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Abstract—In this paper, an evaluation strategy for two-
candidate satellite-derived SM products is presented. In partic-
ular, we analyze the performance of two candidate algorithms
[soil moisture ocean salinity (SMOS)-based soil moisture (SM)
and advanced scatterometer (ASCAT)-based SM] to monitor SM
in Pampas Plain. The difficulties associated with commonly used
evaluation techniques are addressed, and techniques that do not
require ground-based observations are presented. In particular,
we introduce comparisons with a land-surface model (GLDAS)
and SM anomalies and triple collocation analyses. Then, we dis-
cuss the relevance of these analyses in the context of end-users
requirements, and propose an extreme events-detection analysis
based on anomalies of the standardized precipitation index (SPI)
and satellite-based SM anomalies. The results show that: 1) both
ASCAT and SMOS spatial anomalies data are able to reproduce
the expected SM spatial patterns of the area; 2) both ASCAT and
SMOS temporal anomalies are able to follow the measured in
situ SM temporal anomalies; and 3) both products were able to
monitor large SPI extremes at specific vegetation conditions.

Index Terms—Cropland, passive microwaves, soil moisture,
validation strategies.

I. INTRODUCTION

S ATELLITE-BASED soil moisture (SM) products are
potentially useful for several key environmental applica-

tions (agro-meteorology, SM excess or deficit monitoring, etc.).
The information provided by these systems is particularly rele-
vant in Argentina’s Pampas Plain, where in situ meteorological
stations are scarce and frequent extreme environmental events
strongly affect agricultural production.

There are several satellite-based, global, operational SM
products available for the Pampas Plain area such as
Aquarius sensor onboard SAC-D (NASA-CONAE mission)
[1], advanced scatterometer (ASCAT) onboard METOP-A
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[2], MIRAS radiometer onboard the Soil Moisture Ocean
Salinity (SMOS) Mission [3], advanced microwave scanning
radiometer-earth observing system (AMSR-E) [4] and recently
launched Soil Moisture Passive Active (SMAP) NASA Mission
[5] (data not available yet). Nevertheless, SM products obtained
from these satellite systems report different spatiotemporal pat-
terns of SM for the same area and period of time. These
products discrepancy was also observed for other areas around
the world, and it is the subject of active research, since all
these products claim some form of validation (in general, in
situ validation in some densely instrumented sites), and were
successfully used in several derived applications (e.g., assimila-
tion in forecast models, SM-precipitation coupling, and run-off
models). In some way, all existing products could represent
“true” SM to some extent.

Therefore, it is relevant to ask which products best reproduce
Pampas Plain SM spatiotemporal patterns. This is not an easy
question to answer, since there are no validation sites in this
area and therefore direct validation is not possible at the time.
Therefore, since: 1) product quality in the area cannot be guar-
anteed by global validation and 2) direct in situ validation is not
possible, alternative validation schemes become relevant.

In this paper, we analyze the performance of two-candidate
algorithms (SMOS-based SM and ASCAT-based SM) to mon-
itor SM in Pampas Plain. The selection of these two systems
pretends to address passive and active instruments in view of
future available data such as SMAP and Argentine SAOCOM
missions [6]. In addition, a significant effort is done to introduce
them as validated SM products. The difficulties associated with
commonly used evaluation techniques based on the use of in
situ networks are addressed, and techniques that do not require
ground data are presented. In particular, we introduce compar-
isons with a land-surface model (GLDAS) and SM anomalies
and triple collocation (TC) analyses [7]. Then, we discuss the
relevance of these analyses in the context of end-users require-
ments, and propose an extreme events-detection analysis based
on anomalies of the standardized precipitation index (SPI).
Finally, the implications of these results to define site-specific
operational evaluation strategies are discussed. The following
sections address these subjects, starting with a short description
of the Pampas Plains locations and of the characteristics of the
satellite systems products under discussion.

II. PAMPAS PLAINS

Argentina’s Pampas (27−40◦S, 57−67◦W) is a wide plain
of over 50 million ha of fertile lands suitable for cattle and crop
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production. Fig. 1 shows a land cover map of the area [8] and,
as an example, the spatial distribution of the difference between
precipitation (P) and evapotranspiration (EP) means (mm) of
the period 1970–2006 for the month of October (growing sea-
son) as a reference of the hydrological characteristics of the
area, drier in the west and wetter in the east [9]. Most of the
Pampas region are significantly affected by cyclical drought and
flood episodes that impact both crop and cattle production [10].

III. AVAILABLE DATA

A. Satellite Data

There are several satellite-based SM products available in the
study area. For this study, we selected two of them (ASCAT
and SMOS) whose overall global performance and the fact that
are widely used makes them candidates to provide a reasonable
estimation of SM spatiotemporal distribution in our study area.
The different evaluation strategies presented in this paper used
different subsets of SM measurements of the period 2010–2014.

The SMOS satellite was launched in 2009 and is dedicated
to SM retrieval at ∼5 cm depth using brightness temperature
measured at L-band (passive microwave, ground resolution
∼25 km). It has a single observation frequency (1.4 GHz),
but uses observations at multiple incident angles. The standard
SMOS algorithm is based on the L-MEB (L-band microwave
emission of the biosphere) model and it adopts a forward mod-
eling approach to solve for SM [3]. In this paper, we used the
SM data set provided by EOLI-SA data source.

The ASCAT sensor onboard the MetOp-A measures the
backscattering coefficient at C-band and at multiple incidence
angles (active microwave, ground resolution ∼25 km). The
SM estimation is obtained using a time-series-based change-
detection algorithm [2]. Since the SM changes can be measured
in relative terms, the estimation becomes less susceptible to
the adverse influence of vegetation cover and surface rough-
ness, although it should be noted that active sensors are more
susceptible to roughness and vegetation than passive sensors.

Regarding the performance of SMOS and ASCAT SM,
from a theoretical point of view, it is expected that SMOS
SM product (which uses L-band data) should be less affected
by vegetation. On the contrary, ASCAT SM product (active
C-band) should present more vegetation contamination.

B. LSM Data

Other relevant providers of SM spatiotemporal distribution
information are land-surface models (LSMs). These models
estimate SM solving the energy/mass balance in the earth sur-
face and constraints its retrieval assimilating in situ data. In
order to compare models and product estimations, we included
in the present analysis the first layer SM field from the NOAH
LSM model, one of the models available from the GLDAS ver-
sion 2.0 data set (12 h GMT). GLDAS SM product is produced
by specific instances of the land information system (LIS)
software framework for high-performance land-surface mod-
eling and data assimilation developed within the Hydrological
Sciences Laboratory at NASA Goddard [11], [12]. This version
of GLDAS uses as forcing data the one provided by Princeton
University [13].

In order to quantitatively analyze the data, products were
gridded into the GLDAS official grid of 0.25◦ resolution using
nearest-neighbor interpolation.

C. In Situ Data

Although no field validation site exists in the study area, there
are SM data available (one point), acquired in the SOL NEGRO
agricultural site near the city of Cordoba, Argentina. SM was
measured using an Hydra Probe II system with a sampling
depth of 5 cm every hour since September 2012 [14].

Since point SM measurements provide only spatially lim-
ited validation capacity, we estimated soil hydrological con-
dition using the SPI. Therefore, in situ precipitation data
were extensively used. Over the area considered, the National
Meteorological Service (NMS) of Argentina provides daily
precipitation data of approximately 50 ground stations.

IV. METHODOLOGY

A. Spatial Anomalies

As we will see in the following section, due to the limited
availability of in situ data in this region in terms of spatial
distribution, period covered, and quality control yet to be estab-
lished, a direct comparison between SM products leads to poor
results both quantitatively and qualitatively, since it does not
allow answering the questions posed in Section I. Therefore, in
order to compare the spatial patterns of the three SM data sets,
we generated maps of each of the products’ standardized spa-
tial anomalies [7]. For each SM data set, standardized spatial
anomalies were calculated in three steps, as follows. We first
calculated the product’s temporal mean for each grid point in
the study region. Second, we calculated the spatial mean and
standard deviation of the means calculated in the first step.
Finally, we defined the standardized spatial anomaly of the
given SM data set at a given grid point as the difference between
the mean calculated at that grid point in the first step and the
spatial mean calculated in the second step, divided by the spatial
standard deviation calculated in the second step. These maps
provide information on how similarly each of the SM data sets
represents wet/dry conditions over the study region. In order to
quantify this information, we calculated the linear correlation
coefficient between the standardized spatial anomalies of each
pair of SM data sets [7].

B. Triple Collocation (TC)

The triple collocation (TC) technique, developed by
Stoffelen [15], is a tool to estimate the root-mean-squared error
(RMSE) with respect to the real in situ variable in remote sens-
ing products. This technique is used here to estimate RMSE
of the SM anomalies time series generated by GLDAS (X),
SMOS (Y), and ASCAT (Z) [16]. The SM temporal anoma-
lies time series were defined as the deviations of the original
time series from their seasonal climatology. For each data set,
the seasonal climatology was calculated as the 31 day moving
average, where the averages are based on data from the whole
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Fig. 1. Study area. Left: Pampas Plains land cover categories (2006–2009 period, 1:500 000 scale) (adapted from [8]). Right: An example of the spatial distribution
of the P-EP means (mm) for the period 1970–2006 for the month of October (adapted from [9]).

period of study for the 31 day window surrounding each day of
the year.

At each grid point and for each data set, TC adopts the fol-
lowing model to relate the data sets to the (unknown) true SM
anomalies (t)

X = βX (t+ εX ) (1)

Y = βY (t+ εY ) (2)

Z = βZ(t+ εZ) (3)

where βi and εi for i = X,Y,Z are the TC calibration constants
and errors corresponding to GLDAS, SMOS, and ASCAT,
respectively. The errors εi for i = X,Y,Z are assumed to be
zero-mean random variables, which are uncorrelated with each
other and with the truth (t). The calibration constants are used
to rescale the data sets, so as to eliminate systematic differences
in their variability. Since (1)–(3) are underdetermined, one data
set is chosen as the reference and the other two are rescaled to
the reference time series. The data set chosen as the reference
here is GLDAS. This selection is not arbitrary, since we expect
GLDAS to provide the SM benchmark information for the area.

Therefore, we set βX = 1 and estimate the remaining cali-
bration constants via

βY =
< Y Z >

< XZ >

βZ =
< Y Z >

< XY >
.

Here, < > stands for a long-term average. Finally, we obtain
the TC estimates of the variances of εi, i = X,Y,Z, which we
note, V arTC(–εi), from

V arTC(–εX) =

〈(
X − Y

βY

)(
X − Z

βZ

)〉
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Y
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Y
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Z
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Z
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The square root of the estimated error variances is the TC
estimates of the RMSE. Since GLDAS was taken as the refer-
ence data set, all estimates are given in GLDAS climatology,
but they can be easily converted to another reference data set
by multiplying with the appropriate calibration constant.

It should be noted that in order for these estimates to be con-
sistent, all the assumptions of the TC error model should hold.
This is the case for the data sets used in this study, since no
two of them use common input data or observations that could
produce significantly correlated errors. Finally, it is important
to remark that since the TC study is based on deviations from
the mean seasonal cycle, the estimates obtained represent only
the errors in the anomalies of the SM time series, and therefore,
they do not provide any insight into errors in the mean season
cycle or bias in the original time series.

C. Standardized Precipitation Index (SPI) and Extremes
Definition

The standardized precipitation index (SPI) was designed by
McKee et al. [17] to monitor the water supply conditions of a
particular region. Its simplicity and versatility are given by its
dependence with only one variable, the precipitation, and the
possibility to be calculated on any timescale. Moreover, the fre-
quencies of the extreme and severe droughts classifications for
any location and timescale are consistent [18]. In this paper,
SPI is computed monthly, and following the classification pro-
posed by McKee et al. [17], an hydrological extreme in an area
is considered if Abs(SPI) > 2.

Therefore, we decided to use the SPI as an objective
measurement of precipitation anomalies to define extreme
conditions of water supply during the analyzed period.
The NMS of Argentina operationally provides this index
for different scales, considering the precipitation distri-
bution of 1961–2000 as the reference interval (refer to
http://www.smn.gov.ar/serviciosclimaticos/). The SPI cate-
gories scale is detailed in Figs. 7–11 of Section V.
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Fig. 2. Direct comparison among SMOS, ASCAT, and GLDAS SM estimations and in situ SM measurements (January 2010–December 2012).

Fig. 3. Product spatial anomalies of SMOS, ASCAT, and GLDAS SM values (Austral Winter June 2010–September 2010).

V. RESULTS

A. Preliminary Analysis

As a preliminary analysis, we checked the consistency be-
tween product SM values and available in situ data. Although
in situ data consist of only one point and therefore has limited
representativeness, this first check is relevant to delineate the
following operational evaluations strategies. Results are shown
in Fig. 2.

From the data, we can see that: 1) the correlation of SMOS
and GLDAS with in situ data is relatively high, while the
same correlation for ASCAT is relatively low; 2) both SMOS
and ASCAT present larger dynamic ranges than in situ data
(0.4 g/g versus 0.2 g/g for in situ data); 3) satellite prod-
ucts present different maximums and minimums (SMOS 0.1−
0.5 g/g, ASCAT 0− 0.4 g/g); and 4) GLDAS present only a sys-
tematic underestimation, which seems to be constant along all
the SM ranges.

From these observations, we can extract two preliminary
results of our study area. First, GLDAS seems to be a good SM
benchmark for this area (except or a systematic bias) and sec-
ond, a comparison of absolute values of SM is not a convenient
way to analyze satellite product performance, since products
and in situ data in this region present different dynamic ranges,
maximums and minimums.

B. Spatial Anomalies Analysis

Since absolute SM estimations of satellite products presented
a low performance when compared to in situ SM data, it

TABLE I
CORRELATION BETWEEN PRODUCT ANOMALIES

is relevant to compute SM spatial anomalies estimations as
defined in Section IV-A. Anomalies so defined have the poten-
tial to follow in situ SM anomalies, which can be very useful
to several end-user applications. Fig. 3 shows an example of
Austral Winter standardized spatial anomalies for both products
and GLDAS for the 2010 period.

As seen, although the performance of absolute values is
low, all spatial anomalies present high correlation among them
(see Table I). More important, spatial anomalies present the
typical east–west SM gradient of the study area. This indi-
cates that although satellite products and GLDAS present
different dynamic ranges and sensitivities, they all carry
some information about Pampas Plain SM spatial pattern.
Moreover, this information is consistent with the available
macro-meteorological information, which is specifically mod-
eled by GLDAS and reproduced (to some degree) by satellite-
based products. This correlation between products and LSM
(second and third row of Table I) is particularly relevant, since
satellite-based products do not take any meteorological data as
input.
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Fig. 4. SM temporal anomalies in the first row. SM absolute values in the second row. Precipitation stations close to Sol Negro site in the third row. Climatology
for SMOS, ASCAT, GLDAS, and in situ measurements in the fourth row. The period was constrained to the time period where in situ measurements were available
(September 12–January 14).

C. Temporal Anomalies Analysis

The behavior of the temporal anomalies as defined in Section
IV-B in the site in which in situ SM data are available is
presented in Fig. 4.

As seen, in the only site where comparisons with in situ
measurements were possible, the temporal trend of SM tem-
poral anomalies in general follows in situ measurements (first
row). Moreover, SM temporal anomalies are sensitive to major
precipitation events in the area (third row). On the contrary,
absolute SM values present medium to large deviations from
in situ measurements. The reasons of these deviations can be
several, and complex, with strong underestimations and over-
estimations for all the SM products analyzed. Nevertheless, we
believe that a clue is provided by the temporal behavior of the
climatology. In situ SM climatology presents low annual varia-
tions for this area, while ASCAT satellite product climatology
presents strong annual variations, with minimums in winter and
maximums in summer.

In summary, absolute satellite-based SM estimation presents
strong discrepancies (dynamic ranges, variability, sensitivity to
precipitations, seasonal behavior, and others) among them and
with in situ measurements. Nevertheless, SM spatial anoma-
lies are quite similar (they show good correlation among them)
and therefore worthy of being analyzed using an advanced
technique as TC.

D. TC Analysis

TC is able to estimate the error between real SM anomalies
and satellite SM anomalies, given a triplet of SM anomalies.
TC results are summarized in Fig. 5 and Table II. Fig. 5 shows
three maps of the TC error estimations for each pixel and each
product. As seen, ASCAT and SMOS present similar spatial
distributions of overall TC errors, while GLDAS present more
spatially homogeneous results. Larger errors in ASCAT seem
to be located in areas of large biomass (crops), while SMOS
errors are mainly located in coastal areas.

Table II summarizes the main statistics of the TC analysis.
It can be seen that the mean value of the error is very simi-
lar for all the three products for this area and the time period
analyzed. This implies that the error between true SM anoma-
lies and SMOS and ASCAT SM anomalies are similar. These
results can be further visualized in Fig. 6.

Fig. 6 shows a map of the satellite product that presents the
lower TC error estimate. A pixel is assigned to a given product
if TC1 − TC2 > threshold, where the threshold was selected
as 0.002. As seen in the figure, the vast majority of the area
is labeled as “Tie,” indicating very similar TC error estimates
for both products and also very similar errors between true SM
anomalies and satellite SM anomalies.

From this analysis, it can be seen that the mean value of
the TC error is very similar for all the products. Moreover,



GRINGS et al.: VALIDATION STRATEGIES FOR SATELLITE-BASED SM PRODUCTS 4099

Fig. 5. Overall TC error estimation for SMOS, ASCAT, and GLDAS.

TABLE II
MEAN, MEDIAN, AND SD OF OVERALL TC ESTIMATES

Fig. 6. Map of the product which presents the minimum TC error estimation
(errors are considered the same if TC1 − TC2 > 0.002).

repeating this analysis for different time periods, seasons, and
land cover selections produce different results of TC error
estimates (results not shown), with no definite best product.
Therefore, if we seek an answer to which product best repre-
sents spatiotemporal SM patterns in this area and time period,
TC analysis does not provide a conclusive answer.

Since standard metrics (anomalies analysis and TC error esti-
mation) produce positive but inconclusive evidence, to evaluate
product performance, we propose an extreme event-detection
analysis based on anomalies of the SPI.

E. SPI Extreme Events Analysis

SPI is commonly used as an excess/shortage soil water indi-
cator in areas where precipitation data are available, although
in situ SM data may not be available. As stated in the method-
ology, SPI is computed monthly. The methodology proposed
is based on the analysis of the extremes defined by SPI. We
defined an hydrological extreme in an area if Abs(SPI) > 2.
This operational definition has two advantages. First, although
the real values of SM and SPI are not generally correlated, when
such an extreme conditions exist, extremes values of SM are
generally observed [18]. Second, this definition has the added
value of being closely related to several end-user requirements,
which are mainly interested in extreme events associated with
extremes in precipitation.

Before proceeding with the analysis, it is relevant to address
the expected SM spatial structure of the events, since by def-
inition, SPI extremes are relatively large (of the order of 106

ha). At these spatial scales, positive extremes does not imply
uniformly wetter areas, since in this flat plain, the water enters
the system mainly by precipitation, which is spatially heteroge-
neous [19]. This implies that a positive extreme will be seen
as an increase in SM values, but not necessarily a signifi-
cant increase in mean SM values. On the contrary, negative
extremes, characterized by the uninterrupted reduction of pre-
cipitation, will be more spatially homogeneous, since the main
forcing that extracts water from the system is the evapotran-
spiration, which at these scales depends mainly on Sun’s total
irradiation.

Using these definitions, five extreme events were identified in
the 4-year time series. These events as seen by the SPI and the
SM values for the whole time series minus the extreme month
(left boxplot), and the extreme month for the area of the event
(right boxplot) for GLDAS, ASCAT, and SMOS are presented
in Figs. 7–11. Each event will be analyzed independently.

1) Event #1: April 2010 (Fig. 7): The lack of sensitivity for
this particular event can be related to several facts other than
product performance. First, the event is spatially small, which is
usually related to relatively large errors related to precipitation
interpolation. Second, in April (Austral Autumn), main crop
(soybean) is at its maximum biomass. Therefore, vegetation
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Fig. 7. SPI anomalies as seen by SPI, ASCAT, SMOS, and GLDAS. April 2010 event.

attenuation correction of satellite-based estimations is critical
in this period of the year.

2) Event #2: January 2011 (Fig. 8): Wet anomaly:
Significant increases are observed between the boxplots of
the event compared to the one of the complete time series
for ASCAT (median from 0.12 to 0.15 m3/m3, third quartile
from 0.17 to 0.24 m3/m3, and upper whisker from 0.31 to
0.42 0.42 m3/m3). No significant differences are observed for
GLDAS and SMOS.

The event is medium-sized and occurred during Austral
Summer (relatively high biomass). Boxplots show that some
pixels inside the area show an increase in SM values, which
corresponds to more heterogeneous SM values inside the area
of the event. This is consistent with the expected behavior of
the SM spatial pattern during a wet event as explained before.

3) Event #3: December 2011 (Fig. 9): Dry anomaly:
Significant reductions are observed between the boxplots of

the event compared to the one of the complete time series
for all the products (median from 0.17 to 0.11 0.11 m3/m3

in GLDAS, from 0.17 to 0.10 0.10 m3/m3 in ASCAT, and
from 0.16 to 0.009 m3/m3) in SMOS. Similar decreases are
observed in the first and third quartile and upper whiskers for all
products.

This event has a large size and occurred during Austral
Summer (relatively high biomass). Boxplots show that the
majority of pixels inside the area decrease their SM values,
which corresponds to a less heterogeneous SM values inside the
area of the event. This is consistent with the expected behav-
ior of the SM spatial pattern during a dry event as explained
before.

4) Event #4: February 2012 (Fig. 10): Wet anomaly: No
significant differences are observed between the boxplots
of the event compared to the one of the complete time
series.
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Fig. 8. SPI anomalies as seen by SPI, ASCAT, SMOS, and GLDAS. January 2011 event.

This event corresponds to two spatially disjoint events.
The east event is located over Parana River Delta, for
which SM estimations are not available (flagged in the prod-
ucts). Finally, the event occurs in Austral Summer (high
biomass).

5) Event #5: August 2012 (Fig. 11): Wet anomaly:
Significant increases are observed between the boxplots of the
event compared to the one of the complete time series for all
the products (median, third quartile, and upper whiskers).

This event has a large size and occurs in Austral Winter (low
values of biomass). Boxplots show several pixels that increased
their SM values, which correspond to more heterogeneous SM
values inside the area of the event. This is consistent with the
expected behavior of the SM spatial pattern during a wet event
as explained before.

VI. DISCUSSION

In this paper, a first analysis of the performance of two-
candidate SM products (ASCAT and SMOS) over Argentine
Pampas Plain was presented. The overall performance met-
ric was defined as the ability to monitor SM spatiotemporal
patterns. Since product absolute SM values presented large dis-
crepancies, our approach to measure this ability consisted in
using four different metrics: 1) SM spatial anomalies analy-
sis; 2) SM temporal anomalies analysis; 3) TC error estimation
analysis; and 4) SPI extreme events analysis.

A. SM Spatial Anomalies Analysis

Spatial anomalies analysis was overall successful, since it
showed that both satellite-based products and GLDAS were
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Fig. 9. SPI anomalies as seen by SPI, ASCAT, SMOS, and GLDAS. December 2011 event.

able to reproduce similar large-scale macro-meteorological SM
patterns in the study area. This is observed in good correlation
among anomalies (Table I) and in similarities between products
and GLDAS. The satellite-derived spatial anomalies present
the typical east–west SM gradient of the study area, which is
related to specific precipitation and evapotranspiration patterns
(see Fig. 1, right). This indicates that satellite products carry
valuable information about overall Pampas Plain SM spatial
pattern. This correlation between products and expected SM
patterns is important, since satellite-based products do not take
precipitation or evapotranspiration data as input.

B. SM Temporal Anomalies Analysis

It is relevant to mention that in situ SM climatology presented
low annual variations for Sol Negro Station (in situ SM avail-
able), while ASCAT satellite product climatology presented

strong annual variations, with minimums in winter and maxi-
mums in summer. Although there is no sufficient evidence to
test this hypothesis, it is probable that this artifact is related
to incomplete vegetation attenuation correction due to C-band
limitations. Given the amount and quality of data available, no
further interpretation can be provided.

C. TC Error Estimation Analysis

From the TC analysis, it was possible to generate a map of
the overall TC error estimations for the study area (Fig. 5).
These results were summarized in Table II. In general terms,
larger errors in ASCAT seem to be located in the areas of
large biomass (crops), while SMOS errors are mainly located
in the coastal areas. The first also seem to be related to incom-
plete vegetation attenuation correction, which is particularly
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Fig. 10. SPI anomalies as seen by SPI, ASCAT, SMOS, and GLDAS. February 2012 event.

relevant at C-band, while the second could be related to: 1) geo-
location errors associated with SMOS data generation strategy
[3] or 2-D image reconstruction algorithm being affected by
mixed-pixels with abrupt transitions. Nevertheless, consider-
ing a minimal error difference as significant, in most of the
study area, the products are characterized by the same TC error
estimates (see Fig. 6).

D. SPI Extreme Events Analysis

Extreme results are probably the most relevant result of this
paper. In this analysis, it was shown that products are able to
follow some SPI extremes (ASCAT: 3 of 5; SMOS: 2 of 5)
present in the 4-year time series available. For the extremes
that were not detected, several explanations were presented.
First, arguments related to SPI overall quality for small areas,

in which spatial interpolation of precipitation is critical, were
discussed (event #1). Second, considerations about seasonality
were discussed in the context of vegetation biomass. Indeed,
vegetation attenuation correction is the main issue of several
satellite-based SM products. Since Pampas Plain is a crop-
land, vegetation cycle of the area are synchronous and peaks at
Austral summer, leading to larger biomass, larger attenuations,
and more important corrections. Due to operational wavelength
and physical constraints, this correction can be the key fac-
tor that controls product performance. This is, therefore, more
important at C-band (ASCAT) than at L-band (SMOS).

In summary, satellite-based products were able to follow
extreme hydrological events when biomass was low and more
homogeneous (Austral winter, event #5) or biomass was mod-
erate to high but the event was strong and spatially large (events
#2 and #3).
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Fig. 11. SPI anomalies as seen by SPI, ASCAT, SMOS, and GLDAS. August 2012 event.

VII. CONCLUSION

In this paper, an evaluation strategy for two-candidate
satellite-derived SM products was presented. The strategy
involves only the analysis of data, which are satellite-derived
or common in most areas (like precipitations). It is an evalua-
tion and not a validation, since no in situ field experiment of
the required size and instrumentation is available in the area,
and therefore no proper validation is possible. On the contrary,
the proposed methodology relies in comparison of product SM
metrics that show expected SM spatiotemporal patterns. These
metrics were selected to overcome product limitations, and to
be able to provide relevant information to the end user. In this
context, it was shown that: 1) both ASCAT and SMOS spatial
anomalies data are able to reproduce the expected SM spatial
patterns; 2) both ASCAT and SMOS temporal anomalies are
able to follow the measured in situ SM temporal anomalies;
and 3) both products were able to monitor large SPI extremes,
at least in conditions where crop biomass was moderate to low.
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