase of the reference or the ob-
ject beam in order to acquire several different interferograms
for an initial state of the sample and the deformed state. The
algorithms used for calculating the phase maps are based on ei-
ther phase of differences method (PDM) or difference of phases
method (DPM) [8]. In the PDM, the phase map due to dis-
placements is obtained by analyzing phase shifted correlation
fringe patterns, whereas in DPM, the phase change is calcu-
lated by subtracting the phase data obtained from the initial
state images and other phase data obtained from the deformed
state images. The displacement field is finally determined by
processing the phase map with a phase unwrapping technique.
Besides the experimental complexity involved in PSI, all algo-
rithms assume that the object remains invariant during phase
shifts. Therefore, the optical setup and environmental condi-
tions must be well controlled in order to obtain the expected
accuracy. In contrast to PSI, single frame analysis techniques
enables dynamic measurements and achieve high robustness to
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environmental disturbances [9]. Then, they are suitable for out-
of-laboratory measurements. In Digital Speckle Pattern Inter-
ferometry (DSPI), only a first image corresponding to the initial
state of the sample and a second image of the deformed state
are acquired. The subtraction of these images produce a new
one with an emerging fringe pattern related with the displace-
ment field of the specimen under test.

The Implicit Smoothing Splines (ISS) method is capable of
extracting the continuous phase distribution from DSPI fringe
patterns showing high versatility with respect to spatial fringe
density [10]. The method uses piecewise polynomial functions
for fitting a smooth phase change distribution that would gener-
ate the DSPI data with limited global admissible error. This ap-
proach requires to resolve an optimization problem in the form
of a nonlinear system of equations depending on the normal-
ized data values. The global character of the ISS model makes
the solution highly dependent of an initial phase guess that
must be provided to the numerical solver. Under proper ini-
tial phase guess, the method estimates the continuous phase
distribution without ambiguity and no phase unwrapping pro-
cedure must be applied. Moreover, a limited number of non-
critical parameters need to be specified and does not require
the supervision of an external operator.

Nowadays, more sensitive methods are developed to char-
acterize fields of nanometric displacements in the inspection
of M(O)EMS devices, nanopositioning systems and sensors for
micromanipulators [11]. In these situations, the optical phase
change does not surpass the 2π limit and no fringes are pro-
duced. The absence of fringes in the speckle interferogram
difficults the application of fringe pattern processing methods
based on automatic normalization and phase extraction [12–21]
for automatic fringe analysis processing. A technique that en-
ables phase recovery in fringeless interferograms is based on
speckle correlation patterns generated by calculating the local
correlation coefficient between two DSPI patterns [22, 23]. This
approach, addressed in this work as the Correlation of Images
method (CoI), does not require uniform illumination over the
surface of the object neither the application of a spatial phase
unwrapping procedure to obtain the continuous phase distri-
bution.

In this work, we analyze the performance of different sin-
gle frame phase recovery and normalization methods to be ap-
plied to fringeless DSPI. We tested three normalization proce-
dures: (1) acquisition of single beam images (SBI), (2) phase
guess based normalization using spline interpolation (PGS) of a
filtered DSPI fringeless pattern (DSPI-FP), and (3) phase guess
based normalization using least squares fitting of single inter-
ferograms to DSPI-FP. To retrieve the phase map, we used three
different methods for the DSPI pattern: (1) arccos of DSPI-FP,
(2) Correlation of Images, and (3) ISS (with CoI or arccos initial
phase guess). We evaluate the performance of these methods
by using speckle images simulated at different conditions and
also applied these methods to an excited piezoelectric device.
Finally, we give a summary of conclusions as an orientation for
the analysis of fringeless images in DSPI for the inspection of
nanometric displacement fields.

2. ANALYSIS OF FRINGELESS SPECKLE INTERFERO-
GRAMS

In out-of-plane speckle interferometry, the recorded intensity
can be modeled by the two-beam interferometric equation

Ia = IaB + IaM cos(φs), (1)

where spatial coordinates (m, n) were omitted for clarity and
the subscript a denotes the initial state of the specimen. IaB is
the bias intensity given by the sum of the illumination inten-
sities of the reference and object beams, IaR and IaO, respec-
tively. IaM is the modulation intensity that affects the cosine
term which phase is determined by the random speckle phase
φs, uniformly distributed over [−π, π) rad [24]. The modula-
tion intensity depends on the illumination intensities of the two
beams by the relation IaM = 2

√
IaR IaO.

When a second image is obtained for a deformed state of the
sample (subscript b), the intensity assumes values according to

Ib = IbB + IbM cos(φs + Δφ), (2)

where Δφ accounts for the phase change introduced by the field
of displacement d of the surface of the object depending on the
laser wavelength λ as Δφ = 4πd/λ.

Assuming the approximation IaR = IbR = IR, IaO = IbO =
IO, and defining IaM = IbM = IM and IaB = IbB = IB, the corre-
lation speckle fringe patterns ΔI ≡ (Ia − Ib)2 can be written in
the form

ΔI = 8IR IO sin2 φs (1 − cos Δφ). (3)

It worth noting that, for sufficiently smooth Δφ, a spatial aver-
age of ΔI can be written as

ΔI ≈ 4IR IO(1 − cos Δφ). (4)

In the following two subsections, we present three different
phase recovery methods and three normalization techniques
that will be considered for the analysis of fringeless speckle pat-
terns ΔI.

A. Phase recovery methods
A.1. Arccosine of DSPI-FP

A straightforward way of processing a normalized DSPI-FP is
the use of the arccos function (inverse cosine) [25]. A number
of methods of different complexity for optimizing the SNR in
speckled fringe patterns has been reported in the bibliography
[26]. The normalized and filtered image takes values 0 ≤ ΔIn ≤
2 and the phase can be estimated by the expression

̂Δφ = arccos(1 − ΔIn), (5)

where Eq. (4) was used.

A.2. Correlation of images

In the condition of fully developed and polarized speckle, the
phase and intensity fields become statistically independent and
the phase change Δφ is related with the Pearson’s correlation
coefficient between images Ia and Ib by the equation

CP(Ia − IaB, Ib − IbB) =
〈IaM IbM〉

√

〈

I2
aM

〉 〈

I2
bM

〉

cos Δφ, (6)

where CP the Pearson’s correlation coefficient between the two
interferograms and the operator 〈〉 is evaluated over a sliding
window of size L × L on each recorded image [27]. The intro-
duction of two approximations overcomes limitations of appli-
cability and achieve higher accuracy [23]: (1) the influence of
the intensity bias in the correlation coefficient can be ignored,
(2) the modulation term in Eq. (6) can be assumed equal to 1.
In addition, the Pearson’s coefficient is replaced by the Order
Statistics Correlation Coefficient COS that possesses high sensi-
tivity to changes in association, superior noise robustness, small
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biased and fast computational speed [28]. Therefore, Eq. (6) can
be reformulated as

˜Δφ = arccos[COS(Ia, Ib)], (7)

where ˜Δφ is the estimated phase change introduced by the de-
formation. The pixel by pixel computation of COS(Ia, Ib) im-
plies the use of a moving sliding window of size L × L.

A.3. Implicit Smoothing Spline

The Implicit Smoothing Spline (ISS) method allows to define
the smoothing spline approximation S(x) of a distribution
when the provided noisy input data Yi represents some known
function f of S(x) at particular knots xi with integers 1 ≤ i ≤ N
[10]. The cubic spline is considered in this work motivated by
its strain energy minimization property and simple framework
[29]. A smoothing spline achieves a balance of smoothness and
interpolation error by means of the adjustment of a single pa-
rameter p in the penalized sum of squares functional

Pf (S) =
N

∑
i=0

[Yi − f (Si)]
2 + p

∫

Ω
[S′′(x)]2dx, (8)

where Si = S(xi) with the spline function S(x) evaluated at
the knots xi corresponding to each pixel in the interpolation do-
main Ω. In Eq. (8), the first term is related to the interpola-
tion error of S(x) against data and the second one is the second
derivative of S(x). The minimization of Pf (S) is carried out by
solving the system of equations

f ′(Ŝ) · [Y − f (Ŝ)] = pKŜ, (9)

where we denoted elementwise multiplication by the central
dot symbol and f ′ represents the analytical differentiation of
f . The vectors Y and Ŝ contain the values of input data and the
solution at the interpolation knots, Yi and Si. K is an N × N
matrix of constant coefficients that, in the cubic spline case and
being xi the location of consecutive pixels in a row (or column),
presents the sparse form K = QTG−1Q with

Gii = 2, Gi−1,i = Gi,i−1 = 0.5,

Qii = 1, Qi,i+1 = −2, Qi,i+2 = 1, (10)

where G is a matrix of size (N − 2) × (N − 2) and Q has size
(N − 2)× N. The choice of p allows to obtain: (1) a direct spline
interpolation (p = 0), (2) a straight line least squares fit (p → ∞),
and (3) the whole spectrum of smoothed solutions in between.

From Eq. (3), the function of phase f (Δφ) = 1 − cos(Δφ) is
used to estimate ˜Δφ. According to Eq. (9), this choice of f leads
to the nonlinear system of equations with the unknown vector
Ŝ

sin(2Ŝ)− 2(1 − Y) · sin(Ŝ) = 2pKŜ. (11)

As the function f is continuous and smooth, any gradient-
based nonlinear algebraic solver is expected to perform well.
We recommend the use of a trust-region Powell dogleg method
for which the Jacobian matrix should also be provided [30]. We
want to emphasize that, as the periodicity of f induces solu-
tion branches mutually shifted by 2kπ (k integer), the initial
condition for the nonlinear solver has to be carefully chosen.
Note that ISS solves the optimization problem using just one
unknown variable (e.g. phase value) for each knot.

In Ref. [10], a complete algorithm was presented to apply
the ISS method in phase decoding of fringe patterns by using
skeletonization and Thin Plate Spline interpolation to obtain

an initial phase guess. A one-dimensional ISS solver was ap-
plied for every row and column of the interferogram arriving
at two corresponding different solutions that can be averaged
and smoothed with 2D cubic splines to complete the phase esti-
mation. The normalization preprocessing is performed to trans-
form the data obeying Eq. (3) by adopting

Y ≈ 2IM

IM
sin2(φs)[1 − cos(ΔΦ)]. (12)

Note that the arccos and CoI methods can be integrated to ISS
as they provide fine approximations to the optical phase field
which is introduced as seed solution to the nonlinear solver.
In the following subsection, we show other ways to integrate
phase recovery methods during the normalization step.

B. Normalization methods

The speckle modulation produced by the phase change can be
easily confused with effects generated by uneven illumination.
Therefore, a robust normalization method is required to obtain
a good performance in the phase recovery processing. Below
we present three methods of normalization in order to test the
performance of the three phase recovery techniques.

B.1. Single beam images (SBI)

The images corresponding to the intensity of the reference IR
and object IO beams are acquired separately. These two images
are spatially filtered and considered to normalize the DSPI-FP
described by Eq. (4) as ΔIn1 = ΔI/(4IR IO). This method allows
to apply either the arccos, CoI or ISS methods directly. It is
worth noting that the seed solution for ISS should be similar to
the actual phase map as the one obtained by the arccos or CoI
methods.

B.2. Phase guess based normalization using spline interpolation
(PGS)

The CoI method does not require an initial normalization pro-
cess for obtaining a phase guess solution φG that may be used
for normalizing ΔI without the need of acquiring extra images.
φG is used as an initial phase guess to model the DSPI-FP for
the approximation ΔI ≈ IS(1 − cos φG) = IS fG, where IS is a
2D spline surface and fG = (1 − cos φG). The interpolating 2D
spline can be obtained by averaging the results from row-wise
and column-wise analysis where each row or column solution
is found by solving a linear system of equations given by

(2fG
2 IN + ρK)IS = 2ΔI · fG, (13)

where IN is the N dimensional identity matrix, fG
2, IS and ΔI

are vectors containing all the elements in one row or column of
f 2
G, IS and ΔI, respectively. ρ is a smoothness parameter and

K is the cubic spline matrix as described in Eq. (10). Finally,
ΔIn2 = ΔI/IS.

B.3. Phase guess based normalization using least squares fitting
(PGLS)

In this phase guess based normalization method, we use the
filtered interferograms Ia and Ib and consider the use of the
illumination intensity Ii = (Ia + Ib)/2. If the reference beam
is homogeneous in amplitude, then the modulation intensity in
Eq. (4) can be found by an affine transformation of Ii, I2

M ≈
αIi + β. Considering Eqs. (1-2) and IR = R, then Ii ≈ R + IO
and the coefficients should be α = 4R and β = −4R2. In this
work, we obtain α and β as the best fit of our model to ΔI in
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Fig. 1. (a) Original phase distribution obtained by simulation (Δφ0 in radians), (b) initial state interferogram, (c) fringeless pattern
given by the square difference between interferograms of initial and deformed states (DSPI-FP). Phase maps in radians recovered
by (d) CoI method, (e) arccos method with SBI normalization, and (f) ISS method with PBLS normalization.

a least-squares sense. The obtained overdetermined system of
linear equations is expressed by

[

Ii · fG fG

]

⎡

⎣

α

β

⎤

⎦ = ΔI, (14)

where the coefficients are calculated by a matrix inversion and
the normalization of the DSPI-FP is performed as ΔIn3 =
ΔI/(αIi + β).

3. NUMERICAL TESTS

We analyzed the performance of the normalization and phase
recovery methods for several conditions of SNR, illumination
homogeneity, mean speckle grain size, phase excursion and
smoothness parameters. All the synthetic speckle interfero-
grams were generated using a commonly adopted method
based on a 4 f optical system [31]. The simulated speckle images
of an out-of-plane interferometer were obtained as the intensity
of a complex amplitude described by the usual Gaussian first-
order speckle statistics. According to this model, the intensity
can be simulated as

I = |AR +F−1{HF [AO exp(iθ)]}|2, (15)

where AO sets the amplitude distribution of the simulated ob-
ject beam, AR is the amplitude of the reference beam, i is the
imaginary unit, θ = φs for the initial state interferogram and
θ = φs + Δφ for the deformed state image. F and F−1 denote
the direct and inverse 2D fast Fourier transform, respectively.
H acts as a circular low pass filter with radius a ≤ N/2, which
sets the average speckle size so = N/(2a).

The images were simulated for a size 256 × 256 pixels in a
scale of 10-bit gray levels with so = 1.1 pixel. Additive Gaus-
sian noise ηG with a variance σ2

G was incorporated to the inten-
sity model as IG = I + ηG. The images contanining the expected

SNR were obtained by taking σ2
G = σ2

I 10−SNR/10, being σ2
I the

variance of I.
The normalization and phase recovery methods were ap-

plied to the simulated speckle interferograms in order to assess
their performance under different conditions. The quality Q
of the recovered phase map was evaluated with the structural
similarity (SSIM) index [32]. The distortion measured by the
SSIM index is associated to loss of correlation, undesired offset
of the mean phase, or modification of the standard deviation.
Q ∈ [−1, 1] and Q = 1 is satisfied for exact phase recovery. Q
was calculated as the mean value of several Qj of locally ob-
tained SSIM indices using a sliding window approach and con-
sidering the relation

Qj =
(2φAφB + C1)(2σφAφB + C2)

(φ
2
A + φ

2
B + C1)(σ

2
φA

+ σ2
φB

+ C2)
, (16)

where φA and φB are the images being compared, φ is the mean
value of φ, σ is the standard deviation and σφAφB is the cor-
relation coefficient between φA and φB. C1 and C2 are small
positive constants that avoid numerical instability for near zero
sample means, standard deviations or correlation coefficients.
C1 = 0.002 and C2 = 0.006 were chosen to obtain comparable
results.

A. Homogeneous illumination

The first set of simulations was used to analyze the most
straightforward situation of homogeneous illumination and ob-
ject and reference beams with equal intensities. For this pur-
pose, we used the displacement field which generated the
phase change Δφ0 shown in Fig. 1(a). A multiplicative factor
Aφ was introduced in the simulations to obtain a phase change
with maximum value equal to Aφ, Δφ = AφΔφ0.

In Fig. 1(b) we show the speckle interferogram obtained for
R such that IR is 2 times higher than IO and considering a low
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Table 1. SSIM index for the CoI, arccos and ISS phase recov-
ery methods with the normalization SBI and PGLS obtained
for different SNR and Aφ with homogeneous illumination
in both beams.

SNR
Aφ

CoI
arccos ISS

[rad] SBI PGLS SBI PGLS

10 dB

0.2 0.76 0.91 0.91 0.99 0.91

1 0.97 0.98 0.98 0.97 0.99

2.5 0.99 0.93 0.93 0.97 0.99

6 dB

0.2 0.58 0.81 0.79 0.95 0.79

1 0.92 0.97 0.98 0.96 0.98

2.5 0.99 0.90 0.91 0.94 0.99

noise situation (SNR = 15 dB), where the homogeneity of il-
lumination can be observed. Fig. 1(c) corresponds to a DSPI-
FP with Aφ = 1 rad, where the mean intensity of the speckle
grains presents spatial variations. The phase map recovered by
the CoI method (L = 25) is shown in Fig. 1(d) for a SSIM index
of Q = 0.994. The next two images correspond to the phase
maps recovered by the (e) arccos method when the SBI normal-
ization was used (Q = 0.975) and (f) the ISS method (p = 1)
with PGLS normalization (Q = 0.997). Note that the solution
given by the ISS is smoother than the CoI result. The nonlinear
equation solver in the ISS method was implemented with 12 it-
erations. The processing time of the ISS method was 4 times
slower than the CoI technique and 63 times slower than the
arccos approach. Three significant numbers were required to
compare the obtained SSIM indices for this low noise situation.
The following simulations were performed with lower levels of
SNR.

Table 1 presents the SSIM index obtained for different SNR,
Aφ values and phase recovery methods, using the intensity of
the reference beam IR = 2IO. The size of the sliding window in
the CoI and the arccos methods (L), and the smoothness param-
eter of the ISS technique (p) were corrected for each situation in
order to maximize the resulting SSIM indices. We suggest the
use of L ≈ 25 and an initial p ≈ 1, which can be reduced down
to p = 0.001 if a low phase excursion is detected, or it can be in-
cremented to p = 10 otherwise. Further details on the configu-
ration of the smoothness parameter are described in subsection
C. As a first observation, it is seen that a most notorious decay
of performance given by a drop in the SNR is produced at low
phase excursion situations. In this table, the best SSIM index
for every case is highlighted in bold. It is also observed that the
arccos method produces a better performance at medium val-
ues of phase excursions. We emphasize the performance given
by the ISS-PGLS combination, even in comparison with the ISS-
SBI approach, which requires the acquisition of two more im-
ages. The stability of the performance against increased noise
or varying phase excursions is another advantage we observe
for the ISS method.

B. Uneven illumination

Two different sets of simulated images were analyzed for the
cases of (a) uneven illumination in both beams and (b) an inho-
mogeneous object beam. In these situations, the DSPI-FP nor-
malization process has a key role in determining which changes

Table 2. SSIM index for the CoI, arccos and ISS phase recov-
ery methods with the normalization SBI, PGS and PGLS ob-
tained for different Aφ with an uneven illumination in both
beams and for SNR values of (a) 10 dB and (b) 6 dB.

(a) SNR = 10 dB

Aφ
CoI

arccos ISS

[rad] SBI PGS PGLS SBI PGS PGLS

0.2 0.71 0.85 0.84 0.84 0.96 0.84 0.84

1 0.96 0.98 0.97 0.96 0.96 0.98 0.98

2.5 0.99 0.91 0.90 0.85 0.93 0.99 0.96

(b) SNR = 6 dB

Aφ
CoI

arccos ISS

[rad] SBI PGS PGLS SBI PGS PGLS

0.2 0.55 0.77 0.72 0.72 0.93 0.71 0.71

1 0.90 0.97 0.96 0.96 0.96 0.96 0.96

2.5 0.99 0.87 0.89 0.86 0.87 0.99 0.97

in the speckle modulation correspond to illumination varia-
tions and which depend on the phase changes generated by
the sample. In the simulations, we used intensities present-
ing Gaussian shaped illumination spots with a center located
at μO = [−16, 0] px, being o = [0, 0] px the center of the image,
and a full width at half maximum FWHMO = 270 px for the ob-
ject beam. We also used μR = [0, 0] px and FWHMR = 330 px
for the reference beam. The intensities of the reference and ob-
ject beams are shown in Figs. 2(a) and 2(b), respectively. The fil-
tered subimage allows to observe the inhomogeneity presented
by the object beam. Fig. 2(c) shows effects of an uneven illumi-
nation in the image acquired in the initial state of the sample.
The DSPI-FP shown in Fig. 2(d) is affected by the inhomogene-
ity of the interfering beams. The normalized DSPI-FP obtained
by the SBI method is shown in Fig. 2(e), with values mainly
between 0 and 2. The following three images shown in Fig. 2
correspond to the recovered phase maps given by (f) the CoI
method (L = 25), (g) the arccos technique with the SBI normal-
ization and (h) the ISS approach (p = 1) with the PBLS normal-
ization. It is observed that the phase field recovered by the ISS
method is closely related to the original phase map shown in
Fig. 1(a), except at the corners where the illumination intensity
of the reference beam have minimum values and the phase is
underestimated. On the other hand, the CoI method overesti-
mates the phase values at the corners of the image and arccos
technique with the SBI normalization gives a correct recovered
phase at the corners but the phase is underestimated at the re-
gions presenting the highest phase excursion.

As in the previous subsection, similar simulations were per-
formed for these uneven illumination situations and the ob-
tained SSIM indices are presented in Tables 2 and 3. In these
cases, we have added the results given by the PGS normaliza-
tion method in order to assess its performance when the arccos
and ISS techniques were applied. As before, in every SNR-Aφ

situation, the best performance is highlighted in bold. We want
to remark the convenience of using the SBI normalization for
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Fig. 2. (a) Simulated acquisition of a non interferometric image where the object beam is obstructed (IR), (b) image acquired with
an obstructed reference beam (IO) and the low-pass filtered subimage, (c) single interferogram for the initial state, (d) DSPI-FP, (e)
normalized DSPI-FP using the SBI approach. Phase maps in radians recovered by (f) the CoI method, (g) the arccos technique with
the SBI normalization, and (h) ISS approach with the PBLS normalization.

Table 3. SSIM index for the CoI, arccos and ISS phase recov-
ery methods with the normalization SBI, PGS and PGLS
obtained for different Aφ with uneven illumination in the
object beam and for SNR values of (a) 10 dB and (b) 6 dB.

(a) SNR = 10 dB

Aφ
CoI

arccos ISS

[rad] SBI PGS PGLS SBI PGS PGLS

0.2 0.75 0.89 0.87 0.88 0.98 0.88 0.88

1 0.97 0.98 0.98 0.97 0.97 0.99 0.99

2.5 0.99 0.92 0.93 0.93 0.96 0.99 0.99

(b) SNR = 6 dB

Aφ
CoI

arccos ISS

[rad] SBI PGS PGLS SBI PGS PGLS

0.2 0.58 0.80 0.76 0.76 0.94 0.75 0.76

1 0.91 0.98 0.97 0.97 0.96 0.97 0.97

2.5 0.99 0.89 0.92 0.92 0.92 0.99 0.99

low excursion situations, and the PGS normalization or the CoI
method in cases with higher phase excursions. In almost every
situation, the ISS method outperforms the other phase recovery
methods at the cost of more time consuming calculations. It is
worth to note that the simplest PGLS normalization gives high
performance even in the cases where there are inhomogeneities
in both beams.

C. Other tests

In this subsection we present different tests to describe the be-
havior of the methods with respect to three configuration pa-
rameters. We start by analyzing the performance of the ISS
phase recovery method at different smoothness values of the
phase solution. Afterwards, we test the performance of the CoI,
arccos and ISS methods when the optical setup is modified in
order to change the mean speckle size and the reference to ob-
ject beam intensity ratio.

C.1. ISS smoothness parameter

The configuration of the smoothness parameter in the ISS
method requires a special consideration in order to achieve the
best performance of the phase recovery method. The simulated
cases presented in the previous subsections were performed
with different p setting and the results for the homogeneous
illumination situation are shown in Fig. 3. For the sake of clar-
ity, the PGS and PGLS data were plotted with the same line
because they give very similar SSIM results. The SBI normaliza-
tion method gave the best result and noise robustness for the
lowest excursion phase field. Nevertheless, the PGS and PGLS
normalization methods gave a performance similar to the SBI
technique when p < 10−3 for the high SNR case. In every other
cases with higher phase excursion, the PGS and PGLS methods
outperformed the SBI normalization almost independently of p,
being p = 1 a reasonable choice. We note that the PGLS method
gave a performance quite similar to PGS at a reduced computa-
tion cost.

C.2. Mean speckle size

Similar simulations were performed in order to analyze the be-
havior of the CoI, arccos-SBI, ISS-SBI (p = 10−4) and ISS-PGLS
(p = 10−4 and p = 1) methods in order to analyze the mean
speckle size by modifying the optical setup. We used SNR = 15



Research Article Applied Optics 7

(a)

0.6

0.7

0.8

0.9

1

10-4 10-3 10-2 10-1 100 101

S
S
IM

p

(b)

0.75

0.8

0.85

0.9

0.95

1

10-4 10-3 10-2 10-1 100 101
p

SBI 
0.2 rad
1 rad
2.5 rad

PGS/PGLS
0.2 rad
1 rad
2.5 rad

S
S
IM

Fig. 3. Smoothness parameter (p) sweep for the ISS method in
homogeneous illumination. Solid lines correspond to SBI nor-
malization and dashed lines to the PGS and PGLS techniques.
SSIM results for three phase excursion situations. (a) SNR = 18
dB , (b) SNR = 10 dB.

dB, L = 25 and homogeneous illumination. The obtained SSIM
indices are shown in Fig. 4 for the following situations: (solid
lines) Aφ = 0.2 rad and (dashed lines) Aφ = 1.5 rad. The CoI
method was implemented with and without the approximation
of considering as unity the term depending on the modulation
intensities in Eq. 6. We did not detect any appreciable differ-
ence between the SSIM indices obtained by both versions of the
CoI method. From Fig. 4, the main observation is that every
method gave better results for low sized speckle grain. In the
case of higher phase excursion, the phase recovery performance
can be severely impoverished by the use of s > 1.5 px. In the
low phase excursion case, the SBI normalization method pro-
vided a framework considerably robust to changes in the mean
speckle size.

C.3. Reference to object beam intensity ratio

We used different simulated images to study the performance of
the methods with respect to the relation r of mean intensities be-
tween the reference and the object beams r = IR/IO. We fixed
a constant noise variance σ2

G corresponding to the condition of
SNR = 10 dB at r = 2. The simulated intensity values were
digitized to 8-bit gray levels. Fig. 5 shows the SSIM indices ob-
tained for these simulations when the CoI, arccos-SBI, ISS-SBI
(p = 10−4) and ISS-PGLS (p = 10−4 and p = 1) phase recovery
methods were applied. In general, the range 2 ≤ r ≤ 6 is recom-
mended for the application of these methods. It is worth noting
the invariance of the phase recovery performance with respect
to r achieved by using the SBI normalization in low phase ex-
cursion cases. Also, this kind of invariance is observed in the
CoI and the ISS-PGLS results (with the CoI seed solution) when

1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

s [px]

S
S
IM

CoI
arccos SBI

ISS PGLS p=10-4

ISS PGLS p=1

ISS SBI p=10-4

Fig. 4. SSIM indices given by the CoI, arccos SBI and ISS PGLS
methods in a simulation sweep of s with homogeneous illumi-
nation and SNR = 15 dB. Solid lines correspond to Aφ = 0.2
rad and dashed lines to Aφ = 1.5 rad.

r > 4 for the ISS-PGLS method and also in the CoI techniaque
in the high phase excursion situation.

4. EXPERIMENTAL RESULTS

We used a Twyman-Green based interferometer with a 532 nm
laser to observe the out-of-plane displacement field at the sur-
face of the metal electrode of a piezoelectric disk transducer
(PZT disk). As described in Ref. [33], this setup was used to
acquire a sequence of images that contained information about
the temporal evolution of the sample and a nonlinear decom-
position framework allowed to recover the phase field evolu-
tion. In this work, we took advantage of the whole sequence by
using the temporal mean value of intensity It instead of Ii for
the PGLS normalization procedure. However, only two images

2 4 6 8 10 12 14 16 18 20
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0.95

1
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arccos SBI

ISS PGLS p=10-4

ISS PGLS p=1

ISS SBI p=10-4

S
S
IM

r

Fig. 5. SSIM indices given by the CoI, arccos SBI and ISS PGLS
methods in a simulation sweep of the intensity ratio r with
homogeneous illumination and SNR = 10 dB at r = 2. Solid
lines correspond to Aφ = 0.2 rad and dashed lines to Aφ = 1.5
rad.
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Fig. 6. (a) Speckle interferogram recorded at the initial state. (b) Temporal mean value of the intensity It used for the PGLS normal-
ization. Normalized DSPI-FP at (c) ΔV1, (d) ΔV2 and (e) ΔV3.
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Fig. 7. Phase map recovered by the ISS-PGLS method at (a) ΔV1, (b) ΔV2 and (c) ΔV3.

of the PZT disk were used to measure the displacement field
between an initial state for a given applied voltage Vi and a
second deformed state when the applied voltage was varied to
Vd = Vi + ΔV. In Fig. 6(a) we show the speckle interferogram
recorded at the initial state, which was acquired for a reduced
stripe form region of interest which included the center and two
opposing borders of the PZT disk. The temporal mean value of
intensity It displayed in Fig. 6(b) presents a typical uneven illu-
mination situation. Figs. 6(c-e) show the normalized DSPI-FP
for three different ascending ΔV values.

The object phase fields given by the ISS-PGLS method are
presented in Fig. 7 for the three considered ΔV. Fig. 8 allows to
compare the smoothness and the accuracy of the different solu-
tions given by the CoI, arccos and ISS methods with the PGLS
normalization in each of the three ΔV studied cases. It is seen
that in the case of ΔV1, the amplitude of displacement was not
sufficient to be recovered and discriminated from noise by any
method. In higher excursion cases, the CoI method gave phase
distributions with higher values than other techniques because
the local variations of the illumination and the noise acquired
within the L× L windows caused a reduction of correlation and
therefore, an increase in the recovered phase (see Eq. (7)). On
the other hand, the arccos method based in a median filtering

process gave lower values for the phase map than the other two
techniques. The phase values recovered by the ISS method are
midway between the arccos and the CoI results and also show
improved smoothness.

5. CONCLUSIONS

This work provides an analysis that serves as a guidance to take
full advantage of the sensibility of the DSPI technique, which
is especially suitable for the inspection of microsystems with
nanometrical displacement fields. The fringeless speckle inter-
ferograms obtained in these cases require especific normaliza-
tion and phase recovery approaches. In this work we describe
and compare three different methods of phase recovery in DSPI
with fringeless patterns. We emphasize the necessity of a ro-
bust normalization method for the arccos and ISS phase recov-
ery methods and provide three approaches, where two of them
do not require the acquisition of new images or the modifica-
tion of the optical setup and estimate the modulation intensity
from the available interferograms instead. As the CoI method
does not require a normalized DSPI-FP, it was used as a start-
ing point providing an initial phase guess solution for the nor-
malization process. We used simulated DSPI interferograms
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Fig. 8. Values at the central row in the phase maps recovered
by the CoI, arccos and ISS methods for different ΔV.

to perform an analysis of the behavior of all methods depend-
ing on the SNR, the phase excursion, the illumination condi-
tion, the reference to object beam intensity ratio and the mean
speckle size. The best performance, robustness and versatility
was given by the ISS method at the cost of higher computa-
tional complexity. The observed behavior for the ISS method
with respect to variations in the smoothness parameter and
the phase excursion suggested, as mentioned in Ref. [10], that
weighted errors or spatially varying smoothness parameter (see
[34]) could improve the performance in the extraction of phase
maps with noticeable spatial variability of the phase excursion.
On the other hand, a simple filtering and arccosine based proce-
dure proved to be sufficient in almost every situation to obtain
a rapid inspection of the underlying phase map corresponding
to the displacement field in the sample. The CoI method pro-
vides, not only a necessary initial phase guess to other meth-
ods, but also the best solution in cases presenting higher phase
excursions. Regarding the normalization methods, the SBI tech-
nique is recommended for low phase excursion situations and
the PGLS approach for higher phase excursions. Finally, we
have also tested the application of the proposed methods for
the measurement of nanometric displacements over the surface
of a piezoelectric transducer. The proposed methods behaved
in accordance with the results previously obtained in the nu-
merical analysis and a minimum displacement field with range
d ∈ [15, 40] nm was similarly observed by using the CoI and the
ISS methods.
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