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Abstract

We study the possibility that primordial magnetic fields generated in the transition between

inflation and reheating posses magnetic helicity, HM . The fields are induced by stochastic currents

of scalar charged particles created during the mentioned transition. We estimate the rms value of

the induced magnetic helicity by computing different four-point SQED Feynman diagrams. For any

considered volume, the magnetic flux across its boundaries is in principle non null, which means

that the magnetic helicity in those regions is gauge dependent. We use the prescription given by

Berger and Field and interpret our result as the difference between two magnetic configurations

that coincide in the exterior volume. In this case the magnetic helicity gives only the number of

magnetic links inside the considered volume. We calculate a concrete value of HM for large scales

and analyze the distribution of magnetic defects as a function of the scale. Those defects correspond

to regular as well as random fields in the considered volume. We find that the fractal dimension

of the distribution of topological defects is D = 1/2. We also study if the regular fields induced on

large scales are helical, finding that they are and that the associated number of magnetic defects

is independent of the scale. In this case the fractal dimension is D = 0. We finally estimate the

intensity of fields induced at the horizon scale of reheating, and evolve them until the decoupling

of matter and radiation under the hypothesis of inverse cascade of magnetic helicity. The resulting

intensity is high enough and the coherence length long enough to have an impact on the subsequent

process of structure formation.

∗ E-mail me at: calzetta@df.uba.ar
† E-mail me at: kandus@uesc.br

1

http://lanl.arxiv.org/abs/1403.1193v1
mailto:calzetta@df.uba.ar
mailto:kandus@uesc.br


I. INTRODUCTION

Large scale magnetic fields are widespread in the Universe. From galaxies to clusters of

galaxies coherent magnetic fields are detected, with intensities that range from µGauss to

tenth of µGauss. Our galaxy as well as nearby galaxies show magnetic fields coherent on the

scale of the whole structure, while in galaxy clusters the coherent length is much less than

the cluster’s size [1, 2]. A remarkable fact recently discovered by observations, is that high

redshift galaxies also posses coherent fields with the same intensitis as present day galaxies

[3–5]. This result challenges the generally accepted mechanism of magnetogenesis, namely

the amplification of a primordial field of O ∼ 10−31 − 10−21 Gauss by a mean field dynamo

[6–9] acting during a time of the order of the age of the structure: either the primordial

fields are more intense so the galactic dynamo saturates in a shorter time, or the dynamo

does not work as it is currently thought. It is hoped that future observations of high redshift

environments will shed more light on the features of primordial magnetic fields [10–12].

In view of the lack of success in finding a primordial mechanism for magnetogenesis that

produces a sufficiently intense field, either to feed an amplifying mechanism, or to directly

explain the observations (see Refs. [13, 14] as recent reviews), researchers began to delve

on magnetohydrodynamical effects that could compensate the tremendous dilution of the

field due to flux conservation during the expansion of the universe. Among the possibilities

there is primordial turbulence [15–18]. Possible scenarios for it are the reheating epoch, the

phase transitions (at least the electroweak one) and possibly the epoch of reionization, all

dominated by out of equilibrium processes.

A key ingredient to produce stable, large scale magnetic fields in three-dimensional MHD

turbulence, is the transfer of magnetic helicity from small scales to large scales, at constant

flux [19, 20] (see also Ref. [21] and references therein). Magnetic helicity, HM , is defined as

the volume integral of the scalar product of the magnetic field B with the vector potential

A [22, 23]. In three dimensions, and in the absence of ohmic dissipation, it is a conserved

quantity that accounts for the non-trivial topological properties of the magnetic field [22],

such as the twists and links of the field lines. Unlike the energy that performs a natural,

direct cascade, i.e., from large scales toward small ones where it is dissipated, magnetic

helicity has the remarkable property of inverse cascading, that is, magnetic helicity stored

in small scales evolves toward larger scales [19, 20]. The fact that magnetic energy and
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magnetic helicity spectra are dimensionally related as EM
k ∼ kHM

k [23] produces a dragging

of the former toward large scales, thus enabling the field to re-organize coherently at large

scales 1.

It must be stressed that in a cosmological context, the inverse cascade mentioned above

operates on scales of the order of the particle horizon or smaller. This is due to the fact that

turbulence is a causal phenomenon. Magnetic helicity on the other hand can be induced

at any scale, the topology of the fields then remains frozen if the scales are super-horizon

and if there is no resistive decay. For subhorizon scales it is a sufficient condition for its

conservation that the conductivity of the plasma be infinite [23].

The interpretation of HM as the number of twists and links must be considered with care

because from its very definition it is clear that HM is gauge dependent. In their seminal

work, Berger and Field [22] proved that if the field lines do not cross the boundaries of

the volume of integration, i.e., the field lines close inside the considered volume, then HM

as defined is a gauge invariant quantity. These authors also addressed the case of open

field lines, and wrote down a definition of gauge invariant magnetic helicity based on the

difference of two such quantities for field configurations that have the same extension outside

the considered volume. In this case the quantity obtained can be interpreted as the numbers

of links inside the volume. In general it is not difficult to find Early Universe mechanisms

that produce magnetic fields endowed with magnetic helicity: generation of helical magnetic

fields has been already addressed in the framework of electroweak baryogenesis [29–32] and

of leptogenesis [33]. The main problem is still in the low intensities obtained in more or less

realistic scenarios.

The magnetic fields we consider in this work are induced by stochastic currents of scalar

charges created gravitationally during the transition Inflation-Reheating [25–27] (see [28] for

more details), and such field configuration is of open lines. In the light of the analysis of

Berger and Field, we shall discuss a criterion by which the result obtained can be considered

as gauge invariant. The fields induced are random, the mean value of the magnetic helicity

is zero, but not the corresponding rms deviation. We assume that those fields are weak

enough to neglect their backreaction on the source currents, and show that the rms magnetic

helicity can be written as the sum of four SQED Feynman graphs, one of them representing

the mean value of HM and consequently identically null. The remaining three add to a non

1 This mechanism however imposes severe constraints on the dynamo action. See Refs. [9, 24]
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null value. We compute the value of the helicity for large scales and find that the number

density of links scales with the distance κ−1/2 from a given point as κ5/2, which means that

their fractal dimension is D = 1/2 This number density takes into account defects due to

both regular and random fields. We also calculate the value of HM due to regular fields

on a large scale. In this case the number density scales as κ3, the corresponding fractal

dimension being D = 0. Using the relation B2 (κ) ∝ HM (κ) κ, we compare the associated

helical intensity to the one obtained by computing directly the correlation function of the

magnetic field at the same scale κ−1. We find that both expressions coincide, which means

that the fields generated by the considered mechanism are indeed helical. We estimate the

intensity of those smooth fields on a galactic scale, finding an intensity too small to seed the

dynamo. We finally address the evolution of fields generated at scales of the order of the

particle horizon at the end of reheating, through the inverse cascade of magnetic helicity

mechanism, until matter-radiation equilibrium. This evolution is based on the assumption

that during radiation dominance the plasma is in a (mild) turbulent state. We find that

the number density of magnetic links scales as κ, the corresponding fractal dimension then

being D = 4. The field intensity as well as the scale of coherence are in a range that could

have and impact on the process of structure formation [14].

We work with signature (−,+,+,+) and with natural units, i.e., c = 1 = ~, e2 =

1/137. We use the Hubble constant during Inflation, H , which we assume constant, to give

dimensions to the different quantities, i.e. we consider spacetime coordinates [x] = H−1,

Lagrangian density [L] = H4, four vector potential [Aµ] = H , field tensor [F µν ] = H2, scalar

field [Φ] = H .

The paper is organized as follows: Section II contains a brief description of scalar elec-

trodynamics in curved spacetime. In Section III we define magnetic helicity and describe

briefly its main properties. In Section IV we develope the formalism to study magnetic

helicity of random fields and estimate its rms value in different scenarios: In Subsection

IVA we compute the SQED Feynman graphs that describe the magnetic helicity two-point

correlation function. In Subsection IVB we provide some physical quantities relevant for our

study. In Subsection IVC we describe the transition Inflation-Reheating and quote some

useful formulae for our work. In Subsection IVD we apply the analysis of Berger and Field

to our fields and show the gauge invariance of our results. In Subsection IVE we calculte the

magnetic helicity rms value on large scales, and compute the density and fractal dimension
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of the distribution of defects. In Subsection IVF we compute the rms value of magnetic

helicity due to solely smooth fields, and find that the fields induced by the mechanism con-

sidered in this work are completely helical, but very weak. Finally in Subsection IVG we

analyze the evolution of fields induced on scales of the order of the horizon at reheating

along radiation dominance. By considering conservation of magnetic helicity and assuming

full inverse cascade is operative, we find at decoupling a magnetic field of intensity and co-

herence that could impact on the process of structure formation. In Section V we sumarize

and discuss our results. We leave details of the calculations to the Appendices.

II. SCALAR ELECTRODYNAMICS IN FRW

In curved spacetime the action for a charged scalar field coupled to the electromagnetic

field is given by

S = −
∫

dt d3r L
[

gµν ,Φ,Φ†, Aµ

]

(1)

with the Lagrangian density

L =
√
−g

[

gµνDµΦD
†
νΦ

† +
(

m2 + ξR
)

ΦΦ† +
1

4
F µνFµν

]

(2)

with gµν being the metric tensor that for a spatially flat Friedmann-Robertson-Walker space-

time reads gµν = diag (−1, a2 (t) , a2 (t) , a2 (t)), Dµ = ∂µ − ieAµ the covariant derivative,

R the scalar curvature, ξ the coupling constant of the scalar field to the curvature and

Fµν = ∂µAν − ∂νAµ the electromagnetic field tensor. Due to the conformal invariance of

the electromagnetic field in the spatially flat FRW universe, it is convenient to work with

conformal time, defined as dτ = dt/a (t), with t being the cosmological (or physical) time.

The metric tensor then reads gµν = a2 (η) ηµν , with ηµν = diag (−1, 1, 1, 1). We shall be

dealing with fields in Inflation, Reheating and Radiation dominance. In those epochs the

scale factors in physical time are respectively aI (t) = exp (Ht), arh (t) = (t/t0)
2/3 and

arad (t) = (t/t1)
1/2, while in dimensionless conformal time, η = Hτ they read aI (η) =

(1− η)−1, arh (η) = (1 + η/2)2 and arad (η) = (1 + η). We note that η = 0 corresponds to

the end of Inflation (in that epoch η < 0) and consequently the scale factor at that moment

is aI (η = 0) = arh (η = 0) = 1. We rescale the fields according to

Φ → ϕ

Ha (η)
, Aµ → Aµ

H
, Aµ → Aµ

Ha (η)
, Bµ → Bµ

H2a2 (η)
, Bµ → Bµ

H2 (η)
(3)
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which means that ϕ, Aµ and Bµ are dimensionless. Working with the Coulomb gauge,

∂iAi = 0 (considering also A0 = 0), we obtain after taking variations of action (1) the

following evolution equations for the scaled scalar and electromagnetic fields

∂2ηϕ−∇2ϕ+ a2 (η)

(

m2

H2
+ ξR− ä (η)

a3 (η)

)

ϕ+ e2AiAiϕ− 2ieAi∂iϕ = 0 (4)

(

∂2η −∇2
)

Ai = Ji − 2e2Aiϕϕ
† (5)

with J i the electric current due to the scalar field, given by

J i = ieηij
[

ϕ∂jϕ
† − ϕ†∂jϕ

]

(6)

which, writing the complex field in term of real fields as ϕ = (φ1 + iφ2) /
√
2, can be expressed

as

J i = eηij [φ1∂jφ2 − φ2∂jφ1] (7)

In a first approximation we consider that the induced fields Ai are weak enough to discard

their coupling to the scalar field given by the last two terms in eq. (4) and the last term in

eq. (5). Also, we consider minimal coupling of scalar fields to gravity, for it will produce

maximal particle creation [25]. Eq. (4) then turns into the Klein-Gordon equation for a free

field in FRW universe,

∂2ηϕ−∇2ϕ+

[

a2 (η)
m2

H2
− ä (η)

a (η)

]

ϕ = 0 (8)

whose solutions are given in Appendix A.

For a realistic evolution of Ai dissipative effects must be taken into account. This we

do by assuming that Ohm’s law in its usual form, J i = σ (η) E i, is valid. In the lack

of a clear knowledge about the early Universe plasma, we assume a traditional form for

the electric conductivity considered in the literature, namely, that it is proportional to the

plasma temperature, i.e., σ (η) = σ0T (η)H−2e−2, with T (η) = T0/a (η) for a relativistic

plasma. This assumption amounts to adding to the l.h.s. of eq. (5) a term of the form

σ (η) ∂ηAi, and so the evolution equation for Ai reads
[

∂2

∂η2
−∇2 +

σ0
H

∂

∂η

]

Ai = Ji (9)

By taking curl of this equation we obtain the one corresponding to the magnetic field, i.e.
[

∂2

∂η2
−∇2 +

σ0
H

∂

∂η

]

Bi = ǫijk∂jJk (10)
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where ǫijk is the Levi-Civita tensor density. Eqs. (9) and (10) can be readily integrated to

give the fields in terms of their sources, i.e.

Ai (x̄, η) =

∫ η

η0

dτ

∫ r

r0

d3s Gret (x̄, s̄, η, τ)Ji (s̄, τ) (11)

Bi (x̄, η) =

∫ η

η0

dτ

∫ r

r0

d3s Gret (x̄, s̄, η, τ) ǫijk∂jJk (s̄, τ) (12)

with Gret (x̄, s̄, η, τ) the solution of (see Appendix B)

[

∂2η −∇2 + σ0∂η
]

Gret (x̄, s̄, η, τ) = δ (x̄− s̄) δ (η − τ) (13)

The electric currents we are considering consist of scalar charges created due to the change

of the Universe’s geometry during the transition Inflation-Reheating. This change makes the

scalar field vacuum state during Inflation to correspond to a particle state in the subsequent

phase [34]. This process of “particle creation” is an out-of-equilibrium one, the resulting

particle currents being stochastic. In the case of a charged field the mean value of the electric

current is zero, but not its rms deviation, which sources a random magnetic field, whose

magnetic helicity we are going to compute.

III. MAGNETIC HELICITY

Classically, magnetic helicity is defined as the volume integral of the scalar product be-

tween magnetic field and magnetic vector potencial [6, 22], i.e.

HM (η) =

∫

V

d3r Ai (r̄, η)Bi (r̄, η) (14)

which in view of the dimensions of Ai and Bi it is already a dimensionlessl quantity. As

stated in the Introduction, it is a measure of the non-trivial topology of the magnetic field

inside the volume V , or in other words, eq. (14) represents the number of twists and links

of the field lines inside V . This interpretation, however, must be considered with care,

because HM is not gauge invariant unless the boundaries of the volume of integration are

not intersected by B-lines, i.e. the field lines close inside V . On the other hand if the

magnetic flux across the boundaries of V is not zero, as in our case, it is still possible to

define a gauge invariant measure of the links of the field inside V [22] by considering the

difference between two field configurations that coincide outside V . We shall discuss this
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issue in a following paragraph. Considering the conformal transformation of the fields and

coordinates given by eq. (3) and writing the physical volume as V = a3 (η)V, eq. (14) can
be written as

HM (V, η) =
∫

V

d3x Ai (x̄, η)Bi (x̄, η) (15)

where we see that this is not diluted by the expansion, i.e., expansion does not erase or create

the topology of the field, as it is to be expected. In classical magnetohydrodynamics HM is

one of the ideal invariants, i.e. it is a conserved quantity in the absense of ohmic dissipation

[6, 19, 23]. This means that magnetic helicity cannot be created or destroyed by turbulence

or non-dissipative evolution, being then a property of the magnetic field created at its birth.

Unlike other ideally conserved quantities in 3-dimensional magnetohydrodynamics, magnetic

helicity performs an inverse cascade [19]. This means that instead of travelling towards small

scales (large wavenumber) where it would be dissipated, it makes its way toward large scales

(small wavenumbers), carrying with it a bit of magnetic energy. Mathematically, this is

expressed by the spectral relation quoted above, i.e., B2 (κ) ∝ HM (k) k. In a framework of

decaying turbulence (that could exist at the earliest epochs of the Universe), there would be

a self-organization of the magnetic field at large scales, with the total energy contained in the

considered volume decaying as E ∝ E0η
−2/3 and coherence length increasing as λ ∝ λ0η

2/3

[23]. For primordial magnetogenesis this fact can be of great help in obtaining stronger

fields than the ones found up to now to seed subsequent amplifying mechanisms, or even to

directly explain the observations. But on the other hand, the conservation of HM crucially

constraints the operation of further amplifying mechanisms such as the mean field dynamo

[24].

IV. MAGNETIC HELICITY OF RANDOM FIELDS

As we are dealing with random fields, generated from stochastic quantum electric currents

whose mean value is zero, we must evaluate a rms value of the helicity by calculating a two-

point correlation function given by

Ξ (V, η, η′) ≡ 〈HM (V, η) ,HM (Vη′)〉 (16)

where angle brackets denote stochastic and quantum average. We shall consider the volume

of integration V as the commoving space occupied by the structure of interest (i.e., a galaxy,
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a cluster, particle horizon at a certain epoch, etc.).

A. Diagramatic evaluation of the magnetic helicity

We begin by writing

Ξ (V, η, η′) =
∫

d3κ′
∫

d3κ

∫

V

d3x′
∫

V

d3x exp (iκ̄ · x̄) exp (iκ̄′ · x̄′)Ξ (κ̄, κ̄′, η, η′)] (17)

where

Ξ (κ̄, κ̄′, η, η′) = HM (κ̄, η)HM (κ̄′, η′) (18)

with

HM (κ̄, η) = Ai (p̄, η)Bi (κ̄− p̄, η) (19)

To avoid cumbersome notation, repeated momenta other than κ are assumed to be integrated

over. The volume integrals can be readily evaluated, giving

∫

V

d3x exp (iκ̄ · x̄) ≃ V for κ̄ · x̄ . 1 (20)

≃ 0 for κ̄ · x̄ > 1

The different fields in (19) can be written as

Ai (p̄, η) = Gret (η − τ1, p̄) δ (p̄− p̄1)Ji (p̄1, τ1) (21)

and

Bi (κ̄− p̄, η) = iǫilsGret (η − τ2, κ̄− p̄) δ (κ̄− p̄− p̄2) (κl − pl)Js (p̄2, τ2) (22)

(integration in τ ′s is understood). The electric currents Ji (p̄, τ) can be expressed in terms

of the scalar fields as

Ji (p̄, τ) = ieδ (q̄1 + q̄2 − p̄) δ (τ − ς1) δ (τ − ς2) (q1i − q2i)φ
1 (q̄1, ς1)φ

2 (q̄2, ς2) (23)

Gathering all expressions, HM (κ̄, η) is written as

HM (κ̄, η) = −ie2Gret (η − τ1, p̄)Gret (η − τ2, κ̄− p̄) δ (τ1 − ς1) δ (τ1 − ς2) δ (τ2 − ς3) δ (τ2 − ς4)

δ (p̄− p̄1) δ (κ̄− p̄− p̄2) δ (q̄1 + q̄2 − p̄1) δ (q̄3 + q̄4 − p̄2) (24)

ǫils (q1i − q2i) (q3s − q4s) (κl − pl)φ
1 (q̄1, ς1)φ

2 (q̄2, ς2)φ
1 (q̄3, ς3)φ

2 (q̄4, ς4)
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After integrating out the time delta functions the magnetic helicity correlation function

spectrum reads

Ξ (κ̄, κ̄′, η, η′) = −e4Gret (η − τ1, p̄)Gret (η − τ2, κ̄− p̄)Gret (η
′ − τ ′1, p̄

′)Gret (η
′ − τ ′2, κ̄

′ − p̄′)

δ (p̄− p̄1) δ (κ̄− p̄− p̄2) δ (p̄
′ − p̄′1) δ (κ̄

′ − p̄′ − p′2) (25)

δ (q̄1 + q̄2 − p̄1) δ (q̄3 + q̄4 − p̄2) δ (q̄
′
1 + q̄′2 − p̄′1) δ (q̄

′
3 + q̄′4 − p̄′2)

ǫabc (q1a − q2a) (q3c − q4c) (κb − pb) ǫ
def (q′1d − q′2d)

(

q′3f − q′4f
)

(κ′e − p′e)
〈

φ1 (q̄1, τ1)φ
1 (q̄3, τ2)φ

1 (q̄′1, τ
′
1)φ

1 (q̄′3, τ
′
2)
〉

〈

φ2 (q̄2, τ1)φ
2 (q̄4, τ2)φ

2 (q̄′2, τ
′
1)φ

2 (q̄′4, τ
′
2)
〉

Each scalar field can be decomposed in its positive and negative frequency components, that

respectively include the annihilation and the creation operator, namely

φi (q̄, τ) = φ+ (q̄, τ) + φ− (q̄, τ) = φ (q̄, τ) aq + φ∗ (q̄, τ) a†−q (26)

When replacing this decomposition in expression (25) it can be seen that in each bracket

the only terms that contribute to the mean value are

〈

φ1 (q̄1, τ1)φ
1 (q̄3, τ2)φ

1 (q̄′1, τ
′
1)φ

1 (q̄′3, τ
′
2)
〉

→
〈

φ+ (q̄1, τ1)φ
+ (q̄3, τ2)φ

− (q̄′1, τ
′
1)φ

− (q̄′3, τ
′
2)
〉

(27)

+
〈

φ+ (q̄1, τ1)φ
− (q̄3, τ2)φ

+ (q̄′1, τ
′
1)φ

− (q̄′3, τ
′
2)
〉

which in the end combine to form the scalar positive frequency operator,

G+ (q̄, q̄′, τ, τ ′) = φ (q̄, τ)φ∗ (q̄′, τ ′) δ (q̄ + q̄′) (28)

The first term on the r.h.s. of expression (27) gives

〈

φ+ (q̄1, τ1)φ
+ (q̄3, τ2)φ

− (q̄′1, τ
′
1)φ

− (q̄′3, τ
′
2)
〉

=

1

2
G+ (q̄1, q̄

′
1, τ1, τ

′
1)G

+ (q̄3, q̄
′
3, τ2, τ

′
2) (29)

+
1

2
G+ (q̄1, q̄

′
3, τ1, τ

′
2)G

+ (q̄3, q̄
′
1, τ2, τ

′
1)

while the second term gives

〈

φ+ (q̄1, τ1)φ
− (q̄3, τ2)φ

+ (q̄′1, τ
′
1)φ

− (q̄′3, τ
′
2)
〉

= G+ (q̄1, q̄3, τ1, τ2)G
+ (q̄′1, q̄

′
3, τ

′
1, τ

′
2) (30)

When performing the products of the two brackets we obtain nine terms that can be repre-

sented by the following graphs (full lines indicate scalar fields, dotted lines vector potential

and dashed lines magnetic fields).
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FIG. 1. “Mean Helicity” graph.

FIG. 2. “Square” graph, Ξs

Observe that of the two vertices of scalar electrodynamics, only one contributes to these

graphs: the one similar to the QED vertex. This is so because we disregarded the backre-

action of Ai on the scalar fields. Observe also that the first graph, being the product of two

mean values, vanishes identically. The multiplicity of the “square” graph is 4, of the “cross”

diagram is 2 and of the “two-bubble” figure is also 2.

After replacing the expressions for the scalar positive frequency operators and solving all

the Dirac delta functions we obtain a δ (κ̄+ κ̄′), which means that the momentum of the

electromagnetic field is conserved. Writing each graph as

Ξ (κ̄, κ̄′, η, η′) = ξ (κ̄, η, η′) δ (κ̄+ κ̄′) (31)

we have the following expressions for the prefactor of the non-null graphs:

ξs (κ̄, η, η
′) = −2e4Gret (η − τ1, p̄)Gret (η − τ2, κ̄− p̄)Gret (η

′ − τ ′1, q̄1 + q̄′2 − κ̄)

Gret (η
′ − τ ′2,−q̄1 − q̄′2) [q̄1 · (κ̄× p̄)] [κ̄ · (q̄1 × q̄′2)] (32)

φ (q̄1, τ1)φ
∗ (−q̄1, τ ′2)φ (κ̄− q̄1, τ2)φ

∗ (q̄1 − κ̄, τ ′1)

φ (p̄− q̄1, τ1)φ
∗ (q̄1 − p̄, τ2)φ (q̄

′
2, τ

′
1)φ

∗ (−q̄2, τ ′2) ,

11



FIG. 3. “Two Bubbles” graph, Ξ2b

FIG. 4. “Cross” graph, Ξc
a

a Scalar field lines do not intersect in the middle of the graph.

for the square graph, which vanishes when the momenta integrals are peformed.

ξc (κ, η, η
′) = −e4Gret (η − τ1, p̄)Gret (η − τ2, κ̄− p̄)Gret (η

′ − τ ′1, q̄1 − q̄3 − p̄)

Gret (η
′ − τ ′2,−κ̄ + p̄− q̄1 + q̄3)

[(2q̄1 − p̄) · (κ̄× q̄3)− 2q̄1 · (p̄× q̄3)] [(p̄− q̄3) · (κ̄× q̄1)− 2q̄1 · (p̄× q̄3)]

φ (q̄1, τ1)φ
∗ (−q̄1, τ ′2)φ (q̄3, τ2)φ∗ (−q̄3, τ ′1) (33)

φ (p̄− q̄1, τ1)φ
∗ (q̄1 − p̄, τ ′1)φ (κ̄− p̄− q̄3, τ2)φ

∗ (−κ̄ + p̄+ q̄3, τ
′
2)

for the “cross” diagram and

ξ2b (κ, η, η
′) = e4Gret (η − τ1, p)Gret (η − τ2, κ− p)Gret (η

′ − τ ′1,−p)Gret (η
′ − τ ′2, p− κ)

[(2q̄1 − p̄) · (κ× q̄3)− 2q̄1 · (p̄× q̄3)]
2 (34)

φ (q̄1, τ1)φ
∗ (−q̄1, τ ′1)φ (q̄3, τ2)φ∗ (−q̄3, τ ′2)

φ (p̄− q̄1, τ1)φ
∗ (q̄1 − p̄, τ ′1)φ (κ̄− p̄− q̄3, τ2)φ

∗ (p+ q̄3 − κ̄, τ ′2)

for the “two bubbles” figure. It is clear that for a given volume, the flux of magnetic field

across its boundary is not zero; in other words, the boundary of V is not a magnetic surface.

In principle, this fact renders HM as defined in (14), a gauge dependent quantity. As
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stated above, Berger and Field [22] gave a gauge-independent measure of magnetic helicity

suitable for this situation, based on the difference between the magnetic helicities of two

field configurations that have a common extension outside the considered volume. The only

constraint that definition must satisfy is that the sources of the fields must be bounded in

order to guarantee that the surface at infinity is a magnetic one, which is equivalent to say

that the magnetic field at infinity must vanish. The fact that in our model B → 0 at infinity

[25] allows us to consider the boundary at infinity as a magnetic surface, in spite of the

fact that the stochastic currents exist in the whole space (cosmological particle creation is

not restricted to the particle horizon [34]). Below, in section IVD we discuss how to apply

Berger’s criterion to our fields.

B. Some dimensions

In this subsection we provide some (dimensional) quantities that will be used later to

obtain concrete values of magnetic intensities. We are interested in two scales: one is large,

e.g., of the order of the galactic commoving scale (or larger) for which, due to the fact that

it remains outside the particle horizon during most of Radiation dominance, we can consider

diffusive evolution of the magnetic field. The other is of the order of the horizon at reheating,

where the magnetic field may be subjected to an inverse cascade of magnetic helicity if the

medium is turbulent. In view of the fact that Reheating happens in a very short period of

time, we can consider that during it the particle horizon remains practically constant and

equal to the one in Inflation, i.e., hrh ∼ 1. When the universe enters into the radiation

dominated regime, the horizon grows as h ∼ η2, a fact that in terms of the temperatures can

be expressed as h (T ) ∼ (Trh/T )
2 hrh. In the presence of turbulence, the viscous dissipation

scale is usually estimated as λdiss ≃ h/Re with Re the Reynolds number. According to

Ref. [17], during Reheating can be taken as Re ∼ 100 and smaller for later epochs [18].

Concerning the galactic size we have that today a galactic commoving scale (i.e., a not-

collapsed scale that contains all the matter of a Milky Way-like galaxy) is λG ≃ 1 Mpc. For

the Hubble constant during Inflation we consider H = 1011−1013 GeV ; the mass of the scalar

field can be taken as m ≃ 100 GeV ; we also have 1GeV = 1.9733 × 10−14 cm; the electric

conductivity takes the usual form considered in the literature, σ0 ≃ (Trh/e
2) [Hmpl/T

2
rh]

1/4 ≃
1.37 × 1019/2GeV , e2 = 1/137, where we considered Trh ≃ 102 GeV and mpl = 1019 GeV .

13



Finally, the temperature at matter-radiation equilibrium can be taken as Teq ∼ 1 eV. Thus

the different quantities that appear in the formulae lay in te intervals

m

H
≃ 10−11 − 10−9 (35)

κgal =
kphysgal

H
≃ 10−51 − 10−49 (36)

σ0
H

≃ 10−7/2 − 10−3/2 (37)

C. Magnetic Helicity due to the Transition Inflation-Reheating

When the transition from Inflation to Reheating occurs, the vacuum state of the fields

during Inflation turns into a particle state [34]. Mathematically, this means that the positive

frequency modes of the field in the inflationary epoch can be expressed as a linear combi-

nation of positive and negative frequency modes in Reheating. As we are dealing with a

charged scalar field, electric charges will appear and, as there are equal numbers of positive

and negative carriers the mean value of the induced electric current is zero, but not its rms

deviation, which will source the stochastic magnetic field. Therefore in order to evaluate

ξ (κ, η, η′) we express the φ (p, τ) fields of Inflation in terms of the ones in reheating by the

usual Bogoliubov transformation [34]:

φ (p, τ) = αpφR (p, τ) + βpφ
∗
R (p, τ) (38)

αp and βp being the Bogoliubov coefficients satisfying the normalization condition |αp|2 −
|βp|2 = 1. The different field products then read

φ (p, τ)φ∗ (−p, τ ′) = φR (p, τ)φ∗
R (−p, τ ′) + β∗

−pαpφR (p, τ)φR (−p, τ ′)

+βpα
∗
−pφ

∗
R (p, τ)φ∗

R (−p, τ ′) (39)

+ |βp|2 [φR (p, τ)φ∗
R (−p, τ ′) + φ∗

R (p, τ)φR (−p, τ ′)]

The first term represents the vacuum-to-vacuum transition, the second and third account

for a mixing of positive and negative frequency modes, while the fourth, proportional to

|βp|2, is due to solely the negative frequency modes, i.e. to the transition vacuum to particle

state. As the main contribution comes from this term from now on we consider only it.

In a non-instantaneous transition the creation of small scale modes depends on the details

of the transition, while for superhorizon modes details of the transition do not matter. For

14



subhorizon modes we have [17]

βp ∼
i

16τ0p5
, p ≥ 1 (40)

while for p < 1 this coefficient reads (see Appendix A)

βp ≃ −i
√

H

2m

√

9

8
p−3/2, p < m/H (41)

βp ≃ −i3
8
e−ipp−3, m/H < p < 1 (42)

We see that the contribution of subhorizon modes to the magnetic helicity correlation func-

tion will be suppressed relative to the one of superhorizon ones. However, according to the

results of Ref. [17] subhorizon fluctuations are responsible for a mildly turbulent flow on

scales of the order of the horizon size, with Reynolds numbers Re ≃ 100.

An important comment about the infrared limit in expr. (41) is in order. It is clear

that that expression blows out for p → 0. This is due to the approximations made to solve

Klein-Gordon equation during Reheating. To give a physical lower limit we must consider

the largest homogenous patch created during Inflation as the largest possible scale, which

according to Refs. [35, 36] can be considered as about 10 times the horizon during Inflation.

D. Gauge Dependence

In principle, the dependence of the rms value of HM on the gauge could be analised by

adding to A (p̄) a term of the form ipjψ (p) to the r.h.s. of expression 21, ψ (p) being an

arbitrary scalar function. Then in Ξ (κ̄, κ̄′, η, η′) there will appear a term proportional to

[Bi (κ̄− p̄, η) pi] [Bj (κ̄
′ − p̄′, η′) p′j ] that cancels indentically when the angular integrals are

performed. This means that only “on average” our result is gauge invariant. If we consider

a gauge term like G = Bijp
ipj, with Bij an arbitrary magnetic correlation function, generally

it will satisfy that 〈G2〉 6= 0, and consequently the associated magnetic helicity will not be

statistically gauge independent.

We then reason according to Berger and Field as follows. For any volume V we were

interested in (a galaxy, a galaxy cluster, horizon at a certain epoch, etc), its surrounding

region corresponds to the rest of the embedding space whose characteristic scale is very

much larger than V1/3. If the magnetic correlation tends to zero from a certain scale on, i.e.,
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if for κ→ 0 it is proportional to a power of κ, then for an observer inside V the field outside

is statistically equivalent to a vanishing field. Consequently we could interpret Ξ (V, η, η′) as
the difference between two magnetic field configurations: one being the calculated through

the diagrams above, and the other a null configuration.

To quantify this assertion, we begin by noting that the trace of the magnetic field corre-

lation function is given by

〈Bi (κ̄, η)Bi (κ̄
′, η′) = e2Gret (κ̄, η − τ1)Gret (κ̄

′, η′ − τ2)

δ (κ̄− p̄1) δ (q̄1 + q̄2 − p̄1) δ (κ̄
′ − p̄2) δ (q̄

′
1 + q̄′2 − p̄2) (43)

ǫilsǫijmpl (q1s − q2s)
(

κ′j
)

(q′1m − q′2m)

〈φ1 (q̄1, τ1)φ
1 (q̄′1, τ2)〉〈φ2 (q̄2, τ1)φ

2 (q̄′2, τ2)〉

where we again assume integration over τi and over repeated momenta other than κ. Using

again decomposition (26) for the scalar fields we have that from each mean value the only

non-null contribution is

〈φi (q̄, τ)φi (q̄′, τ ′)〉 → φ (q̄, τ)φ∗ (q̄′, τ ′) δ (q̄ + q̄′) (44)

The integration of the delta functions in eq. (43) produce again a δ (κ̄ + κ̄′), i.e. momentum

conservation. Writing the trace of the magnetic field correlation as 〈Bi (κ̄, η)Bi (κ̄
′, η′)〉 =

M (κ̄, η, η′) δ (κ̄ + κ̄′) we obtain the following expression for the prefactor for trace of the

magnetic field correlation function

M (κ̄, η, η′) = 4e2Gret (κ̄, η − τ1)Gret (−κ̄, η′ − τ2) (45)

[κ̄× q̄1]
2 φ (q̄1, τ1)φ

∗ (−q̄1, τ2)φ (κ̄− q̄1, τ1)φ
∗ (q̄1 − κ̄, τ2)

As above, for any considered volume V we are interested in, its surrounding region,

Vs corresponds to the rest of the embedding space and satisfies V ≪ Vs. The magnetic

field configuration in those regions corresponds to superhorizon modes whose evolution is in

general diffusive. Therefore to estimate the rms magnetic intensity at a certain time on a

comoving scale κ ≪ 1 we use expressions (B4) for the retarded propagators, (A11) for the

modes and (41) for the Bogoliubov coefficients. We then write

M (κ̄, η, η′) ∼ 4e2
(

H

σ0

)2(
H

m

)2 |κ̄× q̄1|2

q31 |κ̄− q̄1|3

×
∫ τf

0

dτ

∫ τf

0

dτ ′
[

1− e−σ0(η−τ)/H
]

(1 + τ/2)2

[

1− e−σ0(η′−τ ′)/H
]

(1 + τ ′/2)2
(46)
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where τf is the lifetime of the stochastic electric current. As τf ≪ 1, it can be neglected in

the denominator of each of the time integrals, which can then be estimated as

∫ τf

0

dτ
[

1− e−σ0(η−τ)/H
]

≃ τf
[

1 + e−σ0η/H
]

(47)

We can estimate the order of magnitude of the integral in the momenta by counting powers.

In the numerator we have 5 powers of κ and 5 powers of q1 (three from the integration

meassure and two from the square of the cross product). In the denominator there are 3

powers of q1 and 3 powers of κ. Consequently the overall contribution of the integrals in the

momenta is a factor κ2q21. To estimate their numerical value we must filter out the length

scales smaller than those corresponding to κs = 2πV−1/3
s because they oscillate inside Vs,

and so the main contribution from the momentum integrals is ∼ κ4s. Finally, taking the

coincidence limit η = η′ we have

〈B2
Vs
〉 ∼ e2

(

H

σ0

)2(
H

m

)2

τ 2f
[

1 + e−σ0η/H
]2
κ4s (48)

Thus we see that for κs → 0, i.e., for large volumes as those outside the considered structure,

the magnetic field vanishes and so does their associated magnetic helicity. Therefore we can

interpret our expression for the rms value of the magnetic helicity in a given volume V in the

spirit of the work by Berger and Field, as the substraction of two magnetic configurations,

one of them being effectively zero.

E. Magnetic Helicity on Large Scales

In this section we evaluate the magnetic helicity on large scales due to both smooth and

fluctuating fields on that scale. From the form of the Bogoliubov coefficients, eqs. (40)-(42)

we see that the main contribution is due to the modes with p < m/H , i.e., eq. (41). In this

case the modes are given by eq. (A11), whereby

φR (p, τ)φ∗
R (−p, τ ′) + c.c ∼ 6

π

cos
{

(2m/3H)
[

(1 + τ/2)3 − (1 + τ ′/2)3
]}

(1 + τ/2) (1 + τ ′/2)
(49)

We are interested in the value of the magnetic helicity at present time. In this limit, and

for small momenta, the retarded propagators are given by eq. (B5), namely Gret (p, η, τ) ∼
H/σ0. The lifetime of the electric currents was calculated in Ref. [17] in physical time (see
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eq. (4.9) of that reference). In conformal (dimensionless) time it reads τf ≃ (Htf)
1/3 and

from the reference mentioned just above we have

τf (p) ∼
(m

H

)1/3 τ
2/3
0

π1/3e4/3

[

p2 + (m/H)2
]1/6

[

(3/2) (H/m)3 τ 20 + (9/16)4
]1/3

(50)

with τ0 the duration of the transition Inflation-Reheating and where we considered that

a (τ) ∼ 1 around that transition. Considering the values for m/H quoted in Section IVB

and the smallest possible value for τ0, namely the Planck time, it is seen that (H/m)3 τ 20 ≫ 1,

and for p < m/H expr. (50) gives

τf (p) ∼
(m

H

)5/3 1

π1/3e4/3
(51)

Observe that τf ≪ 1. This fact allows us to neglect τ, τ ′ in front of 1 in expr. (49) reducing

the time integrals in each of the non-trivial graph to simply
∫ τf
0
dτ = τf . This simplification

permits to write the sum Ξ = Ξc + Ξ2b as

ξ (κ, η, η′) ∼ 8e4
(

H

σ0

)4(
6

π

)4

τ 4f |βq1|2 |βq3 |2 |βq1−p|2 |βκ−p−q3|2B [C − B] (52)

with

B = (2q̄1 − p̄) · (κ̄× q̄3)− 2q̄1 · (p̄× q̄3) (53)

c = (p̄− q̄3) · (κ̄× q̄1)− 2q̄1 · (p̄× q̄3) (54)

The factor B [C −B] was solved in Appendix C giving the non-null result B [C − B] =

{κ̄ · [q̄ × (q̄1 + q̄3)]}2, with q̄ = p̄ − q̄1. Replacing expression (41) for the Bogoliubov coef-

ficients and (51) for τf , the magnetic helicity correlation function (52) for large scales and

long times becomes

ξ (κ) ∼ 8

(

H

σ0

)4
(m

H

)8/3 64

(π4e)4/3
{κ̄ · [q̄ × (q̄1 + q̄3)]}2

q31q
3
3q

3|κ− q̄ − q̄1 − q̄3|3
(55)

There remain the integrations over the momenta other than κ. As before, their contribution

can be roughly estimated by counting powers as before. Since we are considering scales such

that κ ≪ p < m/H , we can disregard κ in the denominator of expr. (55). Then we have

that the power of the scalar field momenta in the numerator is 13 (nine from the integration

meassures plus 4 from the square of the cross product) while in the denominator their power
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is 12 (three from each of the four Bogoliubov factor), giving as result a factor of the form

pmax. As the maximum value allowed by the approximations is pmax ∼ m/H the result is

ξ (κ) ∼ 8

(

H

σ0

)4
(m

H

)11/3 64

(π4e)4/3
κ2 (56)

According to definition (17) there remain the integration over κ’s, wich gives an extra factor

κ3, and the two integrations over the volume, which according to expr. (20) each one gives

a factor of κ−3. Then the contribution of all non-null graphs to the magnetic helicity is

Ξ (κ) ∼ 8

(

H

σ0

)4
(m

H

)11/3 64

(π4e)4/3
κ−1 (57)

Finally, the rms value of the magnetic helicity in a comoving volume κ−3 can be considered

as simply the squareroot of expr. (57) giving

HM (κ) ∼
(

H

σ0

)2
(m

H

)11/6 102

(π4e)2/3
κ−1/2 (58)

Note that this helicity corresponds to regular as well as irregular fields on the considered

volume, i.e. to the total magnetic field due to fluctuations up to the scale m/H . The density

of defects on a scale κ is found by multiplying expr. (58) by κ3, finding that it varies as κ5/2.

Using the fact that a fractal of dimension D embedded in a spherical volume has a number

density that scales with the radius κ−1 from an occupied point as Γ (κ) ∝ κ3−D we estimate

the fractal dimension of the distribution of topological defects as being D = 3− 5/2 = 1/2.

F. Magnetic Helicity due to smooth fields

In this section we evaluate the magnetic helicity and its corresponding magnetic field on

large scales due to smooth fields only. The estimates will be the values that they would

have today if they were not affected by the galaxy formation process. The expression we

are seeking for is obtained directly from eq. (55), estimating the integrals in the momenta

other than κ by filtering the frequencies higher than the one associated to the considered

scale, say κλ. We obtain

Ξ (κλ) ∼ e4
(

H

m

)4(
H

σ0

)4

τ 4f (59)

i.e., a scale independent number. As before, we estimate the magnetic helicity on the

considered scale by simply taking the squareroot of expression (59) and, after replacing τf
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from (51) we obtain

HM (κλ) ∼ e−2/3
(m

H

)4/3
(

H

σ0

)2

(60)

Using the numbers given by (35)-(37) we have on a galactic scale

HM (κG) ∼ 10−11 − 10−9 (61)

which is a very small number. From eq. (61) we obtain the number density of links of the

smooth field by multiplying by κ3s, obtaining e
−2/3

(

m
H

)4/3
(

H
σ0

)2

κ3s, which means that the

fractal dimension of the distribution is D = 0. This would mean that for large scales the

number of defects becomes independent of the scale. It is interesting to estimate the order

of magnitude of the coherent magnetic field associated to this helicity on a galactic scale.

We can crudely do that by taking A.B ∼ HMκ
3
G with A ∼ B/κG, whereby A.B ∼ B2/κG ∼

HMκ
3
G → B ∼ H1/2

M κ2G, i.e.

B ∼ e−1/3
(m

H

)2/3
(

H

σ0

)

κ2G (62)

Recalling that the physical field is B = H2B and that 1 GeV2 ≃ 1020 Gauss we obtain that

on a galactic scale the helical fields have an intensity of the order

Bhel
G ∼ 10−61 Gauss (63)

which is a very small value, that however agrees with previous estimates in the literature

[25, 27]. Observe however that expr. (62) coincides with the squareroot of expr. (48) when

τf is replaced by expr. (51) and the limit η → ∞ is taken. This means that the magnetic

fields smooth on large scales induced by the mechanism considered in this paper are indeed

helical.

G. Magnetic Helicity at Small Scales

The important feature of magnetic helicity for large scale magnetogenesis is the fact that

it performs an inverse cascade if the medium where it evolves is turbulent. We shall then

make the hypothesis that after reheating the plasma is in a state of decaying turbulence,

where self-organization of magnetic structures can happen. The intensity of the turbulence

is determined by the Reynolds number, which during reheating was estimated in Ref. [17]

to be Re ∼ 100, while for times around electron-positron annihilation was calculated to be
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Re ∼ 0.03 [18]. Therefore a decaying turbulence scenario in the early universe is possible,

the turbulence being mild.

Turbulence is a causal phenomenon, i.e., it happens on scales equal or smaller than the

particle horizon. We must evaluate the intensity of magnetic helicity in regions of size of at

most the particle horizon at the time τf , when the sources of magnetic field vanish. After

that moment the evolution of the field intensity and coherence scale will be considered to

be due to the inverse cascade of magnetic helicity. We shall analize that evolution in the

light of the simple model discussed in Ref. [23] (see also Ref. [37]), whereby the comoving

coherence length of the magnetic field grows as ℓ ∝ ℓ0η
2/3 and the total comoving energy

EM contained in a given volume decays as EM ∝ EM(0)η−2/3. Moreover, when the volume is

fixed that law can be applied to the comoving magnetic energy density, i.e., we can consider

B2 ∝ B(0)η−2/3. Those laws arise from the conservation of magnetic helicity during the

process of inverse cascade. Observe that the comoving coherence length remains always

smaller than the comoving horizon, which after Inflation grows as ∝ η (the physical horizon

growing as ∝ η2).

We begin by estimating the dimensionless time interval elapsed between the end of reheat-

ing and matter-radiation equilibrium. Knowing that the horizon grows as η2, that interval

can be estimated as ∆r−e =
√

heq/hrh. For the horizon at matter-radiation equilibrium we

take it as [38] ≃ 11 Mpc ≃ 16 × 1038 GeV−1. For reheating, we assume that the transition

Inflation-Reheating was fast enough, and that the electric currents vanished in a very short

time, τf , to assume that the horizon at the end of reheating is not very different from H−1,

with H the Hubble constant during Inflation. Therefore ∆r−e =
√

16× 1038 GeV−1H . Us-

ing the values for H quoted in Section IVB that period of time would be in the interval

4× 1025 . ∆r−e . 4× 1026.

To evaluate the magnetic helicity correlation we firstly note that the modes that will

contribute the most are those such that qi, q < 1. This is due to the form of the Bogoliubov

coefficients (61)-(63). Because of the different intervals used to find the scalar field modes

and the corresponding Bogoliubov coefficients, we must consider two intervals: q, qi →
(Λir, m/H), with Bogoliubov coefficient given by expr. (62) and q, qi → (∼ m/H, σ0/H)

with Bogoliubov coefficient given by expr. (61). In the first interval Λir is an infrared cut-

off that corresponds to the scal of the largest inflationary patch discussed above. In the

second interval, the upper limit σ0/H is considered for consistency with the approximations
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made in Appendix B to find the retarded propagator for large scales, eq. (B4). With these

considerations in the momenta and for the short time periods we consider, we can disregard

the time dependence in the corresponding mode functions, eqs. (A11) and (A14) because

1 ≫ τf . Therefore the mode functions during reheating to be used to evaluate the integrals

in the momenta read φp ∼
√

6/π for p < m/H and φp ∼ 1/21/2p−3/2 for m/H ≪ p < σ0/H .

The contribution of the “cross” plus the “two bubbles” diagrams is then similar to the

corresponding to large scales, namely

ξ2b + ξc ∼ −e4Gret (η, τ1)Gret (η, τ2)Gret (η
′, τ ′1)Gret (η

′, τ ′2)

{κ̄ · [q̄ × (q̄1 + q̄3)]}2 |βq1|2|βq3|2|βq−q1|2|βκ−q−q3|2 (64)

G+ (q1, τ1, τ
′
1)G

+ (q3, τ2, τ
′
2)G

+ (q − q1, τ1, τ
′
1)G

+ (κ− q − q3, τ2, τ
′
2)

with G+ (q, τ, τ ′) = φ (q, τ)φ∗ (−q, τ ′) − φ∗ (q, τ)φ (−q, τ ′). As the time dependence of the

momenta has dissappeared, the time integrals involve only the expressions for the retarded

propagators. For p < σ0/H and time intervals ∆τ ≪ 1 they are given by expr. (B6) below,

i.e., Gret (p, η, τ) ≃ (η − τ) Θ (η − τ). The integration between τ = 0 and τ = τf is then

straightforward, giving each propagator a contribution of τ 2f , the overall time contribution

thus being τ 8f . Replacing the corresponding expressions for the Bogoliubov coefficients and

the modes, eq. (64) can be written as ξ = ξ1 + ξ2 with ξ1 corresponding to the momentum

interval p < m/H and ξ2 to m/H < p < σ0/H . Explicitly we have

ξ1 ∼ e4τ 8f

(

6

π

)4(
H

m

)4 {κ̄ · [q̄ × (q̄1 + q̄3)]}2
q31q

3
3q

3|κ̄− q̄ − q̄1 − q̄3|3
(65)

and

ξ2 ∼ e4τ 8f
{κ̄ · [q̄ × (q̄1 + q̄3)]}2

q91q
9
3q

9|κ̄− q̄ − q̄1 − q̄3|9
(66)

To roughly estimate all momentum integrals we again count powers. As κ ∼ 1 we begin

by neglecting the q’s in front of κ in both expressions. For Ξ1 we obtain a contribution of

the form ∼ κ2q2/q21 and considering the contribution that gives the largest value, namely

q, q1 ∼ m/H we obtain

Ξ1 ∼ e4τ 8f

(

6

π

)4

κ2 (67)

For Ξ2 the counting of powers give a factor of the form κ−4q−4
1 q−4q−6

3 . and in the corre-

sponding interval (m/H, σ0/H) we consider the contribution of the lower limit, i.e. again
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m/H , as it gives the largest value. Te result is

Ξ2 ∼ e4τ 8f

(

H

m

)14
1

κ4
(68)

An important comment is in order: according to the approximations made to solve the Klein-

Gordon equation during Reheating in Appendix A, the intervals p < m/H and p > m/H

determined the two different sets of solutions that were used to calculate the Bogoliubov

coefficients (62) and (63). Taking the limit p → m/H in both of those expressions, we see

that they are not continuous in that limit, which means that the mentioned approximations

break down. Consequently both Ξ1 and Ξ2 found using that value of momentum must be

considered as upper bounds to the possible realistic values. We see that the main contri-

bution to the rms value of the magnetic helicity is due to Ξ2, which after replacing the

expression (51) reads

Ξ2 ∼
1

π8/3e20/3

(

H

m

)2
1

κ4
(69)

We estimate the magnetic helicity on a volume κ−3 again by taking the squareroot of (69),

and thus see that the number of links scales as

HM ∼ 1

π4/3e10/3
H

m
κ−2 (70)

and their density as ∝ κ. The associated fractal dimension is D = 2.

We now turn our attention to the evolution of the magnetic field from its value induced at

the end of reheating in a scale of the order of the horizon up to matter-radiation equilibrium.

That evolution will be due to a possible turbulent state during radiation dominance, which

would allow an inverse cascade of magnetic helicity. We thus estimate again the comoving

magnetic energy density as B2
0 ∼ HM,0κ

4, and for κ ≃ 1 it is simply B2
0 ∼ HM,0. At matter-

radiation equilibrium we would then have a comoving magnetic field intensity of the order

Beq ∼ H1/2
M,0∆

−1/3
r−e ∼ 1

π2/3e5/3

(

H

m

)1/2 (
heq
hrh

)−1/6

(71)

with a corresponding (dimensionless) comoving coherence length ℓeq ∼ ∆
2/3
r−e = (heq/hrh)

1/3.

To obtain the value of the physical field and coherence scale we must take into ac-

count the expansion of the Universe, which for the field means a dilution by a factor

of (hrh/heq) and for the coherence scale an expansion by a factor (heq/hrh)
1/2. Adding

also the dimensions through the corresponding powers of H we finally have Beq ∼ H2 ×
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1020
(

Gauss/GeV2
)

(hrh/heq)Beq and λeq = H−1 × 6.4 × 10−39 (Mpc.GeV) (heq/hrh)
1/2 ℓeq.

Using the figures given above and in Subsection IVB we obtain at the beginning of matter

dominance, a field intensity in the range

10−9Gauss . Beq . 10−5Gauss (72)

with a corresponding coherence length of

10−3pc . λeq . 10−1pc (73)

These values could impact the process of early structure formation [14].

V. DISCUSSION AND CONCLUSIONS

In this work we have investigated the generation of magnetic helicity in primordial mag-

netogenesis. We considered a specific mechanism for magnetic field generation, developed

in Refs. [25, 27] (see also [28]), where stochastic magnetic fields were induced by electric

currents that appeared due to particle creation at the transition Inflation-Reheating. The

charges correspond to a scalar field minimally coupled to gravity, as in this case the number

of particles created is maximal. There would be support for such a field in the Supersym-

metric theory of particles [26]. As the induced magnetic fields are random, the mean values

of the different quantities are null, and consequently we had to calculate a rms deviation

of HM . We could write it as the sum of four different SQED Feynman graphs of differente

multiplicities.

Our main result is that the fields induced by stochastic currents generated by cosmological

particle creation are helical.

On large scales as e.g. the galactic ones, we considered that the evolution of the magnetic

helicity is diffusive because that scales are larger than the horizon during magnetogenesis,

entering the horizon by the end of the radiation era or during matter dominance.

We also investigated the generation of magnetic helicity at a scales with a size of the

order of the horizon during reheating, where inverse cascade can be operative. We made

the naive hypothesis that throughout radiation dominance the plasma flow is endowed with

decaying turbulence and applied the model for magnetic energy and coherence scale evolution

developed in Refs. [23, 37]. The estimation of the resulting magnetic field intensities at
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equilibrium between matter and radiation gives values and coherence scales that could be

of importance for structure formation [14].

The importance of primordial magnetic fields endowed with magnetic helicity is that

fields coherent on scales equal or shorter than the particle horizon, would self-organize on

larger scales. This is due to the fact that when the plasma where the field evolves possesses

some degree of (decaying) turbulence, magnetic helicity performs an inverse cascade instead

of a direct one, thus thus self-organizing at large scales. For large scales, as e.g. the galactic

ones, there can also operate the inverse cascade, but even if there were not such a process,

the operation of further amplifying mechanisms, as galactic dynamos, would be crucially

affected by the topological properties of the seed fields [24].

In conclusion, generation of magnetic helicity in the early Universe seems to be quite easily

achieved in different scenarios [15, 29–33]. The problem still remains in the intensities. In

the mechanism considered here the fields obtained are indeed helical, but their intensities on

large scales are too small, or have a marginal value to have an astrophysical impact, while

on smaller scales they can be important provided that inverse cascade of magnetic helicity

is operative in the early universe.
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Appendix A: Solutions of Klein-Gordon Equation and Calculation of the Bogoliubov

Coefficients

In this appendix we find the solutions of eq. (8) in the two epochs of the universe con-

sidered in the paper, i.e., Inflation and Reheating, and calculate the Bogoliubov coefficients.

The Fourier transformed eq. (8) reads

∂2τϕp +

[

p2 + a2 (τ)
m2

H2
− ä (τ)

a (τ)

]

ϕp = 0 (A1)

whose solutions in each epoch will be labeled as ϕI
p (τ) (Inflation) and ϕ

R
p (τ) (Reheating).

The fact that they are different in each epoch tells that a given quantum state in the first
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epoch will not coincide with a same state in the subsequent epoch. More concretely, a

vacuum state during Inflation will appear as a particle state in Reheating. Mathematically

this is expressed as [34]

ϕI
p (τ) = αpϕ

R
p (τ) + βpϕ

∗R
p (τ) (A2)

The fact that βp 6= 0, shows that the two quantum states are not equivalent. αp and βp are

the Bogoliubov coefficients [34]. For modes corresponding to scales larger than the horizon

size at the epoch of transition, that transition can be considered as instantaneous and the

coefficients can be calculated by demanding continuity of ϕI
p and ϕ̇I

p at that instant. This

gives

αp =
ϕI
p (0) ϕ̇

∗R
p (0)− ϕ∗R

p (0) ϕ̇I
p (0)

ϕR
p (0) ϕ̇∗R

p (0)− ϕ∗R
p (0) ϕ̇R

p

(0) (A3)

βp =
ϕR
p (0) ϕ̇I

p (0)− ϕI
p (0) ϕ̇

R
p (0)

ϕR
p (0) ϕ̇∗R

p (0)− ϕ∗R
p (0) ϕ̇R

p (0)
(A4)

For scales shorter than the horizon, i.e., p > 1, the calculation is more involved, as details

of the transition do matter (see Ref. [17] and references therein). For completion we only

quote here the result and refer the reader to the references for the calculations.

βp ≃
i

16τ0

exp [iτ0S (0)]

p5
, p > 1 (A5)

where τ0 is the lasting of the transition.

1. Solutions during Inflation

Considering that the scale factor at the end of Inflation is equal to unity, we can write

a (τ) = (1− τ)−1 and eq. (A1) reads
[

∂2

∂τ 2
+ p2 +

m2

H2
(1− τ)2 − 2

(1− τ)2

]

ϕI
p = 0 (A6)

Writing ϕI
p = (1− τ)1/2 fp eq. (A6 ) transforms into a Bessel equation for fp and therefore

the normalized, positive frequency solutions of eq. (A6) are

ϕI
p =

π1/2

2
(1− τ)1/2H(1)

ν [p (1− τ)] (A7)

with ν =
√

9/4−m2/H2. As we shall be considering the casem/H ≪ 1 we can approximate

ν ≃ 3/2 and in this case the Hankel function has a polinomic expression, namely

ϕI
p ≃ −e

ik(1−τ)

√
2k

[

1 +
i

k (1− τ)

]

(A8)
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2. Solutions during Reheating

In this case a (τ) = (1 + τ/2)2 and eq. ( A1) is given by
[

∂2

∂τ 2
+ p2 +

m2

H2

(

1 +
τ

2

)4

− 1/2

(1 + τ/2)2

]

ϕR
p = 0 (A9)

which cannot be reduced to a known equation, unless some approximations are made. In

this sense we consider two situations: p < m/H and m/H < p < 1. In both cases the modes

correspond to wavelengths larger than the size of the particle horizon and hence detais

of the transition between the two considered epochs do not matter. The corresponding

Bogoliubov coefficients can be calculated considering an instantaneous transition at τ = 0,

and demanding continuity of the modes and their first derivatives at that moment.

a. Limit p ≤ m/H.

In this limit eq. (A9) reads
[

∂2

∂τ 2
+
m2

H2

(

1 +
τ

2

)4

− 1/2

(1 + τ/2)2

]

ϕR
p = 0 (A10)

Proposing a solution of the form ϕR
p (τ) = (1 + τ/2)1/2 fp

[

(1 + τ/2)3
]

eq. (??) transforms

into a Bessel equation for fp, and so the normalized, positive frequency solutions of eq.

(A10) are

ϕR (p) = i

√

H

2m

(

1 +
τ

2

)1/2

H
(2)
1/2

[

2m

3H

(

1 +
τ

2

)3
]

= −
√

6

π

exp
[

i (2m/3H) (1 + τ/2)3
]

(1 + τ/2)
(A11)

Using expr. (A4) we obtain

βp ≃ −i
√

H

2m

√

9

8
p−3/2 (A12)

b. Limit m/H < p < 1.

This case still corresponds to modes outside the particle horizon, but their form is different

from the one corresponding to the previous momentum interval. Eq. (A8) reads
[

∂2

∂τ 2
+ p2 − 1/2

(1 + τ/2)2

]

ϕR
p = 0 (A13)
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Writing ϕR
p (τ) = (1 + τ/2)1/2 gp [2p (1 + τ/2)] we again obtain a Bessel equation for gp. In

this case the normalized, positive frequency modes are

ϕR
p (τ) =

√

π

2

(

1 +
τ

2

)1/2

H
(2)
3/2

[

2p
(

1 +
τ

2

)]

= − 1√
2p
ei2p(1+τ/2)

[

1− i

4p (1 + τ/2)

]

(A14)

Replacing again in expr. (apa-0c) we have

βp ≃ −i3
8
e−ipp−3 (A15)

Appendix B: Retarded propagator for the electromagnetic field

The Fourier transform of the retarded propagator for the electromagnetic field satisfies

the following equation

[

∂2τ +
σ0
H
∂τ + κ2

]

Gret (κ, η, τ) = δ (η − τ) (B1)

whose homogeneous solutions are of the form exp (−σ0τ/2H) exp (±ατ), with α =
√

σ2
0/4H

2 − κ2.

We therefore propose

Gret (κ, η, τ) = Ae−σ0(η−τ)/2H
[

eα(η−τ) − e−α(η−τ)
]

Θ (η − τ) (B2)

which is continuous in η → η′. Demanding dGret (κ, η, η
′) /dη|η=η′ = −1 gives A = 1/2α,

whence

Gret (κ, η, τ) = e−σ0(η−τ)/2H

[

eα(η−τ) − e−α(η−τ)

2α

]

Θ (η − τ) (B3)

1. Limiting form for κ < σ0/2H

In this case we can take α ≃ σ0/2H and thus

Gret (κ, η, τ) ≃
H

σ0

[

1− e−σ0(η−τ)/H
]

Θ (η − τ) (B4)

In the limit η → ∞ eq. (B4) simply reads

Gret (κ, η, τ) ≃
H

σ0
Θ (η − τ) (B5)

while for η − τ → 0 we have

Gret (κ, η, τ) ≃ (η − τ) Θ (η − τ) (B6)
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2. Limiting form for κ > σ0/2H

In this case α ≃ iκ and then

Gret (κ, η, τ) ≃ e−σ0(η−τ)/2H sin [κ (η − τ)]

κ
Θ (η − τ) (B7)

which for finite κ and (η − τ) → 0 gives

Gret (κ, η, τ) ≃ e−σ0(η−τ)/2H (η − τ) Θ (η − τ) (B8)

Appendix C: Contribution from the ”cross” and ”two bubbles” diagrams

We must evaluate

A−1B [C − B] (C1)

with

A = q2ν1 q
2ν
3 |p̄− q̄1|2ν |κ̄− p̄− q̄3|2ν (C2)

B = (2q̄1 − p̄) · (κ̄× q̄3)− 2q̄1 · (p̄× q̄3) (C3)

C = (p̄− q̄3) · (κ̄× q̄1)− 2q̄1 · (p̄× q̄3) (C4)

We have that

C − B = p̄ · (κ̄× q̄1) + q̄3 · (κ̄× q̄1) + p̄ · (κ̄× q̄3) (C5)

and

B = 2κ̄ · (q̄3 × q̄1) + κ̄ · (p̄× q̄3) + 2p̄ · (q̄1 × q̄3) (C6)

Defining p̄ = q̄ + q̄1 we can write

C − B = q̄ · (κ̄× q̄1) + q̄ · (κ̄× q̄3) (C7)

and

B = κ̄ · (q̄3 × q̄1) + κ̄ · (q̄ × q̄3) + 2q̄ · (q̄1 × q̄3) (C8)

≡ B1 +B2 +B3
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For the different terms in the integrand we thus have

B1 (C − B) = [κ̄ · (q̄3 × q̄1)] [κ̄ · (q̄1 × q̄)] + [κ̄ · (q̄3 × q̄1)] [κ̄ · (q̄3 × q̄)] (C9)

that integrates to zero because the first term is odd in q̄3 and the second in q̄1. For the same

reasons, the same happens with the term

B3 (C − B) = 2 [q̄ · (q̄1 × q̄3)] [κ̄ · (q̄1 × q̄)] + 2 [q̄ · (q̄1 × q̄3)] [κ̄ · (q̄3 × q̄)] (C10)

There remains the term

B2 (C − B) = [κ̄ · (q̄ × q̄3)] [κ̄ · (q̄1 × q̄)]− [κ̄ · (q̄ × q̄3)]
2 (C11)

We define

Q̄+ =
q̄1 + q̄3

2
, Q̄− =

q̄1 − q̄3
2

(C12)

hence

B2 (C − B) = −2
[

κ̄ ·
(

q̄ × Q̄+

)]2
+ 2

[

κ̄ ·
(

q̄ × Q̄+

)] [

κ̄ ·
(

q̄ × Q̄−

)]

(C13)

The term odd in Q̄± integrate to zero, hence there only remains the first one, i.e.

B2 (C −B) = −2
[

κ̄ ·
(

q̄ × Q̄+

)]2
(C14)

which is clearly non-null.
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