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Cylindrical wormholes in DGP gravity
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We construct traversable thin-shell wormholes in the Dvali-Gabadadze-Porrati theory with cylin-
drical symmetry applying the cut and paste procedure to a flat black string solution of the five-
dimensional vacuum Einstein field equations. In contrast to general relativity case, where thin-shell
wormholes violate both weak and null energy conditions, we show that static wormholes are sup-
ported by normal matter while vacuum wormholes do not exist.
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I. INTRODUCTION

Alternative gravity theories such as one proposed by
Dvali, Gabadadze, and Porrati (DGP) claims that our
observed four-dimensional universe lives in a larger five-
dimensional space-time. In fact, gravity is modified
at large (rather than at short) distances through the
slow evaporation of gravitational degrees of freedom of
the brane universe [1].The transition between four and
higher-dimensional gravitational potentials in the DGP
model arises because of the presence of both the brane
and bulk Hilbert-Einstein terms in the action [1]. De-
spite the brane universe rendering the cosmic accelera-
tion without need of any vacuum (dark energy) term [2],
it suffers from some instabilities due to the existence of
ghost-like excitations [3].

Any attempt to construct thin-shell wormholes re-
quires the use of the cut and paste procedure [4], [5] and
work with the junction conditions associated to the grav-
ity theory understudy [6]. Cylindrical thin shell worm-
holes within the context of general relativity (GR) were
built, and found that, in most of the cases, the wormholes
are supported by exotic matter, violating the energy con-
ditions [7]. Leaving aside the GR by taking into account
the Brans-Dicke gravity theory, it was shown that cylin-
drical thin-shells are not necessarily are sourced by ex-
otic matter and the energy conditions can be fulfilled by
choosing suitably the parameters of the model [8].

In the case of DGP-gravity theory, spherically sym-
metric thin-shell wormholes have been constructed by
gluing two copies of the same five-dimensional vacuum
solution (Schwarzschild black hole), where the throat of
the wormhole is located at the joining surface [9]. It turns
out that the extra Hilbert-Einstein term at the boundary
has meaningful effects by generalizing the junction con-
ditions [10]; thereby it incorporates the Einstein tensor
in the projected field equations on the joining surface, al-
tering substantially the kind of matter which could sup-
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port wormhole configurations. The contributions form
the curvature tensor, theoretically, and seem to allow the
existence of wormholes supported by ordinary matter as
well as solitonic solutions, that is, vacuum shells which
are gravitationally self supported due to the nonlinear
character of the junction conditions [9].
In the present work, we started by implementing the

cut and paste procedure on the black string solution in
order to construct static thin-shell wormholes with cylin-
drical symmetry, and then, we employed the generalized
junction conditions within the DGP gravity to determine
the energy density and pressure on the shell. We are go-
ing to address a key issue regarding the kind of matter
which could support these wormholes configurations. We
would like to know whether the DGP gravity provides a
suitable framework to allow the existence of cylindrical
wormholes which do not violate the energy conditions.
In the next sections, without loss of generality, we will
work with units such that 8M3

5 = 1.

II. THE DGP GRAVITY

We begin by setting out the action corresponding to
the DGP theory in a five-dimensional manifold M5 with
a four-dimensional boundary Σ (cf. [10]),

S = 2M3
5

∫

M5

d5x
√
−gR[gAB] + 2M2

4

∫

Σ

d4x
√
−γR[γab]

+ 4M3
5

∫

Σ

d4x
√−γ

(

−K[γab] +
Lm

4M3
5

)

,

where gAB is the five-dimensional metric, γab is the four-
dimensional induced metric on the boundary Σ, and K
is the trace of extrinsic curvature. Here, the matter
fields in Lm are confined to a 4-dimensional boundary.
The extra term in the boundary introduces a mass scale
mc = 2M3

5/M
2
4 = r−1

c which determines a scale that
separates two different regimes of the theory. For dis-
tances much smaller than m−1

c one would expect the so-
lutions to be well approximated by general relativity and
the modifications to appear at larger distances. This is
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indeed the case for distributions of matter and radiation
which are homogeneous and isotropic at scales>∼ rc. Typ-
ically, mc ≃ 10.42 GeV, so it sets the distance/time scale
rc = m−1

c at which the Newtonian potential significantly
deviates from the conventional one. In the bulk the DGP
equations are the Einstein ones in vacuum : G

(5)
AB = 0.

For the coordinate XA = (t, r, θ, φ, y) the bulk metric
corresponding to cylindrical black hole vacuum solution
takes the form

gAB = diag
(

− f(r), [f(r)]−1, r2, r2sin2θ, 1
)

, (1)

f(r) =
(

1− r+
r

)

, (2)

where the parameterm is related to the Arnowitt–Deser–
Misner mass. The above space-time has only one horizon
placed at r+ = 2m withm > 0. Besides, whenm < 0, the
manifold only presents a naked singularity at the origin
r = 0 which can be easily verified through the squared
Riemann tensor, given by RABC DRABC D = 10r2+/r

6

[11].

III. THIN-SHELL CONSTRUCTION IN DGP

THEORY

Employing the metric Eqs.(1-2), we build a spherically
symmetric thin-shell wormhole in DGP theory. We take
two copies of the space-time and remove from each man-
ifold the five-dimensional regions described by

M± = {x/r± ≤ a, a > r+} . (3)

where a is chosen to include possible singularities or hori-
zon within the region M±. The resulting manifolds have
boundaries given by the timelike hypersurfaces,

Σ± = {x/r± = a, a > r+} . (4)

Then we identify these two timelike hypersurfaces to ob-
tain a geodesically complete new manifold M = M+ ∪
M− with a matter shell at the surface r = a where the
throat of the wormhole is located. This manifold is con-
stituted by two regions which are asymptotically flat. To
study this type of wormholes we apply the Darmois-Israel
formalism generalized [10] to the case of the DGP the-
ory. We can introduce the coordinates ξa = (τ, θ, φ, y) in
Σ, with τ the proper time on the throat. We will focus
in static configurations, then the boundary hypersurface
reads:

Σ : H(r) = r − a = 0. (5)

The field equations projected on the shell Σ are the
generalized junction (or Darmois-Israel) conditions [10],

rc[Rab −
1

2
γabR]− 2〈Kab − γabK〉 = Sab, (6)

where the bracket 〈.〉 stands for the jump of a given quan-
tity across the hypersurface Σ and γab is the induced
metric on Σ. The extrinsic curvature Kab is defined as
follows:

K±
ab = −n±

A

(

∂2XA

∂ξa∂ξb
+ ΓA

BC

∂XB

∂ξa
∂XC

∂ξb

)

r=a

, (7)

where n±
A are the unit normals to the surface Σ.

Notice that the first term in (6) is not enclosed within
the brackets because this contribution comes from the
four-dimensional Hilbert-Einstein term in the DGP ac-
tion which already lives in the boundary, so it does not
need to be projected on Σ. By taking the limit rc → 0,
we recover the standard Darmois–Israel junction condi-
tion found in [6]. In order to proceed one can write the
intrinsic metric to Σ as

ds2Σ = −dτ2 + a2(dθ2 + sin2θdφ2) + dy2. (8)

The position of the junction surface is given XA =
(t(τ), a, θ, φ, y) and the corresponding 4 velocity is uA =
(

[f(a)]−1/2, 0, 0, 0, 0
)

, whereas the unit normal to shell

may be determine by the conditions uAnA = 0 and
nBnB = 1. These requisites lead to the following expres-
sion, nA =

(

0, [f(a)]−1/2, 0, 0, 0
)

. Noncompact wormhole
geometries such as the one described by Eq. (8) ad-
mit different variants of the definition of a throat [12].
For instance, the volume per unit length is given by
V(a)/ℓ = 4πa2 and is an increasing function on both
side of the throat. Notice that the throat has transla-
tional symmetry along the ydirection, but when one con-
siders y fixed, the global properties are determined by
the behavior of topology of the throat. So our example
corresponds to a sphere with area A(a) = 4πa2, thus it
has a minimal “area” surface reaching a minimum at the
position of the throat. Now, if we look at the topology
of the throat for y and φ fixed, we find that the circular
radius function R(a) = 2πa defines its perimeter and it
can be considered as a less restrictive definition of the
wormhole throat [12].
Now, let us calculate some quantities that we will need

later. The mixed components of the four-dimensional
Einstein tensor are given by

G0
0 = − 1

a2
= Gy

y, (9)

Gθ
θ = = Gφ

φ = 0. (10)

The extrinsic curvature components read

〈

K0
0

〉

=
f ′(a)
√

f(a)
,
〈

Ky
y

〉

= 0. (11)

〈

Kθ
θ

〉

=
2

a

√

f(a) =
〈

Kφ
φ

〉

. (12)

The component Ky
y of the extrinsic curvature vanishes

because the fifth dimension is flat, that is, this compo-
nent involves the metric and its derivatives while Gy

y is
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nonzero because has a term proportional to the four-
dimensional Ricci scalar R.
The most general form of the stress energy tensor on

shell compatible with the space-time symmetries is

Sa
b = diag (−σ, Pθ, Pθ, Py) (13)

After some algebraic manipulation, we obtain that the
energy density and the tangential pressures can be recast
as

σ =
rc
a2

− 8
√

f(a)

a
, (14)

Pθ = 2
f ′(a)
√

f(a)
+

4
√

f(a)

a
, (15)

Py = − rc
a2

+
2f ′(a)
√

f(a)
+

8
√

f(a)

a
. (16)

The DGP contributions are encoded in the rc factor of
the above equations.

IV. MATTER SUPPORTING THE

WORMHOLES

Classical solutions within the DGP model correspond-
ing to thin-shell wormholes were found in [9], where
the stability analysis indicated that these configurations
could be stable, moreover the matter supporting them
can be interpreted as nonrelativistic in some cases due
to their very small squared speed sound [9]. All these
elements seem to be good reasons to consider a care-
ful discussion about the nature of matter supporting
wormholes with cylindrical symmetry within the DGP
model. Following the approach presented in [9] where the
four-dimensional Hilbert-Einstein generalizes the stan-
dard junction, adding the Einstein tensor on the shell
and due to its geometrical nature, the next approach will
clearly be the most suitable framework to give a precise
meaning to the characterization of matter supporting the
wormhole with cylindrical symmetry.
The weak energy condition (WEC) states that for any

timelike vector uA it must be TABu
AuB ≥ 0; the WEC

also implies, by continuity, the null energy condition

(NEC), which means that for any null vector kA it must
be TABk

AkB ≥ 0 [4]. In an orthonormal basis the WEC
reads ρ ≥ 0, ρ+Pl ≥ 0 ∀ l while the NEC takes the form
ρ+ Pl ≥ 0 ∀ l.
In the case of thin-shell wormholes the radial pressure

Pr is zero, and within Einstein gravity, the surface energy
density must fulfill σ < 0 so that both energy conditions
will be violated. The sign of σ + Pt, where Pt is the
transverse pressure is not fixed, but it depends on the
values of the parameters of the system.
Now, the sign of the surface energy density (14) as

well as the pressure along axis y (16) is, in principle, not
fixed. For rc → 0, we obtain the energy density and
pressures for cylindrical wormhole geometries as if it was

calculated with the standard junction conditions. Far
away from the general relativity limit we now find that
there exist positive contributions to σ. We stress that
this would not be possible if the standard Darmois-Israel
formalism was applied; treating the DGP contribution as
an effective energy-momentum tensor, thereupon we in-
evitably would obtain that the energy density is negative
definite because the flare-out condition is fulfilled, so this
leads to σ = −8[f(a)/a2]1/2 < 0.
Now, once the explicit form of the function f(a) is in-

troduced in Eq.(14), we focus on the conditions that lead
to wormholes with σ > 0. Then, it can be proven that
wormholes with a non-negative surface density located
at the shell are allowable when the following inequalities
are simultaneously satisfy:

rc
a2

− 8

a

(

1− r+
a

)
1

2

> 0 ∩ a− r+ > 0, (17)

so it is always possible to choose a such that the exis-
tence of thin-shell wormholes is compatible with positive
surface energy density. More precisely. its radius must
belong to the interval given below,

r+ < a ≤ r+
2

+
1

2

(

r2+ +
r2c
16

)
1

2 (18)

Notice that the rc-term is essential to have positive en-
ergy density; as one would expect, in the limit rc −→ 0,
this possibility completely vanishes. Besides, the sum of
the pressure Pθ and energy density σ takes the form

σ + Pθ =

(

rc
a2

+
2af ′(a)− 4f(a)

a
√

f(a)

)

, (19)

because the first term in (19) is positive the sign of σ+Pθ

depends on the second term, implying that the sum is
positive for r+ < a ≤ 3r+/2. Therefore, the remarkable
result is that, now we have a region with σ ≥ 0 along
with σ + Pθ ≥ 0. In addition, σ + Py = 2f ′(a)/

√

f(a) is
always positive, showing that wormholes with cylindrical
symmetry within the DGP framework satisfy both WEC
and NEC.
We have obtained a nontrivial inequality (19) about

the range that wormhole’s radius must cover in order to
get positive energy density. As is well known a phys-
ical wormhole solution is interestingly enough as long
as the wormhole’s radius it is not restricted to a small
region in the parameter space defined by rc and r+.
Therefore, it is important to check the nonexistence of
such fine-tuning between these two parameters, hence
such analysis implies to know the order of magnitude of
rc/r+ = 4πrcM

2
4/m, where the four-dimensional New-

ton constant is G4 = 1/8πM2
4. The cosmological esti-

mation of the crossover scale using supernovae type Ia
data leads to rc = 5Gpc, whereas the parameter m can
be taken as the black hole’s mass. One could infer the
numerical value of rc/r+ = (1.33)η−1 × 1024 by writ-
ten the black hole mass in terms of the sun’s mass pro-
vided m = ηM⊙, where η encodes the size of black hole.
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For black holes that are formed in the collapse of mas-
sive stars with stellar-mass (η ≃ 10) imply that the ratio
rc/r+ ≃ O(1023), whereas for supermassive black holes
that reside in galactic centers, this is tantamount to say-
ing that 106 ≤ η ≤ 1010 [13]; the ratio covers interval
[1014; 1018]. For instance, studying the dynamics of gas
in the early-type galaxy NGC 4526, the statistical anal-
ysis leads to a central dark object of 4.5 × 108M⊙ at
3σ confidence level [14]. In this case, one obtains that
rc/r+ ≃ 2.9× 1015. Another appealing case seems to be
that of black holes much less massive than a solar mass
M⊙ possibly formed as result of density perturbations in
the early Universe. In the latter cases, the ratio is consid-
erably amplified by many orders of magnitude provided
that one always has η ≤ 10−1. In all the cases mentioned
before, we are able to ensure that rc/r+ is large enough
to avoid any kinds of fine-tunings.
Finally, we would like to show that there are not

vacuum wormholes with cylindrical symmetry self-
gravitating due to the nonlinearity of the junction con-
ditions within the framework of DGP gravity. In order
to show that, we must impose that energy density and
tangential pressures vanish at the same time. As it can
be seen from Eq. (14) and Eq.(16), one can attain that
σ and Py vanish for a suitably radius, but Eq. (15) tells
us that Pθ cannot become null; such a finding does not
occur in the case of spherically symmetric wormholes [9].

V. SUMMARY AND DISCUSSION

In this work, we have taken a vacuum black string solu-
tion of the five-dimensional Einstein field equations and
followed the cut and paste method for removing the sin-
gular part of this manifold in order to construct a cylin-
drical wormhole. We have shown that wormholes with
cylindrical symmetry within the framework of the DGP
gravity theory do exist due to the nonlinear corrections
that the boundary Hilbert-Einstein term adds to the gen-
eralized junction conditions.
We have also proven that in a possible scenario, where

the DGP crossover scale rc is considerably large enough
in relation with the horizon radius r+, corresponding to
a situation far away from the general relativity limit, the
energy density located at the wormhole’s throat can be
positive; moreover, it turned out that such gravitating

configurations do fulfill the weak and null energy condi-
tions. We have found that the wormhole’s radius is not
restricted to a small region in the parameter space avoid-
ing any kind of fine-tuning that could exist; thus, the
DGP gravity theory introduces a new parameter, which
allows for more freedom in the framework of determining
the most viable wormhole configurations without to be
threatened by the presence of exotic matter. For stellar
black holes with mass m = 10M⊙, the ratio is rc/r+ ≃
O(1023), whereas for supermassive black holes that reside
in galactic centers with 106M⊙ ≤ m ≤ 1010M⊙ [13], the
ratio covers interval [1014; 1018]. For instance, the sta-
tistical analysis performed to the early-type galaxy NGC
4526 leads to a central dark object of 4.5× 108M⊙ at 3σ
confidence level [14], implying that rc/r+ ≃ 2.9 × 1015.
Besides, one difference in relation to the case with spher-
ical symmetry is that now we cannot construct static
vacuum wormholes; thus, we cannot have self-gravitating
solutions where both pressures and energy density vanish
at the same time. Indeed, such impossibility arises be-
cause the anisotropic pressure along the axis where the
black string is oriented in the original manifold does not
vanish, however, we cannot discard that nonstatic vac-
uum wormholes do exist.
At this point, one issue that remains open and requires

further investigation is concerned with the dynamic of
cylindrical wormholes in the DGP theory (how these
wormholes evolve when they are perturbated without al-
tering their cylindrical symmetry). In fact, because the
black string background does not have the same horizon
topology as the five-dimensional schwarzschild solution.
There is not a Birkhoff ’s theorem that guarantees no
emission of gravitational waves (radiation), and hence
the geometry outside the throat could not remain static
[11]. This fact indicates that a more careful analysis must
be carried out in treating cylindrical perturbations for
wormhole geometries.
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