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A novel method to accelerate Monte Carlo (MC) simulations of photon migration in

turbid media is presented. It is specifically suited for transillumination studies in slab

geometries including some deep inhomogeneity. Propagation up to the inhomogeneity,

at a given depth S1, is replaced by theoretical calculations using well established models.

Then, photon propagation is continued inside the complete slab using MC rules until

detection or absorption occurs. We report improvements in speed in factors up to

approximately 10; the deeper the inhomogeneity, the larger the improvement.

Examples are given showing that information remains unchanged with respect to pure

MC simulations.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Propagation of near infrared (NIR) light in highly scattering biological media has been a very active research field during
the past decades. The relative low absorption of tissue in the NIR region, allowed scientists to envisage applications of this
non-invasive radiation to detect breast cancer and alteration in cerebral blood flow, to mention but a few [1]. Light
propagation inside turbid media can be completely described in terms of several parameters, namely the absorption
coefficient, ma, the scattering coefficient, ms and the anisotropy factor g ¼ hcos yi, which is the average value of the cosine of
the scattering angles [2]. In terms of these, the total interaction coefficient, mt ¼ ms þ ma is defined, so that its inverse, m�1

t ,
is the mean free path between two consecutive interactions. Another coefficient, m0s, called the reduced scattering
coefficient is defined as

m0s ¼ msð1� gÞ,

where ðm0sÞ
�1 represents the transport mean free path [2].

The usual theoretical approach is made in terms of the scalar radiative transfer equation (RTE) [2], which is a description
of energy balance inside a volume of the scattering medium. However, since the RTE is very complicated, in many cases
the diffusion approximation (DA) [2] is preferred and renders good solutions. In particular, for an isotropic source
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and for m0sbma, the time independent DA is

Dr2UðrÞ þ maUðrÞ ¼ EðrÞ, (1)

being UðrÞ the average diffuse intensity, EðrÞ the source term and D ¼ 1
3ðm
0
s þ maÞ.

On the other hand, for a given geometry, i.e. infinite, semi-infinite or a slab, and with the use of the adequate boundary
conditions, analytical solutions of DA for homogeneous media can be obtained with relative ease [3,4]. Additionally, in
particular for the case of optical mammography, it is very important to solve the problem considering immersed
inhomogeneities. The solution becomes more complicated in this case and it is still matter of active research [5].

Numerical Monte Carlo (MC) simulation, in which photons are tracked individually while they propagate inside the
medium, is a very flexible, powerful tool capable of dealing with relative complex situations, and that has been extensively
used as a validation gold standard for many diffusion problems. Its main drawback lies in its essence: results are built up
stochastically accumulating photon by photon at a desired space or time point. Occasionally, many photons have to be
launched before one succeeds and thus, very long calculation times may be required to achieve a result with reasonable
good statistics [6–8]. Noise decreases with the square root of positive events (detected photons) and so, improving signal to
noise ratio by a factor of three, requires increasing by a factor of almost 10 the number of launched photons, thus increasing
calculation time by the same factor [9]. Because of this, several acceleration techniques have been proposed in the last
years [10–12].

It should also be clearly stated that MC, as well as present analytical approaches, cannot deal with the real final
objective; that is, the solution of the inverse problem, i.e. to find the inhomogeneity which produces a given solution. But it
is precisely the flexibility of MC what allows to obtain a solution for almost any imaginable geometry and configuration,
and is the reason why finding algorithms to improve the time performance of MC codes is of great interest.

At this point it is important to clarify that the term ‘‘photon’’ used along this text bears no resemblance to the photon
concept defined in terms of quantum electrodynamics. According to this interpretation, the photon is a quantum of a single
mode of the electromagnetic field. As such, it fills the volume of quantization, and thus it cannot be localized in space.
Instead, the concept of ‘‘photon’’ is used here in a phenomenological sense and what is meant by ‘‘photon’’ is a discrete
packet of energy which is launched in MC to solve the scalar RTE. A clear and detailed discussion about this subject can be
found in Refs. [13,14]. In the present approach, since MC is applied to radiances rather than to electric fields, coherent
backscattering is not taken into account. Possible cases in which it may be of relevance are described in [13].

In this paper, we propose a novel approach to reduce calculation time in MC simulations in turbid media slabs
containing inhomogeneities. The basic idea is to avoid tracking photon by photon inside the homogeneous initial portion of
the slab, until the inhomogeneity is reached, and replacing this MC procedure by either a theoretical or another (already
done and stored) calculation. The method proves to be particularly good in cases with deep inhomogeneities, where the
initial homogeneous portion is significant in comparison with the whole slab. Even if the principles of the proposed method
are applicable to both, time resolved or continuous wave (CW) approaches, the results presented here are specialized for
the CW case.

In the next section, we briefly describe the general principles of MC simulations for light propagation in turbid media.
Section 3 is dedicated to bring a detailed description of the idea presented in this work, which leads to speeding up of the
MC simulations. We then present some results for both, homogeneous slabs and slabs including an inhomogeneity,
pointing out the reduction factor in computation time. At the end, a section is devoted to the discussion and conclusions.
2. Basic principles of MC simulation in turbid media

MC simulations are carried out by launching at the entrance face of a slab of turbid medium of thickness S, an infinitely
narrow photon beam consisting of N0 photons perpendicularly incident on the slab. Incidence direction is assumed to be z

and x and y are the directions perpendicular to the incident beam. Photons are launched one at a time starting at position
ð0;0;0Þ. For the collection procedure, we distinguish two cases: (i) diffuse transmission or transmittance, in which
collection is made at the opposite face of the slab, at points ðx; y; z ¼ SÞ and (ii) diffuse reflectance in which photons are
collected at ðx; y; z ¼ 0Þ. A particular case of diffuse transmission is called transilluminance, in which the input photon beam
is launched at several x positions across the entrance surface of the slab, being ðx;0; zÞ the light incidence point, and the
detector is placed at the other face of the slab ðz ¼ SÞ in the prolongation of the incidence direction, z.

The basic flow diagram adopted in this work for the MC code, follows the original idea from Wang et al. [15], and we
shall give here only the general rules that describe the code. We have also compared the results obtained with this code
with experimental and theoretical models in a previous paper [16].

The propagation of each photon is determined by a set of random numbers fRj; j ¼ 1;2;3;4g, uniformly distributed
between 0 and 1, and by the optical properties of the medium; that is, its scattering coefficient ðmsÞ, its absorption
coefficient ðmaÞ; and the anisotropy factor g.

Between successive scattering events, a propagation step of length given by

l ¼ �
lnðR1Þ

mt

(2)
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is assumed. The new direction of propagation is determined by two additional random numbers, R2 and R3, which produce
the new propagation angles. The azimuthal angle f is considered to be uniformly distributed and it can take values
between 0 and 2p; thus it results

f ¼ 2pR2. (3)

The deflection angle y has to be sampled according to certain probability distribution for its cosine, called the ‘‘phase
function’’. The usual choice for it is the well-known function proposed by Henyey and Greenstein for stellar atmospheres
[17]. In accordance with this proposal we take

cos y ¼
1

2g
1þ g2 �

1� g2

1� g þ 2gR3

� �2
" #

if ga0;

2R3 � 1 if g ¼ 0;

8>><
>>: (4)

where g for the case of biological tissue is, in most cases, a value between g ¼ 0:7 and 0:9 [1].
At each new position of the photon it is decided if absorption takes place or if scattering process goes on, by R4.

Absorption occurs if

R4o
ma

mt

(5)

and the photon is killed; otherwise, scattering proceeds [15].
Fresnel reflections are taken into account only at the input and output faces of the slab, since its lateral dimensions were

assumed to be large enough so as to avoid border effects; photon propagation was allowed up to distances from the optical
axis as large as 20 times the slab thickness. The real part of the refractive index of the inhomogeneities was considered to
have negligible difference with respect to that of the bulk; consequently, Fresnel reflections between the bulk and the
inhomogeneity were dismissed.

3. The proposed acceleration method

Consider the situation shown in the scheme of Fig. 1, in which we have represented the plane x2z of a slab of a given
turbid medium of thickness S. Illumination direction is assumed to be coincident with z, and lateral dimensions of the slab
are taken to be large in comparison to its thickness, that is LxbS and LybS. The slab, which in the following will be called
‘‘the host’’, is characterized by the optical parameters n0, ma0, m0s0. An inhomogeneity of parameters n, ma, m0s and of typical
dimension rinh is centered at coordinates ðx0; y0; z0Þ inside the host, such that the minimum absolute distance from any
point in the inhomogeneity to the entrance face of the slab, z ¼ 0, is S1. In the above paragraph, n0 and n refers to the real
part of the refractive index.

In a normal MC simulation for a slab, homogeneous or containing inhomogeneities, a photon is launched at the entrance
of the slab and it is tracked until it is absorbed or it emerges through a given desired collection area at z ¼ S, namely the
detector. Fresnel laws must be properly taken into account if any index mismatch occurs. This tracking has to be done for
each one of the desired N0 photons, and they may or may not interact with the inhomogeneity (if any is present) during
their ‘‘trip’’ inside the medium. But the crucial point is that all the photons without exception will evolve within an
rinh

X

Z

S

S1

S2

x0

z0

Detector
OUT

Fig. 1. Sketch showing the slab geometry considered. A slab of thickness S is divided into an homogeneous portion of thickness S1 and another portion, S2,

containing the inclusion. Photons are launched at z ¼ 0 and collected at z ¼ S.
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homogeneous medium of thickness S1, until they reach for the very first time the frontier z ¼ S1 at a point of coordinates
ðx; y; S1Þ.

The basic idea for achieving acceleration in our proposal is to consider propagation within this first layer of the host,
that is up to z ¼ S1, as already solved and to use this information as an input to proceed to track photons inside the whole
host of thickness S, but starting at z ¼ S1.

Two points need to be emphasized here:
(i)
 At z ¼ S1 not all photons remain close to the z-axis. Because of diffusion, they are now spread around this axis,
following a certain distribution Nðx; yÞjS1

. This matrix contains the number of photons that have reached the plane
z ¼ S1 with no interaction with the inhomogeneity, and must not be mistaken for UðrÞ when the inhomogeneity is
present; this means that, until this point is reached, no photon will have any chance of interaction with the
inhomogeneity.
(ii)
 Despite the fact that now photons are launched starting from inside the host at depth S1, this does not preclude that
they may be backscattered into the first homogeneous layer again. Thus, MC simulation is started at a given depth S1

but it is carried out considering the complete medium, that is the slab of thickness S ¼ S1 þ S2. This is a major point in
our proposal and should not be misunderstood considering that photons starting at z ¼ S1 are only tracked forward
with no chance of re-entering the first homogeneous layer.
There are two ways for obtaining Nðx; yÞjS1
, namely (i) to run MC simulations for the homogeneous portion, for several

values of S1 and for several sets of optical parameters, building up a data base to be kept until it is required in a particular
problem, or (ii) to run some theoretical calculation using the DA for the exact situation every time it is required. Clearly, the
second choice is much more convenient because of several reasons: it lasts seconds, so it can be calculated after
the particular problem has been defined, avoiding having many stored files considering hypothetical cases which may be
not useful at all.

To test the validity of this assumption we show in Fig. 2a the absolute number of photons per pixel along the x direction
obtained with both, MC and theory, at ðy ¼ 0; z ¼ S1 ¼ 1 cmÞ when 107 photons are incident upon the entrance plane.

The main assumption in the present approach, that must be clearly stated, is:
Since in MC simulations the photon can only ‘‘know’’ about the presence of the inhomogeneity after arriving at plane

z ¼ S1, theoretical calculations must be made inside a homogeneous, semi-infinite medium, and considering a
mathematical, index matched frontier inside the bulk at z ¼ S1, to build up the desired matrix of distribution of photons,
Nðx; yÞjS1

. Clearly, this value of Nðx; yÞjS1
will not be the final, stationary distribution of photons at z ¼ S1 after the complete

slab is considered, since photons starting at that plane may be backscattered again into the first zone, following the
probability law defined by the corresponding anisotropy factor.

As already stated, once the matrix at z ¼ S1, Nðx; yÞjS1
is known, it is used as the input data for running the MC simulation

considering the complete slab of thickness S. It is now important to take into account Fresnel reflections at both physical
ends of the slab (at z ¼ 0 and at z ¼ S).

Each bin centered at ðx; yÞ in this matrix contains a certain number of photons, Nðx; yÞ which are to be launched starting
at ðx; y; z ¼ S1Þ. Initial direction cosines at z ¼ S1 are obtained within this step of the simulation, following the
corresponding distribution given by a random law for the azimuthal angle f and by the anisotropy factor of the particular
problem for the deflection angle, y (see Eqs. (3) and (4), respectively). Thus, direction cosines do not need to be stored in the
matrix, since there would be three numbers for each photon, resulting in a huge amount of data to be stored in the auxiliary
file. Additionally, if theory is used to obtain Nðx; yÞjS1

, there is no information about the angle distribution. This is an
important assumption, since now the scattering angle is obtained with respect to the z-axis and not relative to the incident
photon direction, which can lead to a systematic error in the MC calculations. However, it is understandable from the very
stochastic nature of the process which ensures isotropy after about 1=m0s cm [18] and it is verified later by the numerical
experiments. In fact, if this error were significative, the estimated acceleration factor (AF) defined at the end of this section
would be larger than expected, since photons should be starting at z ¼ S1 with an additional forward component, thus
reducing travel time within S2. As shown later, this is not the case, thus supporting this assumption, at least for the
thicknesses and optical parameters (typical for biological tissues) considered in this work.

Photons are tracked inside the whole slab, of thickness S ¼ S1 þ S2, until they are absorbed or collected at z ¼ S within
the detector area.

It should be mentioned that the matrix Nðx; yÞjS1
obtained by MC contains, in each bin, the number of photons that have

actually passed through the plane z ¼ S1, which is not exactly the number of photons at z ¼ S1, as it is the case in theoretical
calculations. This error may be considerable if the thickness of the region including the inhomogeneity is comparable to
the inverse of the scattering mean free path. For the case of typical biological tissues, this is of about 1=ms � 0:02 cm so
we have calculated, using theory, the photon distribution at both, z ¼ S1 ¼ 1 cm and at z ¼ S1 � 1=ms, showing a
discrepancy of the order of 6% at the axis ðx ¼ y ¼ 0Þ and of less than 4% in the total number of photons present at plane
z ¼ S1. This discrepancy becomes less important if the initial homogeneous portion of the slab is increased in comparison
to 1=ms, decreasing following an exponential-like law, which reaches 3% at the axis for S1 � 3 cm.

Taking into account that photon propagation time, up to a distance L inside an homogeneous medium, is proportional to
L [18], it is possible to obtain a first estimation of the AF for the case shown in Fig. 1 and for the optical parameters of both,



ARTICLE IN PRESS

0

500

1000

1500

2000

N
um

be
r o

f P
ho

to
ns

X Coordinate [cm]

1E7 Photons
 MC
 Theory

-4 -3 -2 -1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0  MC 2cm
 Hybrid: Theo 
1cm + MC 1cm

N
or

m
al

iz
ed

 T
ra

ns
m

ita
nc

e

X Coordinate [cm]
-4 -3 -2 -1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
ra

ns
m

ita
nc

e

X Coordinate [cm]
-4 -3 -2 -1 0 1 2 3 4

 Hybrid: MC 
1cm + MC 1 cm

 MC 2cm

Fig. 2. (a) Comparison of the number of photons at ðx; y ¼ 0; z ¼ S1 ¼ 1 cmÞ obtained with MC and with theory when 107 photons are incident at ð0;0;0Þ.

Note that these are raw data and no normalization process was carried out. (b) Comparison of light transmittance at ðx; y ¼ 0; z ¼ SÞ for a 2 cm slab

obtained by pure MC simulation over the 2 cm (dots) and by splitting the MC run into two steps as detailed in the text (line). (c) Same as (b) but using a

theoretical calculation for computing the photon distribution Nðx; yÞjS1
at plane z ¼ S1.
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host and inclusion, having values which are usual for biological tissues [19]. It results

AF �
S

S2
¼

S

S� S1
. (6)

The actual value for AF will depend on the relative values of the optical properties of the bulk and the inclusion, but it is
clear that deeper inhomogeneities will result in larger values for AF.
4. Results and discussion

To test the performance of the proposed acceleration method, we carried out two kinds of numerical experiments. In all
cases we used a slab of thickness S ¼ 2 cm, with optical properties similar to biological tissue, namely ma ¼ 0:03 cm�1,
ms ¼ 50 cm�1, g ¼ 0:8 and therefore, m0s ¼ 10 cm�1. The slab was considered either as a unique piece of S ¼ 2 cm or two
pieces, of thicknesses S1 and S2 ¼ S� S1. Refer to Fig. 1 for the arrangement. In all numerical simulations, photon
propagation was allowed up to distances from optical axis as large as 20 times the slab thickness. However, for the
parameters used, a relevant number of photons is counted up to lateral distances of about Lx ¼ Ly ¼ �4 cm. Thus, for
collecting data, we defined 160 bins in each transverse direction, each one having an area of ½0:05 cm�2. All calculations
were carried out in a PC with a 2.66 GHz clock (sequential processing).

In the first experiment, we compare the light transmittance, that is the light distribution at ðx; y; z ¼ SÞ obtained with a
pure MC simulation over a slab of 2 cm, in which all photons are launched at ð0;0;0Þ with the same quantity when the slab
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is considered as being composed of two pieces of 1 cm each. In the later, the MC starts running at z ¼ S1 ¼ 1 cm and
continues up to z ¼ S. The required input data, that is the photons distribution at plane z ¼ S1, which we have already
defined as the matrix Nðx; yÞjS1

, can be obtained either by MC or by analytical results. We present results considering both
options.

This experiment has a double purpose; first, to check internal consistency and normal functioning of the MC when it
starts at some depth z ¼ S1, using as input the file containing the matrix with the number of photons at each grid position,
and second, to verify the AF, defined in Eq. (6).

Fig. 2(b) compares results for light transmittance using MC for a homogeneous slab of thickness S ¼ 2 cm with those
obtained splitting the calculation into two steps and calculating both by MC. The first step, within a homogeneous slab of
thickness S1 ¼ 1 cm, to generate the matrix Nðx; yÞjS1

, and the second considering the complete slab of thickness S but
starting the simulation at S1 and using Nðx; yÞjS1

as the initial photon distribution. This experiment shows the self-
consistence of the method and will allow to deal with the more complex and interesting situation, when inhomogeneities
are present. Dots in this figure were obtained considering the slab of 2 cm and launching 107 photons at ð0;0;0Þ, and
collecting those which survive at the opposite face of the slab, at coordinates ðx; y; z ¼ SÞ. Total calculation time for this MC
experiment considering the slab of 2 cm was DtMC ¼ 41 min. The solid line is the same output, but obtained splitting the
MC simulation into two steps as mentioned above. Calculation time for the experiment starting at z ¼ 1 cm was
DtMC

z¼1 cm ¼ 21 min. Since the matrix Nðx; yÞjS1
can be considered as previously known, belonging to a data base, the total

time for the complete simulation is thus, also DtTotal ¼ DtMC
z¼1 cm ¼ 21 min.

As expected, both results coincide very well. Note, however, that they are not exactly the same due to the statistical
nature of MC. The resulting AF can be calculated straightforward and compared with Eq. (6):

AF ¼
DtMC

DtMC
z¼1 cm

¼
41

21
¼ 1:95 ’ 2 ¼

S

S2
. (7)

Fig. 2c, corresponds to a similar situation as in Fig. 2b, but now the data contained in the matrix Nðx; yÞjS1
were obtained

by a theoretical solution of the DA. In our case we followed the approach from Contini et al. [4] for obtaining TðrÞds, i.e. the
probability of one photon emitted by the source of exiting the slab from the surface element ds at a certain distance r from
the origin. Using this model, and multiplying for the desired number of input photons at the origin, we constructed the
theoretical version of Nðx; yÞjS1

. Run-time for this step is no more than a few seconds and can be neglected. Using this
matrix as the input for MC we obtained the solid line of Fig. 2c. The computed time for this experiment starting at z ¼ 1 cm
was DtMC

z¼1 cm ¼ 24 min; this is, of course, very similar to the previous 21 min, since in both cases MC starts at S1 ¼ 1 cm. We
can now compute AF again as

AF ¼
DtMC

DtMC
z¼1 cm

¼
41

24
¼ 1:71 ’ 2 ¼

S

S2
. (8)

At this point it is worthwhile to notice that in both cases presented here, the actual AF is less than the predicted one.
A possible explanation to this behavior could be the following: in MC simulations computation time increases each time
the photon reaches a new point, since the corresponding new interaction needs to be evaluated. Thus, when the travel time
to a given depth S is evaluated, what is actually accounted is the time to pass this depth up to a little larger depth, Sþ DS

and therefore the travel time is overestimated. The thinner the considered slab, the more noticeable is this effect. In our
examples the numerator involves MC calculations over 2 cm, while in the denominators MC runs only over 1 cm slabs; time
overestimation is less important in the numerators than in the denominators, leading to a underestimation of the AF.

It is also interesting to notice that the calculation time for the denominators of Eqs. (7) and (8) is not exactly the same,
even if both slabs are 1 cm deep. This is due to the fact that the starting photon distributions at plane z ¼ S1, Nðx; yÞjS1

are
statistically equivalent but not exactly identical.

In the second type of simulations we carried out a transillumination experiment in which some inhomogeneity is
deeply immersed in the slab. In the transillumination geometry, photons are launched at ðx;0;0Þ, and then collected at the
opposite face of the slab at the projection of the incidence direction of light (optical axis), that is at ðx;0; z ¼ SÞ, by a detector
of an area of 1� 1 bins and for several values of x. As an example of inclusion, we have taken a cylinder of 0:3 cm diameter
having the same reduced scattering coefficient and the same anisotropy factor as the bulk, that is m0sjCyl ¼ 10 cm�1 and
gjCyl ¼ 0:8, but with a higher absorption coefficient, namely majCyl ¼ 0:9 cm�1 (majBulk ¼ 0:03 cm�1). This high value was
selected intentionally in order to clearly show the variation in light transmittance for the different positions of the
inclusion relative to the optical axis. Note that in real cases of tumors immersed in biological tissue, it absorption
coefficients may be up to 10 times larger than that of the surrounding medium [19].

The inclusion was placed with its center at a depth of 1.85 cm. That is, the cylinder surface is tangent to the plane
z ¼ S ¼ 2 cm. We have then divided the problem in an homogeneous slab of S1 ¼ 1:7 cm plus a slab of 0.3 cm containing the
inhomogeneity. We construct the matrix Nðx; yÞjS1

by using the theoretical model described above, and then run the MC
code starting at S1 ¼ 1:7 cm and for several transverse positions of the inhomogeneity relative to the incident photon beam,
scanning the x coordinate of this last one from x ¼ �1:5 cm to 1:5 cm in 0.05 cm steps. Results are shown in Fig. 3, in which
the light intensity collected at the detector is represented as a function of the center of the inhomogeneity relative to the
incident photon beam. Dots are the result of running a pure MC code over a slab of S ¼ 2 cm, and starting at z ¼ 0, where
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107 photons are launched. Stars are obtained by running a MC code starting at z ¼ S1 ¼ 1:7 cm using Nðx; yÞjS1
as input.

Clearly, both results are statistically identical.
Computation time for the pure MC simulation over the slab of S ¼ 2 cm was measured to be DtMC

z¼2 cm ¼ 77:5 h, while
simulation for the hybrid simulation took only 9.5 h. The resulting accelerating factor is then

AF ¼
77:5

9:5
¼ 8:16,

whereas the expected AF for a slab of 0:3 cm containing the inhomogeneity is AF ¼ S=S2 ¼ 2=0:3 ¼ 6:67. Note that we have
chosen for the inclusion an absorption coefficient that is 30 times larger than that of the bulk. Thus, specially for positions
of the center of the inhomogeneity close to the optical axis, photons will be killed comparatively faster after they enter the
inhomogeneity. This explains why actual AF results greater than the expected limit for homogeneous slabs.

Our approach can be easily implemented with minor modifications of the original codes, requiring only to read the
auxiliary file containing the photons distribution at z ¼ S1.

Moreover, it is worth noticing that the present approach can be used in conjunction with any other acceleration method,
thus multiplying the individual gain factors.

5. Conclusions

We have proposed a simple method for reducing computation time in MC simulations, specially for transillumination
geometries in slabs of thickness S containing deep inhomogeneities. It is based in splitting the simulation into two pieces,
one for the homogeneous portion of the slab, of thickness S1, which can be theoretically calculated in a negligible lapse, and
another one where pure MC simulations are carried out, starting from the bidimensional photons distribution at a depth S1

and considering the whole slab with the inclusion. As a result, computation time can be reduced in a factor close to
S=S� S1, depending on the optical properties and on the depth of the inclusion present in the second step of the calculation.

The proposal has been tested for homogeneous and inhomogeneous cases, producing no alterations with respect to pure
MC simulations but with a noticeable AF.
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