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a b s t r a c t

Image segmentation of 3D medical images is a challenging problem with several still not totally solved
practical issues, such as noise interference, variable object structures and image artifacts. This paper
describes a hybrid 3D image segmentation method which combines region growing and deformable
models to obtain accurate and topologically preserving surface structures of anatomical objects of interest.
The proposed strategy starts by determining a rough but robust approximation of the objects using a
region-growing algorithm. Then, the closed surface mesh that encloses the region is constructed and
used as the initial geometry of a deformable model for the final refinement. This integrated strategy
provides an alternative solution to one of the flaws of traditional deformable models, achieving good
refinements of internal surfaces in few steps. Experimental segmentation results of complex anatomical
structures on both simulated and real data from MRI scans are presented, and the method is assessed

by comparing with standard reference segmentations of head MRI. The evaluation was mainly based
on the average overlap measure, which was tested on the segmentation of white matter, corresponding
to a simulated brain data set, showing excellent performance exceeding 90% accuracy. In addition, the
algorithm was applied to the detection of anatomical head structures on two real MRI and one CT data set.
The final reconstructions resulting from the deformable models produce high quality meshes suitable for
3D visualization and further numerical analysis. The obtained results show that the approach achieves

ns wi
high quality segmentatio

. Introduction

The role of the different image modalities, as computed tomog-
aphy (CT) and magnetic resonance images (MRI), is no longer
estricted to the simple task of inspection of the individual slices.
ctually, the interest has extended toward the development of
dvanced applications to assist in numerous clinical practices, such
s treatments or surgery planning, detection of tissues, fractures or
umors, image registration, etc. [1,2]. In particular, image segmen-
ation is an interesting and useful topic in computer graphics and
attern recognition, being an essential process in image analysis.

Different segmentation techniques have been proposed in the
iterature [3,4]. In general, segmentation methods are based on the
ocal properties of the image, particularly, discontinuity and simi-
arity. Methods based on discontinuities are called boundary-based
ethods, whereas methods based on some similarity property
re known as region-based methods. Boundary-based algorithms
earch for the edges between regions in the image, by detecting
brupt grey level discontinuities and trying to connect the result-

∗ Corresponding author. Tel.: +54 2293 439690; fax: +54 2293 439690.
E-mail address: mdelfres@exa.unicen.edu.ar (M. del Fresno).

895-6111/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compmedimag.2009.03.002
th low computational complexity.
© 2009 Elsevier Ltd. All rights reserved.

ing edges to closed regions afterward [5]. These methods work well
on datasets with good contrast, but their spatial-variation nature
makes them extremely sensitive to noise or blurred object. The
alternative is provided by deformable models, which are based
on the evolution of manifolds – curves (in 2D) or surfaces (in
3D) – that are forced to evolve attracted by the region borders by
minimizing appropriate energy functions [6]. Unlike voxel-based
methods, these models can be applied over continuum domains,
achieving subpixel (or subvoxel) precisions. Region-growing (RG)
algorithms, particularly the well-known seeded region growing
[7], have received special attention because it constitutes a pow-
erful and flexible approach to image segmentation, aimed to the
search of homogeneous regions inside the image based on con-
nectivity and similarity properties among the voxels. Basically,
region growing operates by merging the nearby voxels that meet
a given homogeneity criterion, starting from an initial set of
points, known as “seeds”. This approach offers several advantages
over conventional segmentation techniques. Instead of identifying

boundaries, region growing operates always on closed regions in
each step of the algorithm, and thus avoids further post-processing
to recover the boundaries of disconnected objects. The algorithm
is also more stable with respect to noise, and region member-
ship can be based on multiple criteria, facilitating the simultaneous

http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
mailto:mdelfres@exa.unicen.edu.ar
dx.doi.org/10.1016/j.compmedimag.2009.03.002
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onsideration of several features from the image data, and the intro-
uction of eventual a priori knowledge about the structures to be
egmented.

Furthermore, a large number of hybrid algorithms that
ombine the advantages of different methods have been pro-
osed. Particularly, considering the complementary nature of the
oundary-based and region-based information, it is possible to

ntegrate both methods yielding more accurate segmentation
esults than when they are applied separately [8–11]. The latter
s especially important for medical images where segmentation is
enerally considered a very difficult problem, mainly due to over-
apping intensities, anatomical complexity and variability in shape
nd size, let aside the usual limitations in the imaging equipment or
nput data (noise perturbations, intensity inhomogeneities, partial
olume effect and low contrast).

In a variety of applications of three-dimensional (3D) image pro-
essing one would like to segment closed substructures of the image
nd create a compact geometrical representation of the boundary
urfaces. The most popular method to achieve this goal is marching
ubes [12], which constructs a triangular mesh that approximates
he location of an isosurface in the volumetric data. This algorithm is
ast and can usually detect well-defined boundaries. However, this
echnique do not guarantee the creation of closed surfaces and often
ail to resolve complex or noisy boundaries, generating topology
rrors such as small handles or holes on the computed isosurface
13,14].

Region growing is a powerful method to tackle problematic seg-
entations, although the final reconstructions sometimes do not
eet the required standards. This is especially difficult in med-

cal images where the transition between objects of interests is
ften diffuse. Actually, the main limitation of region-growing algo-
ithms is its discrete character (i.e., the finest resolution is the
lemental voxel). Therefore, the resulting surface models usually
resent discontinuous steps, which not only are not natural but are
lso inconvenient to support further scientific calculations, such
s stress numerical analysis, mass and thermal transfer, surface
hemical reactions, etc.

On the other hand, deformable models are well-known seg-
entation methods to achieve smooth and precise geometrical

epresentations of surface boundaries [6]. However, the main lim-
tation of traditional deformable models is their dependence on
he required initial guess, which should be sufficiently close to
he final solution in order to achieve good results. Because of
hat, deformable models generally fail to segment 3D objects with
omplex surface structures leading to over smoothed final seg-
entations. Several proposals were presented to overcome this

imitation trying to improve the initialization task, with partial suc-
esses, the general problem still remaining an open problem. Cohen
15] proposes the uses of “balloons”, introducing a numerical “pres-
ure” that prevents that the model were trapped in local minima.
his method improves the sensitivity to initial conditions, but the
odel hardly adapts to complex shapes. Xu and Prince [16] define
“gradient vector flow” to treat the forces external acting on the

nakes, which ensures that the model is driven to the object border.
cInerney and Terzopoulos [17] use the model T-snakes that in cer-

ain way improves the limitations of ordinary snakes. However the
xtension of T-snakes to 3D involves much complex algorithms and
aises several non-trivial geometrical issues, due to the calculation
f intersections and reparametrizations of the model [18]. Strauss
t al. [13] propose the variant Dual-T-snakes, defining two intercon-
ected snakes expanding and contracting toward the object border,
nitializing the model by means of marching cubes [12]. The lat-
er unfortunately do not always arrive to good approximations and
he results are too sensitive to the resolution of the base mesh.
inally, Chen and Metaxas [14] propose a hybrid method, initial-
zing the deformable model with marching cubes combined in this
aging and Graphics 33 (2009) 369–376

case with morphological operators to avoid topological errors, like
holes.

In this paper, a methodology for the detection and modeling of
surfaces contained in 3D images is proposed, based on the integra-
tion of a region-growing algorithm and deformable models. This
approach follows the recent trend to define hybrid methods taking
advantage of different segmentation strategies [10]. The procedure
implements a two-step region-growing strategy, which uses region
and edge information to generate appropriate inputs for a suitable
surface model. The hybrid method is capable of converging to the
solution in a small number of steps without significant user inter-
vention, achieving surface meshes of great quality with a subvoxel
accuracy.

2. Description of the method

2.1. Two-stage region-growing algorithm

The input of the segmentation process is a 3D grey digital image
represented by a intensity field I(x, y, z) defined in a space dis-
cretized in voxels, v(x, y, z), individually associated with intensity
values according to the image modality and the acquisition tech-
nique.

Region growing (RG) is a simple and flexible method for image
segmentation that allows the detection of the regions of interest
starting from one or more initial seed points inside each of them.
Although there are several approximations to provide automatic
seeds [8,19], the generalized practice involves the direct expert
intervention [20]. Typically, several seeds should be specified inside
each region of interest, especially when the objects have complex
structures or wide contrasts. In what follows the seed points are
assumed to be provided by an expert user through a graphic inter-
face that facilitates the exploration of the image. Starting from each
seed the growing processes incorporates the voxels adjacent to the
evolving border until no more adjacent voxels satisfying some crite-
rion of similarity with the segmented object are found. The output
of the process is sets of connected voxels representing the regions
of interest.

In general, RG is appropriate for segmentation of complex volu-
metric objects since voxels of a same region can be disconnected in
one slice, while maintaining linkage through adjacent slices in the
three-dimensional structure. RG showed good results in segment-
ing blood vessels in MRA [21,22], vascular trees in CT angiography
[23] or in radiographic data [24], human airways [25,26] and brain
in MRI [27–29]. The latter is especially challenging due to the
numerous fissures and circumvolutions that should be accurately
isolated.

In this section, a two-step RG algorithm is described, which
can define clearly objects even with diffuse borders while avoiding
merging of incompatible regions through connecting “bridges”.

2.1.1. First growing stage
The similarity criterion used in the first growing stage is based on

the comparison of voxel intensities. Since certain noise or hetero-
geneities are always expected in real images, this criterion should
be applied within certain tolerance. An appropriate tolerance band
can be established using the average and the standard deviation of
the intensity of the seeds’ neighborhoods.

Let us consider the set S(r) of all voxels r-neighboring any seed
defined in a given region (with 26-conectivity). The characteristic

intensity CI(r) and standard deviation �(r) of the region are calcu-
lated as:

CI(r) = 1
N(r)

∑
v ∈ S(r)

I(v) (1)



cal Im

�

w
a
m

f

s

w
i
t

b
c
s
a

A
I
w

e

t
p
i

2

t
r
n
r
i

p
fi
b
b
i
d
m
w

g

w

each of the boundary faces, two triangles are conformed labeling
its vertexes counterclockwise (seen from the region) in order to
ensure a close and oriented mesh. The resulting surface will have
step discontinuities, since the triangles are perpendicular to each
other (Fig. 1a). Following Taubin [30], the mesh is smoothed apply-
M. del Fresno et al. / Computerized Medi

(r) =
√

1
N(r)

∑
v ∈ S(r)

[I(v) − CI(r)]2 (2)

here N(r) is the number of voxels contained in S(r) and k is an
ppropriate constant parameter that will be used later for perfor-
ance tuning.
A generic voxel v is declared belonging to a certain region if the

ollowing inequality is satisfied:

v(k, r) = 1
k

〈∣∣I(v′) − IC(r)
∣∣

�(r)

〉
≤ 1 (3)

here 〈•〉 stands for the average of dissimilarity from the character-
stic intensity over the voxels v′ in the r-neighborhood of v, referring
o the tolerance k�(r).

The growing process evolves in an iterative way according to a
readth first search strategy (BFS). An auxiliary FIFO list L is asso-
iated to each region of interest Ri, which initially includes the
eeds provided for that region. The growing algorithm proceeds
s follows:

lgorithm. Segmentation by region growing
nsert the seed voxels into the L list

hile L is not empty
remove the first voxel vr from L
label vr as included in Ri

for each non-visited neighbor v of vr test similarity:
if (sv(k1, r) ≤ 1)

insert v in L
else

label vr as a boundary voxel
insert vr in RG-list

endif
endfor

ndwhile

Finally, in order to provide information for the second segmen-
ation step, the position of the final frontier is stored. For that
urpose, when a voxel is discarded, the previously included voxel

s appended to a RG-list of boundary points.

.1.2. Second growing step
The initial growing process leads to acceptable results regarding

he avoidance of overflowing problems. However, the borders of the
egions are only crudely defined and may be slightly distant of the
atural borders of the objects. In order to tackle this issue, a second
efining growing step is applied – called “push” – that makes use of
nformation of the intensity gradients.

The growing process is resumed from the voxels in the RG-list
rovided by the first step. The push process is analogous to the
rst step – i.e., there is an acceptance criterion – the difference
eing that, taking advantage that the region is close to the object
oundary, the tolerances are relaxed and an additional condition is

mposed related to the intensity gradients typical of the region bor-
ers. The additional criterion requires the calculation of a gradient
etric in a r-neighborhood (r ≥ 1) of each visited voxel v = (x, y, z),
hich is defined as:

radv(r) = max{Gxv(r), Gyv(r), Gzv(r)} (4)

here

Gxv(r) = 1
r

r∑
i=1

|I(x + i, y, z) − I(x − i, y, z)|

1
r∑

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

Gyv(r) =

r
j=1

|I(x, y + j, z) − I(x, y − j, z)|

Gzv(r) = 1
r

r∑
k=1

|I(x, y, z + k) − I(x, y, z − k)|

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)
aging and Graphics 33 (2009) 369–376 371

Given a weight coefficient, pg, valued between 0 and 1, and a pre-
computed value, max gr, corresponding to the maximum gradient
according to the image intensities, a voxel v can be considered inside
the region if it satisfies:

gradv(r) ≤ pg · max gr (6)

That is, in the second stage, in order to include a candidate voxel
to the region, Eqs. (3) and (6) should be satisfied. The analysis of the
local neighborhood slightly increases the computational cost, but
it usually prevents from segmentation problems due to noise and
leakage toward other regions. Moreover, the neighborhood thresh-
olding ensures connectivity within regions.

In addition, the algorithm offers the possibility to fix the number
of allowed levels in the BFS trajectory during the push procedure,
which is useful to interactively control the growing process. This
growing produces a depth-limited search (DLS) that is an interest-
ing alternative to control channeling, specially in dealing with very
noisy images or diffuse boundaries.

2.2. Final surface modeling

Once a connected set of voxels representing the hull of a region
is determined, the final step is the modeling of the surface mani-
fold. The procedure recommended to achieve this goal is to apply
deformable models such as snakes, which lead to soft geometrical
representations provided that the initial guess is close to the final
surface.

2.2.1. Initialization of the deformable model
A snake is defined as an elastic curve (in 2D) or surface (in 3D)

evolving from its initial position driven by internal and external
forces. A snake surface is digitally represented by a triangular mesh
defined by a set of vertexes si(t, xi, yi, zi), where t is the time and i
is the vertex index.

Instead of using a user-defined initial surface as in traditional
approaches, the geometry of the deformable model is constructed
in our case using the RG-list of boundary voxels provided by the
region growing process. A procedure to generate a hole-free sur-
face mesh without local irregularities, while preserving the global
topology of the region frontier is applied.

The algorithm starts by determining the faces of the voxels of
RG-list corresponding to the region boundary (i.e., those faces sep-
arating a voxel belonging to the region and an outsider voxel). In
Fig. 1. Surface meshes generated by RG: (a) original, (b) after filter smoothing.
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ig. 2. Conflicting configurations (dashed voxels are absent) with voxels connected
nly by: (a) an edge, (b) a vertex.

ng a filter on each vertex. However, the filter fails where two or
ore voxels are “weakly connected” (i.e., only share a single vertex

r edge as shown in Fig. 2), which can lead to undesirable effects
n the surface topology. To avoid this inconvenience, the occur-
ence of conflicting voxels arrangements should be checked during
he generation of the initial mesh, solving them by relabeling the
ommon vertexes in one of the conflicting triangles. The mentioned
ost-processing results in smoothed and hole-free surfaces without

rregularities, while preserving the main topological information of
he detected components, avoiding the drawbacks of conventional
pproaches based on isosurfaces [12–14]. The resulting model is a
uitable initial guess for the fitting of deformable models.

.2.2. Evolution of the deformable model
Different techniques were proposed for the evolution of the

nake, such as finite differences, finite elements or dynamic pro-
ramming [6,31,32]. In our case, the formulation proposed by
cInerney and Terzopoulos [18] is applied, where each vertex si

f the snake mesh evolves according to the following motion equa-
ion:

i
dsi

dt
− a�i(t) + b�i(t) = q�i(t) + pf i(t) (7)

here ˛i(t), ˇi(t), �i(t) and fi(t) are the tension, flexion, inflation
nd external forces respectively, and � i is a damping coefficient.

The internal energy simulates the characteristics of an elastic
embrane. The internal tension and flexion acting on the vertex

i represent the snake resistance to stretching and bending respec-
ively, and are calculated as:

i(t) = 1
m

∑
j ∈ N(i)

sj(t) − si(t) (8)

i(t) = 1
m

∑
j ∈ N(i)

�j(t) − �i(t) (9)

here N(i) is the set of nodes sj neighboring the node si and m is the
umber of these neighbors. The respective derivatives correspond
o the Laplacian and the squared Laplacian and they are approxi-

ated using the umbrella operator by considering the local mesh
opology at the node si.

The inflation �i and the external force fi are calculated as:

i(t) = F(I(si(t))ni(t) (10)

here ni is the unitary vector normal to the surface at node si and
is a binary function relating � to the intensity field I:
i

(I(si(t)) =

⎧⎨
⎩ +1 if

∣∣I(si) − CI(r)
∣∣

k�(r)
≤ 1

−1, otherwise
(11)
Fig. 3. Flowchart of the 3D segmentation hybrid method.

In other words, F takes the value 1 when the intensity I(si) is
bounded within k� from the characteristic intensity, and −1 other-
wise. The parameter k is the same as the one used in Eq. (3).

The local external force which contains the expansion of the
snake at significant edges, acts in each node emulating a potential
gradient:

f i(t) = G[ϕ(si)] (12)

where the gradient vector G is calculated using Eqs. (5), and the
potential ϕ is defined as:

ϕ(si) = −grad[FI(si)] (13)

The scalar gradient grad[·] being given by Eq. (4), and FI(si) is the
intensity I(si) smoothed with a Gaussian filter [5].

Since the initial guess provided by the growing process is a close
approximation of the final model, Eq. (7) can be solved directly by
applying an explicit first-order Euler scheme:

si
(t+�t) = si

(t) − �t

�
(−a�i

(t) + b�i
(t) − q�i

(t) − pf i
(t)) (14)

provided that the time steps are sufficiently small. The iteration
proceeds until the displacement of every node does not exceeds
a given convergence value. The advantage of using the RG result
to initialize the snake is that the deformation is then limited to
minor perturbations requiring a few iteration steps. The deformable
mesh is composed of subvoxel triangular elements, so the final
segmentation has subvoxel accuracy and yields a smooth surface
representation, matching concavities and convexities that may be
present on complex geometries. Fig. 3 shows the flowchart of the
3D segmentation method.

3. Experimental results

The described methodology was applied to the detection and
surface retrieval of anatomical structures on simulated and real
medical images. The segmentation system was developed in Visual
C++ as an object-oriented windows-based software, with an inter-
active user interface. All tests were made on a Pentium(R) D 2.8 GHz
PC, with 2 Gb of RAM and a GeForce 7300 GS graphics card, under
Windows XP platform.

3.1. Segmentations of simulated images

A sensitivity analysis of the influence of the main control
parameters on the segmentation results was performed using
the BrainWeb simulated brain dataset available at the web site
http://www.bic.mni.mcgill.ca/brainweb of the McConnell Brain
Imaging Center at Montréal Neurological Institute (MNI). This
image is a simulated MR brain data, which provide 3D image

simulations with 1 mm × 1 mm of interslice resolution, with slice
thicknesses ranging from 1 to 9 mm. The size of all analyzed images
is 181 × 217 × 181 voxels of 1 mm3 each. This MRI simulator helps us
to adjust two main parameters: noise level (NL) and intensity non-
uniformity (INU). Moreover, a ground truth of the model is provided

http://www.bic.mni.mcgill.ca/brainweb
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ig. 4. MRI T1-weighted images from the Brainweb simulator with different noise
evel: (a) noise-free, (b) with moderate noise (5%), (c) with high noise (9%).

y the simulator by means of membership functions, indicating the
robability of each voxel belonging to different tissues [33]. There-
ore, this database serves as test model of the proposed algorithm
n images of different qualities and provides a quantitative way
o assess its performance through a computational phantom. The
egmentation method was tested on MRI images weighted in T1,
onsidered a practical standard of brain images [11]. Fig. 4 shows
he images chosen, with 0%, 5% and 9% noise background. The algo-
ithm was applied to detect white matter (WM), comparing the
esults with the classification provided by the simulator in each
ase.

In order to assess the results an Average Overlap Metric (AOM)
as applied, which has been used in numerous works as a quanti-

ative indicator of segmentation quality [11,34]:

OM = |Vi ∩ Va|
1/2

[∣∣Vi

∣∣ + |Va|
] (15)
here Vi and Va are the sets of voxels classified as the corresponding
issue in the simulator phantom and by the algorithm, respectively.
hat is, AOM is the number of voxels simultaneously contained
n both segmentations relative to average of voxels of both seg-

entations. This metric reaches a value of 1.0 for results that are

Fig. 5. Dependence of the segmentation performance on the tolera
aging and Graphics 33 (2009) 369–376 373

very similar and is near 0.0 when they share no similarly classified
voxels.

In addition to AOM, the following indicators were used:

CP = |Vi ∩ Va|
|Vi ∪ Va|

FNP = |Vi − Va|
|Vi ∪ Va|

FPP = |Va − Vi|
|Vi ∪ Va|

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(16)

where CP is the fraction of coincidences between the ideal segmen-
tation Vi and the obtained by the algorithm Va, FNP is the ratio of
false negatives and FPP is the ratio of false positives.

Fig. 5 shows the sensitivity of the performance metrics to vari-
ations of the growing tolerance parameter k defined in Eq. (3), for
r = 2. As k increases the number of false negatives decreases, but
for values of k larger than certain threshold false positives begin
to appear in the results. This competition produces the curve of
AOM showing an optimum value around k = 2 for the image free of
noise, k = 2.5 for 5% noise level and k = 1.5 for 9% noise level (Fig. 6).
It can be seen that as expected the presence of noise in the image
deteriorate the performance, although the general trend persists.
Fig. 7 shows the influence of the parameter r, that is the dimension
of the local neighborhood. The best performance are achieved for
r = 1, for which values of AOM higher than 0.94 are achieved in an
image with low noise (≤5%) and 0.92 with a noisy image (9%). As
r increases the performance indicators deteriorate as the number
of false positives and negatives increases. Also note that when the
voxels are assessed in isolation (i.e., r = 0) the resulting segmenta-

tions are poor (AOM ranging from 0.71 to 0.81 depending on the
noise level).

Fig. 8 shows the results of the segmentation of WM of the brain
on a noise-free MRI image from the Brainweb site. The segmenta-
tion with the RG algorithm was applied using k = 2 and r = 1 to create

nce parameter k in uniform images: (a) 0%, (b) 5% and (c) 9%.



374 M. del Fresno et al. / Computerized Medical Imaging and Graphics 33 (2009) 369–376

F
d

t
u
v
t
t
p
s

m
(

F
(

ig. 6. Comparison of segmentation performances on the tolerance parameter k for
ifferent noise levels of the image.

he initial mesh for the deformable model (Fig. 8a). The parameters
sed in the latter were: a = 30, b = 20, p = 3, q = 5, �t = 0.005. Different
iews of the reconstructed surface obtained after the application of
he segmentation algorithm are shown in Fig. 8b–d. It can be seen
hat the algorithm performs very well in dealing with the com-

lex structure of the brain surface, progressing into the convoluted
urface.

In order to test the robustness of the proposed algorithm, the
ethod was also applied to simulated images with moderate noise

5%) and high noise (9%). In both cases the optimum set of RG param-

ig. 8. Surface renderings of a reconstructed brain surface from a noise-free 3D image (a
b) axial view of the final segmentation, (c) coronal view of the final segmentation, (d) sa
Fig. 7. Dependence of the segmentation performance on the parameter r.

eters was chosen (Figs. 6 and 7) and the resulting mesh was used
as input of the deformable model. The results show that, in spite
of the anatomical complexity of the segmented object, the method
can achieve high quality results. Tables 1 and 2 summarize typical
values of the quality indicators calculated in images with differ-
ent levels of noise and inhomogeneities. In particular, although the

segmentation quality logically deteriorates in the presence of noise
and variations in intensity, the robustness of the present algorithm
is highly satisfactory even comparing with the results of other seg-
mentation strategies, like [11].

= 30, b = 20, p = 3, q = 5 and �t = 0.005): (a) Initial guess from the RG segmentation,
gital view of the final segmentation.
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Table 1
AOM performance metrics for segmentations on simulated T1-weighted MRI data
(BrainWeb) in different situations of noise level (NL) and intensity non-uniformity
(INU).

AOM NL = 0% NL = 5% NL = 9%

INU = 0% 0.94 0.94 0.91
INU = 20% 0.92 0.92 0.90
INU = 40% 0.89 0.89 0.87

Table 2
Proportions of coincidence (PC), false negatives (PFN) and false positives (PFP) for the
WM segmentation in images with different degrees of noise level (NL) and intensity
non-uniformity (INU).

Noise 0% Noise 5% Noise 9%

INU = 0%
PC 0.889 0.889 0.841
PFN 0.096 0.056 0.063
PFP 0.015 0.055 0.096

INU = 20%
PC 0.853 0.855 0.826
PFN 0.049 0.060 0.090
PFP 0.098 0.085 0.084
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NU = 40%
PC 0.799 0.799 0.775
PFN 0.141 0.129 0.150
PFP 0.060 0.072 0.075

Regarding the computational performance, working with a Pen-
ium(R) D 2.8 GHz, 2 Gb RAM, the RG segmentation of the brain
akes 5 s, the initial deformable mesh generation 20 s, and the final

esh (463.000 nodes) takes 75 s for about 70 steps of deformation.
he total segmentation time of the brain is about 100 s, which is
onsiderable shorter than the reported for other techniques for the
ame data set [14,28].

.2. Segmentation of real images

In addition to the tests on synthetic images, the algorithm was
pplied to the detection of anatomical structures on real MRI and CT
mages. One of the experiments corresponds to the segmentation
f brain in a head MRI of 256 × 256 × 85 voxels. The RG parameters
re r = 1 and k = 1.5, resulting a 370.500 vertex mesh, which was
urther conformed to resolve conflicts, then smoothed, and finally
sed as initial guess of the deformable model. The latter required
0 iterations to reach the final result, using the parameters a = 10,
= 10, p = 3, q = 5 and �t = 0.001. The computation time was 10 s for
G, 35 s for filtering and smoothing, and 65 s for the deformable
odel. We also segmented the brain tumor in other MRI data set

f 256 × 256 × 124 voxels. The RG parameters to obtain the initial
esh were r = 1 and k = 1.5. The deformable model required 25 iter-

tions to reach the final result, using the parameters a = 5, b = 3, p = 2,
= 5 and �t = 0.005.

CT images and other structures with different anatomical com-
lexity were also tested with the present method. For example, a CT

mage of 256 × 256 × 125 voxels was processed to detect the regions
orresponding to the brain, skull and the external tissue. In this case,
he RG segmentation of the skull required several internal seeds,
ut the final result could be reached readily with the evaluation of

ndividual voxels (i.e., r = 0) since the bone density is very different
rom the surrounding tissues.

. Conclusions
A method for segmentation of internal structures in 3D images
as presented. The method combines RG and deformable mod-

ls algorithms, and was tested in different anatomical structures in
ead MRI and CT scans. The proposed method has several advan-
ages compared with previous segmentation strategies. One of

[

[
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the most important improvements is that the algorithm always
generates closed and oriented surface meshes that enclose the seg-
mented regions. The initial RG segmentation provides a convenient
detection of the structures of interest with a user intervention
limited to the selection of a few seeds to identify the regions.
The growing process incorporates information of the local neigh-
borhood properties of each voxel of the region boundary, which
substantially reduces the treatment of noisy images and precludes
the channeling through narrow gaps between regions. Using the
segmentations obtained with the RG procedure as initialization of
deformable models, smooth mesh representations of surface struc-
tures of high geometrical complexity can be retrieved within tens
of iterations. The present approach offers an alternative to other
proposals that apply marching cubes to generate initial meshes
for deformable models, which are bound to the typical limitations
of the latter. Indeed, the classical issue of initializing deformable
models – particularly of active surfaces – could be solved by the
construction of a surface tight to the solution manifold by means
of region-growing procedures. In this way, the deformation of the
snake model is constraint to minor smoothing perturbations, reduc-
ing substantially the computational complexity. In the very special
cases of strange structures, such as fractal like, the user can inter-
vene in the process modifying the RG solution.

The model was tested on the segmentation of complex anatom-
ical 3D structures from a standard synthetic phantom, and one CT
and two MRI real scans. Quantitative assessments of the simulated
brain images for the segmentation of white matter show excellent
performances exceeding 90%, substantially minimizing the fault
negatives and positives. The final representations resulting from the
deformable models produce high quality meshes easy to visualize
in 3D and suitable for supporting further numerical analysis.

The present method, like other hybrid methods developed for
image segmentation [14], can be easily implemented using the
Insight ToolKit (ITK) [35], a segmentation and registration toolkit
which includes various high-level and low-level image process-
ing algorithms. The authors hope that the different modules of the
present methodology can provide new alternatives for the devel-
opment of useful applications of image segmentation techniques.
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