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Abstract

The secretion of extracellular vesicles (EVs) in helminth parasites is a constitutive mecha-

nism that promotes survival by improving their colonization and adaptation in the host tissue.

In the present study, we analyzed the production of EVs from supernatants of cultures of

Echinococcus granulosus protoscoleces and metacestodes and their interaction with den-

dritic cells, which have the ability to efficiently uptake and process microbial antigens, acti-

vating T lymphocytes. To experimentally increase the release of EVs, we used loperamide,

a calcium channel blocker that increases the cytosolic calcium level in protoscoleces and

EV secretion. An exosome-like enriched EV fraction isolated from the parasite culture

medium was characterized by dynamic light scattering, transmission electron microscopy,

proteomic analysis and immunoblot. This allowed identifying many proteins including: small

EV markers such as TSG101, SDCBP, ALIX, tetraspanins and 14-3-3 proteins; proteins

involved in vesicle-related transport; orthologs of mammalian proteins involved in the

immune response, such as basigin, Bp29 and maspardin; and parasite antigens such as

antigen 5, P29 and endophilin-1, which are of special interest due to their role in the para-

site-host relationship. Finally, studies on the EVs-host cell interaction demonstrated that E.

granulosus exosome-like vesicles were internalized by murine dendritic cells, inducing their

maturation with increase of CD86 and with a slight down-regulation in the expression of

MHCII molecules. These data suggest that E. granulosus EVs could interfere with the anti-

gen presentation pathway of murine dendritic cells inducing immunoregulation in the host.

Further studies are needed to better understand the role of these vesicles in parasite sur-

vival and as diagnostic markers and new vaccines.

Author summary

Human cystic echinococcosis, caused by chronic infection with the larval stage of Echino-
coccus granulosus, affects over 1 million people worldwide. This helminth parasite secretes
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numerous excretory/secretory products that are in contact with host tissues where it

establishes hydatid cysts. In this study, we comprehensively characterized extracellular

vesicles (EVs) from E. granulosus protoscoleces and metacestodes, and demonstrated for

the first time that the exosome-like vesicles from helminths can interact with host den-

dritic cells and carry several immunoregulatory proteins. This study provides valuable

data on cestode-host immune communication. Nevertheless, further research on EVs is

needed to fully understand their role in the parasite-host interface and obtain new data

concerning their function as therapeutic markers and diagnostic tools.

Introduction

Human echinococcosis is a zoonotic cestode disease caused by the larval stages of Echinococcus
(family Taeniidae). It is considered as a re-emerging and neglected disease that causes serious

chronic lung and liver diseases. The two Echinococcus species of greater public health impor-

tance and economic concern worldwide are Echinococcus multilocularis, responsible for alveo-

lar echinococcosis (which is restricted to the Northern hemisphere), and Echinococcus
granulosus responsible for cystic echinococcosis (which is globally distributed) [1, 2].

The larval stage of these parasites develops as metacestodes (fluid-filled cysts) in the viscera

(mainly in the liver) of mammalian intermediate hosts. Metacestodes are formed by a thin cel-

lular layer (germinal layer) from which protoscoleces (larval form that can develop either in an

adult worm in the final host or in a secondary hydatid cyst in an intermediate host) bud. The

cells of the germinal layer secrete the laminated layer, an acellular and carbohydrate-rich layer

that surrounds the metacestode [2, 3]. The laminated layer, only present in the genus Echino-
coccus, appears to be a key component of the host-parasite interface, being involved in the

maintenance of the cyst physical integrity and in the interaction with the host immune system

[2, 4]. This structure is composed of mucins containing defined galactose-rich carbohydrates,

and, in E. granulosus, is also accompanied by calcium inositol hexakisphosphate deposits

(InsP6) [3].

These helminth parasites lack digestive and excretory systems but have developed active

endocytic and exocytic cellular processes to regulate metabolite uptake and excretion [5]. In

previous studies, we have determined an increased exocytosis rate in the E. granulosus larval

stage, which could be controlled by calcium concentration and in which proteins such as calci-

neurin and calpains are involved [6]. These proteins have been reported to be involved in

unconventional vesicle-mediated protein secretion and in inflammatory responses [7].

Recently, it has been suggested that the endo/exosomal vesicular trafficking pathways share

common features with autophagy [8, 9], which is an active process in E. granulosus both in

basal conditions and after pharmacological treatment [10, 11].

Helminth parasites release several molecules, such as proteases, glycolytic enzymes and pro-

tease inhibitors into the mammalian hosts [12]. These products are known as excretory/secre-

tory products which are exposed to the host immune system and could be involved in its

modulation and the consequent parasite survival [13]. In this context, extracellular vesicles

(EVs) are considered interesting target structures due to their potential role in parasite-para-

site and host-parasite communication [14, 15]. Depending on their intracellular site of origin,

composition and size, EVs are classified into exosomes, ectosomes or microvesicles, and apo-

ptotic and autophagic vesicles [16–18]. Although EVs exhibit a varied range of sizes, exosomes

are considered small vesicles (sEVs) of typically 30–150 nm which originate from the inward

budding of late endosomes that form multivesicular bodies (MVBs) with intraluminal vesicles

(ILVs) [19]. When MVBs fuse with the plasma membrane, ILVs are released as exosomes from
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the cell surface. Consequently, the biochemical composition of exosomes is associated with

their biogenesis, including proteins from the endosomal-sorting complexes required for trans-

port (ESCRT) pathway [20]. Although, the EV composition is presumably context-dependent,

no universal and specific EV markers are yet available [21]. Nevertheless, Kowall et al. [22] have

recently proposed the proteins Syntenin-1 (Syndecan Binding Protein -SDCBP-) and Tumor

Susceptibility Gene 101 (TSG101) as markers of bona fide exosomes in mammalian systems.

Microvesicles comprise larger structures than exosomes (usually 100–1000 nm) and are

directly produced by budding from the plasma membrane, generally as a consequence of an

external stimulus that causes an intracellular Ca+2 increase [23].

Several studies have reported that helminth parasites secrete EVs that could play important

roles during infection [24–28]. It is known that cestodes such as Taenia crassiceps, Mesoces-
toides corti and E. multilocularis secrete EVs with protein and miRNA cargo that can modulate

the host immune system [29]. Recently, dos Santos et al. [30] confirmed the presence of EVs in

hydatid fluid from fertile and infertile metacestodes of E. granulosus, whereas simultaneously,

Siles-Lucas et al. [31] demonstrated that E. granulosus cysts secrete exosome-like vesicles into

the hydatid fluid and that these vesicles contain proteins involved in cyst survival. Since infor-

mation on the function of EVs in this cestode is still limited, the aims of this study were to

characterize the EVs produced by the larval stage of E. granulosus and to investigate the inter-

action of EVs with host cells, to find out whether this interaction plays a role in host immuno-

modulation. In addition, given that the release of EVs can depend on different stimuli like

calcium increase and therapeutic treatment, we analyzed the occurrence of exosome-like vesi-

cles and the protein composition of EVs released from control parasites and parasites treated

with loperamide, a calcium channel agonist with anti-echinococcal effect [32].

Methods

Ethics statement

The animal study was carried out in agreement with National Health Service and Food Quality

(SENASA) guidelines, Argentina and with the 2011 revised form of The Guide for the Care

and Use of Laboratory Animals published by the U.S. National Institutes of Health. The Ani-

mal Experimental Committee at the Faculty of Exact and Natural Sciences, Mar del Plata Uni-

versity approved the experimental protocols (permit number: 2555-08-16).

Experimental animals

Specific-pathogen free female CF-1 mice (28–35 g) were provided by the SENASA. A mini-

mum number of animals were used in each experiment. The animals (five mice per cage) were

kept under controlled laboratory conditions (temperature ±20˚C, 12 hour light/12 hour dark

with lights off at 8.00 p.m.). They were maintained with water and food ad libitum, monitored

daily and placed in a clean cage with fresh sawdust every 3 days. E. granulosus metacestodes

were obtained from the peritoneal cavity of mice injected with 1500 protoscoleces in suspen-

sion. For each experiment, the infected mice were anesthetized with ketamine-xylazine (50

mg/kg/mouse-5 mg/kg/mouse) and sacrificed by cervical dislocation at 6–8 months post infec-

tion. All efforts were made to minimize suffering.

In vitro culture of protoscoleces and metacestodes

Echinococcus granulosus protoscoleces were obtained from lung and liver of infected cattle pre-

sented for routine slaughter at the abattoir in the province of Buenos Aires, Argentina. The vis-

cera were transported to the laboratory where the hydatid cysts were aseptically opened to
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remove the laminar and germinal membranes along with the hydatid fluid and the protosco-

leces. Protoscoleces were exhaustively washed in Phosphate Buffered Saline (PBS) and main-

tained in sterile conditions until in vitro culture. Protoscolex in vitro culture (n = 3,000/

9.5cm2), and viability assays were carried out as previously described [33]. Briefly, they were

cultured in medium 199 (Gibco) supplemented with antibiotics (penicillin, streptomycin, and

gentamicin 100 μg/ml) and glucose (4 mg/ml) in Leighton tubes at 37˚C without changing the

medium. Vitality was determined by methylene blue exclusion test. Otherwise, E. granulosus
metacestodes (10–20 cysts for each drug treatment, with diameters ranging between 5 and 15

mm and free from the adventitial layer) were aseptically obtained from the peritoneal cavities

of CF-1 mice 6–8 months after intraperitoneal infection with protoscoleces (n = 1500) [34].

They were cultured in the same conditions than protoscoleces and viability was assessed based

on the collapse of the germinal layers.

Since it is known that intracellular calcium increase plays a role in exosome release [35–38],

and the loperamide can rise the cytosolic free Ca+2 concentration ([Ca+2]i) [39], the addition

of this drug at the parasite cultures, could ensure the high EVs production from E. granulosus.
In vitro protoscolex- and metacestode-sub-lethal treatments were assayed with loperamide dis-

solved in dimethyl sulfoxide (DMSO) at 20 and 50 μM as final concentrations. Parasites incu-

bated in culture medium containing 0.1% DMSO were used as controls.

Detection of cytosolic calcium levels into E. granulosus protoscoleces

Changes in [Ca+2]i using Fluo-3 acetoxymethyl ester (Fluo-AM) probe were fluorometrically mon-

itored [33]. Experiments were performed with 5 x 103 protoscoleces and incubated with 50 μM of

loperamide for 4 h. Pretreatments with 1 mM EGTA plus 100 μM BAPTA-AM calcium chelators

were performed for 15 min. Then, fluorescence was recorded with a spectrofluorimeter (model F-

4500; Hitachi). The excitation and emission were set at 488 nm and 505–530 nm, respectively. Par-

asite-autofluorescence was individually corrected and untreated controls were included in each

replication. Experiments were done in quintupled. Statistical analysis was done with the nonpara-

metric Mann–Whitney test, a p-value of less than 0.05 was considered significant.

Extracellular vesicles purification

Extracellular vesicles were enriched by differential centrifugation [40]. Briefly, 9000 protosco-

leces or 45 cysts were maintained in serum-free media for 5 days and incubated in control con-

ditions or with 20 μM of loperamide for 16 more hours. Following, the parasite culture

medium was collected and centrifuged at 300 xg, 10 min; then at 2000 xg, 10 min and finally at

10000 xg for 30 min to remove large dead cells and large cell debris. The supernatant was ultra-

centrifuged at 100,000 xg for 1 h to pellet the vesicles in an Optima LE-80k ultracentrifuge

(Beckman) using a 90 Ti rotor. To remove contaminating proteins, the pellet was washed with

3 ml of PBS and finally centrifuged at the same high speed. EVs were resuspended in 30 μl PBS

and protein concentration was determined by absorbance at 280 nm with a Nanodrop spectro-

photometer and by Bradford method for supernatants from the ultracentrifugation step. Statis-

tical analysis was done with the Kruskal-Wallis test with Dunn’s multiple comparisons post-

test; p-values of< 0.05 were considered to be significant. Finally, EVs were stored at -80˚C

until experimental use. The 100,000 xg supernatant was collected, lyophilized, resuspended in

100 μl nuclease-free water and stored at -20˚C for protein content comparison.

Dynamic light scattering (DLS)

Size distribution profile and number of the vesicles isolated from protoscoleces of E. granulo-
sus were performed with DLS using a Zetasizer Nano (Nano ZSizer-ZEN3600, Malvern, U.K.)
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at the Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas (NIFTA- Argentina).

Briefly, samples were captured at 25˚C ± 1˚C and diluted 1:50 in pre-filtered PBS and measure

at a scattering angle of 173˚ with a He-Ne 633 nm laser. A total of 6 scans, each with duration

of 60 s were recovered for each sample.

Transmission electron microscopy

Extracellular vesicles were fixed in 2% paraformaldehyde in PBS and send refrigerated to a

Transmission Electron Microscopy (TEM) external service for analysis (Centro Regional de

Investigaciones Básicas y Aplicadas de Bahı́a Blanca -CRIBABB- Argentina). Procedures were

carried out as described in [40]. EV-preparations were placed on a 300-mesh Formvar coated

copper grids, negative stained with 1% (w/v) uranyl acetate for 1 min and examined at 100kV

in a JEOL JSM 100CX II transmission electron microscope. Fiji software was used to evaluate

the diameter of the vesicles observed in MET pictures. Data were statistically compared using

the Kruskal-Wallis test with Dunn’s multiple comparisons post-test; p values of< 0.05 were

considered to be significant.

Additionally, control and loperamide-treated protoscoleces were also fixed and observed by

TEM as previously described [11]. Briefly, parasites were fixed with 3% glutaraldehyde in

sodium cacodylate buffer for 24 h at 4˚C. Then, they were send refrigerated to a TEM external

service for analysis (Servicio Central de Microscopı́a Electrónica de la Facultad de Ciencias

Veterinarias, Universidad Nacional de La Plata) where they were post-fixed in 2% OsO4 in

cacodylate buffer, dehydrated in a graded acetone series and subsequently embedded in resin

epoxy and examined with a JEM 1200 EX II (JEOL Ltd., Tokio, Japan) transmission electron

microscope at 80 kV.

Proteomic analysis

The purified EVs (100 μg) and the supernatants were run 1 cm into the resolving gel of a 10%

SDS-PAGE. Then, the gel was stained with colloidal Coomassie Blue G-250 and the samples

cut from the gel and sent to the CEQUIBIEM proteomic service (Buenos Aires, Argentina) for

mass spectrometry analysis and protein identification. Briefly, the samples were incubated

with 20 mM dithiothreitol for 45 min at 56˚C for reduction, and with 20 mM iodoacetamide

for 45 min at room temperature in darkness for alkylation. Then, the samples were digested

using trypsin and were processed by nano-HPLC (EASY-Spray Accucore, Thermo Scientific,

West Palm Beach, FL, USA) coupled to a mass spectrometer with Orbitrap technology

(Q-Exactive, Thermo Scientific, West Palm Beach, FL, USA) allowing peptide separation and

identification. The sample ionization was made by electrospray (EASY-SPRAY, Thermo Scien-

tific, West Palm Beach, FL, USA) and the data analysis was carried out by the Proteome Dis-

coverer software version 1.4, Thermo Scientific. Only proteins with at least two peptides in

two replicates were selected for further analyses.

The in silico analyses to establish the subcellular location and Gene Ontology (GO) classifi-

cation of the identified proteins were performed using the UniProt database and software

(http://www.uniprot.org/). Additionally, these proteins were also classified using the Reactome

pathway database (https://reactome.org/) and manually based on data from the available litera-

ture. Moreover, the identified proteins were compared with those cataloged in the ExoCarta

database (http://www.exocarta.org/).

The proteins identified as “uncharacterized, hypothetical, conserved or expressed protein”

were analyzed and classified based on the presence of conserved domains using ProDom

(http://prodom.prabi.fr/prodom/current/html/form.php), CDART (https://www.ncbi.nlm.

nih.gov/Structure/lexington/lexington.cgi) and CDD (https://www.ncbi.nlm.nih.gov/cdd/).
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Finally, to determine whether the uncharacterized proteins were secreted by classical or non-

classical secretory pathways, we used SignalP server (http://www.cbs.dtu.dk/services/SignalP/)

and SecretomeP server (http://www.cbs.dtu.dk/services/SecretomeP/) [41], respectively. These

softwares were developed for bacterial and mammalian systems but they are also used in hel-

minths [42, 43].

Immunoblotting

Isolated EVs were lysed in CytoBuster protein extraction reagent (Novagen), supplemented

with protease and phosphatase inhibitors (Thermo Fisher Scientific). Protein quantification

was performed using the BCA Protein Assay (Pierce). A volume of 10 μl of EV-ultracentrifu-

gated pellet (containing 30 μg of proteins in control samples and 69 μg of proteins in lopera-

mide-treated samples) were loaded for all samples and analyzed simultaneously on 10%

SDS-PAGE under non-reducing conditions. Polypeptides were electroblotted onto a nitrocel-

lulose membrane (HyBond C; Amersham, Argentina) at 43 mA for 60 min. Following, the

membranes were incubated in blocking solution (TBST: 20 mM Tris-HCl, 150 mM NaCl, 1%

Tween-20, pH 7.6 containing 2% bovine serum albumin for 4 h at 20˚C) and were probed with

a 1:1000 dilution of mouse monoclonal antibodies raised against human CD9 (BD Pharmin-

gen, clone M-L13) and CD63 (MEM-259, ImmunoTools clone MEM-259) to detect cross-

reactivity with E. granulosus tetraspanins of approximately 25 and 50 kDa respectively. The

corresponding antibodies datasheets do not allow the identification of the “antigen portion”

used for their generation. Therefore, we analyzed the identity along the entire antigenic pro-

tein and the proteins of interest through sequence alignment. Also, we performed an antibody

recognition ability analysis based on the identification of similar linear and conformational

epitopes between human immunogen and parasite tetraspanins using BepiPred 2.0 (http://

www.cbs.dtu.dk/services/BepiPred/) and CEP-Conformational Epitope Prediction Server-

(http://196.1.114.49/cgi-bin/cep.pl). Finally, the blots were incubated with anti-rabbit immu-

noglobulin peroxidase-linked species-specific whole antibody (GE Healthcare, cat no.

NA934V) and ECL reagents (GE Healthcare, cat no. RPN2106V1) to detect the chemilumines-

cent signal on film. A protein extract from human peripheral blood mononuclear cells

(PBMCs) was used as a positive control.

Extracellular vesicles membrane staining

Isolated EVs were labeled with PKH26 fluorescent dye (Sigma-Aldrich) according to the man-

ufacturer’s instructions. In brief, 10 μl purified EVs were resuspended in 10 μl of Diluent C

and mixed gently with PKH26 (added to a final concentration of 2 μM) in 150 μl of final vol-

ume for 35 min at 37˚ C in darkness. To stop the staining, they were incubated with BSA 1%

for 10 min at room temperature. Then, the samples were washed with PBS followed by ultra-

centrifugation at 100,000 xg for 1 h to remove the excess dye and finally were resuspended in

150 μl of PBS. Negative controls consisted of the resuspended pellet after ultracentrifugation

step labeled with the fluorescent dye alone, without purified EVs

Generation and culture of Bone-Marrow dendritic cells

Bone Marrow-derived Dendritic Cells (BMDCs) were produced by flushing bone marrow of

femurs and tibias of CF-1 mice (6–8 weeks old) as previously described with minor modifica-

tions [44]. Briefly, cells suspensions were depleted of erythrocytes with RBC lysing buffer (BD

Bioscience, San Jose, CA). Cells were plated at 1 x 106/ml in 6-well culture plates with 3 ml

of supplemented RPMI 1640 (5% heat-inactivated fetal calf serum -Gibco; Invitrogen-, 100

U/ml penicillin/streptomycin, 10 μg/ml gentamicin and 2 mM L-glutamine, -all from Life
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Technologies, Grand Island, NY-). To induce DC-differentiation, cells were cultured in pres-

ence of 100 ng/ml Flt3-L (R&DSystems) at 37˚C in 5% CO2 for 6 days. Finally, DC-population

was characterized by flow cytometry using fluorescence-conjugated monoclonal antibodies

(mAbs) directed against CD11b (M1/70), CD11c (HL3), CD3 (145-2C11), CD45R/B220

(RA3-6B2), SiglecH (eBio440c), CD172a (P84) and CD24 (M1/69) (eBiosciences, San Diego,

CA). Approximately 70–90% of the cells were CD11c+.

Analysis of the interaction between Bone-Marrow dendritic cells with

extracellular vesicles from E. granulosus
Endocytosis of EVs by BMDCs and maturation assays was performed by flow cytometry and

confocal microscopy. BMDCs (1 x 106 cells/ml) were cultured with or without 150 μl PKH26

labeled-extracellular vesicles purified (10 μl pellets recovered by ultracentrifugation coming

from culture supernatants of 3000 protoscoleces) from control or 20 μM loperamide-treated

samples for 30 min at 37˚C. Cells were then washed gently, pelleted and maintained for 18 h in

culture before harvested. Incubation of BMDCs with EVs at 4˚C was used as negative control

of endocytosis. In addition, to determine DC maturation, the cells were stimulated for 18 h

with 100 ng/mL of lipopolysaccharide (LPS, Sigma-Aldrich Co, positive control).

Flow cytometry

Fluorescein isothiocyanate (FITC) or phycoerythrin-conjugated mAbs directed to CD11c

(HL3), CD40 (HM40-3), CD80 (16-10A1), CD86 (GL1), MHC class I (AF6-88.5.5.3) and

MHC class II (M5 / 114.15.2) were from eBioscience (San Diego, CA, USA). In all cases, iso-

type-matched control antibodies were used, and a gate (R1) was defined in the analysis to

exclude all nonviable cells and debris, based on size and propidium iodide staining. The analy-

sis was performed using a PartecCyflow Space (Sysmex, UK) flow cytometer, and the FlowJo

software (Treestar). The results are expressed as the mean fluorescence intensity or as the per-

centage of positive cells. Data were statistically compared using the Kruskal-Wallis test with

Dunn’s multiple comparisons post-test; p values of< 0.05 were considered to be significant.

Confocal microscopy

Immediately after incubation of the BMDCs with the EVs, cells were then harvested and plated

on alcian blue-treated coverslips (12 mm) during 20 min at room temperature. Then, the cells

were washed with PBS-BSA 2% in a wet chamber and fixed in 4% PFA and permeabilized with

0.05% saponin. Afterward, they were incubated with mAb MHC class II-FITC antibody

(eBioscience, San Diego, CA, USA) for 1 h at 37˚C, washed and incubated with 50 ng/ml

DAPI (Sigma-Aldrich, USA) to counterstained nuclei. Coverslips were mounted on glass slides

using Fluoromount G. Immunofluorescence and images were acquired with an inverted con-

focal laser scanning microscope (Nikon, Confocal Microscope C1) using a 60 x oil immersion

objective with an excitation/emission wavelength 485/538 nm for FITC, 358/461 nm for DAPI

and 551/567 nm for PKH26. Fluorescent intensity and co-localization analysis were performed

using Histogram and Coloc 2 plugins in Fiji software. Briefly, to quantify MHCII modulation

in cell surface, a total of ten cells in absence or presence of EVs was analyzed. Image files were

loaded as separate image stacks. Then, surrounding background was subtracted before differ-

ent region of interest (ROI) were analyzed to obtain the mean intensity values. For co-localiza-

tion of MHCII molecules with EVs labeled with PKH26 the Pearson’s coefficient (r) was used

to analyze the correlation of the intensity values of green and red pixels in dual-channel

images. Statistical analysis was done with the nonparametric Mann–Whitney test, a p-value of

less than 0.05 was considered significant.
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Results

Echinococcus granulosus larval stage produces exosome-like vesicles which

increase with [Ca+2]i during loperamide treatment

Since exocytosis could be regulated by [Ca+2]i, loperamide was used as an exocytic stimulus

applying a concentration and time of incubation that guaranteed parasite viability [32]. Loper-

amide exposure (50 μM) increased free [Ca+2]i 6-fold over a 4 h incubation period in compari-

son with the control (Fig 1A). The fluorescence signal diminished around control values after

pretreatment with a mixture of EGTA (an extracellular chelator) plus BAPTA-AM (a mem-

brane-permeable calcium chelator) in the medium.

In order to determine whether E. granulosus larval stage produces EVs, we followed a series

of centrifugal steps of increasing speed as was described by Théry et al. [40] from which small

EVs (sEVs or nanovesicles) were mainly isolated [22]. The identification and characterization

of EVs focused on DLS for size distribution determination (Fig 1B) and TEM for morphology

assessment (Fig 1C and 1D). The diameter of the majority of EVs was within the expected size

range for exosome-like vesicles. The 96,2% of EVs from control protoscoleces was among 30–

90 nm (45.04 ± 10.06 nm) and the 100% of EVs from loperamide-treated parasites showed a

size range among 35–110 nm (68.18 ± 25.35 nm). However, a minor population of EVs from

control protoscoleces (3.8%) shows a size of 135.3 ± 44.25 nm (Fig 1B). TEM analysis con-

firmed the presence of sEVs with the typical cup-shaped structures of 25–150 nm (Fig 1C and

1D) in accordance with DLS outcome. EVs from protoscoleces and hydatid fluid exhibit simi-

lar sizes while those from metacestodes display higher diameters even though they are not sta-

tistically significant (Fig 1D). Additionally, EVs were more abundant in protoscolex-cultures

than in metacestode-cultures and their hydatid fluids indicated by protein concentration

(6 ± 1 μg/μl, 1.1 ± 0.5 μg/μl and 0.7 ± 0.5 μg/μl, respectively, Fig 1C and 1E).

TEM pictures from entire protoscoleces also show structures compatible with EVs (exo-

some-like vesicles, microvesicles) and MVBs with ILVs associated with the tegument and sur-

face of protoscoleces (S1 Fig). Besides, sub-lethal treatment of protoscoleces with the drug

induced ultrastructural changes in the tegument, such as disorganization of the distal cyto-

plasm and lack of glycocalyx and microtriches, while it was unaltered in control condition

(S1 Fig).

Small extracellular vesicles of E. granulosus larval stage contain

characteristic proteins of exosome-like vesicles

To characterize the protein-cargo and analyze the possible differences between the EVs

obtained from untreated- and loperamide-treated parasites we carried out a proteomic analysis

of the sEV-enriched fraction of parasites incubated in both conditions. In samples from meta-

cestodes, we identified a very low number of proteins due to a low recovery of total proteins.

Nevertheless, we could successfully identify 5 and 13 proteins in control and loperamide con-

dition, respectively. Among these proteins, gelsolin, heat shock protein 70, tetraspanins and

14-3-3 protein which are usually present in exosomes, were identified. Otherwise, a total of

298 proteins were identified in samples of loperamide-treated protoscoleces. Of these proteins,

112 were common to both control and loperamide-treated samples whereas the remaining 186

proteins were exclusively found in the treated sample (Fig 2A and S1 and S2 Tables). Proteins

were classified into 10 categories based on the analysis with Reactome database and informa-

tion from the literature. In spite of the fact that loperamide increased the identified-protein

number and the release of EVs including exosome-like vesicles, the abundance of proteins

involved in calcium homeostasis, immune system/host interaction and antigens was greater in
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Fig 1. Characterization of extracellular vesicles purified from E. granulosus larval stage. A. Determination of changes in the cytosolic free Ca+2 concentration

from control protoscoleces incubated with buffer (Co) or with 50 μM of loperamide (Lp) for 4 h and then loaded with Fluo-3-AM (grey bars). Pretreatments with 1

mM EGTA plus 100 μM BAPTA-AM for 15 min were carried out before the Fluo-3-AM incubations (white bars). Data are the mean ± S.D. from five independent

experiments. Asterisk indicates significant differences (Mann–Whitney test, � p< 0.05). B. Size distribution curves determined by DLS of isolated EVs from control

(Co) and loperamide (Lp)-treated protoscoleces (PTS). C. Morphological characterization of purified EVs through TEM. (a-b) Control PTS.(c-d) loperamide-treated

PTS. (e) Control. MTC (f) Control hydatid fluid. Identification of abundant exosome-like structures indicated with arrowheads (size range from 25–150 nm in

diameter and with the typical cup-shaped appearance-boxed area-). Scale indicates 50 nm. D. Estimation of EVs sizes from control protoscoleces (PTS), metacestodes

(MTC) and hydatid fluid (HF) using Fiji software. E. Determination of protein concentration of ultracentrifugation pellet from seven independent assays. Data were

presented as the mean ± SD. Asterisk indicates significant differences (Kruskal-Wallis with Dunn’s post-test, � p< 0.05).

https://doi.org/10.1371/journal.pntd.0007032.g001
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control conditions. On the other hand, proteins involved in metabolism, transport of molecules,

signal transduction, vesicle-mediated transport/membrane trafficking and developmental biol-

ogy/cellular migration were expressed in higher proportion in loperamide samples respect to

the control (Fig 2B). A detailed examination at peptide level revealed that most of the common

proteins showed a peptide abundance of 2-fold and 3-fold enriched in drug-treated samples

compared with untreated-samples, except for some proteins such as multidrug resistance pro-

teins, Ca-ATPase and Antigen 5, where the expression was increased between 5-fold and 9-fold

in the sEVs released from loperamide-treated parasites (S1 Table and S1 and S2 Files).

In addition, we observed a high prevalence of uncharacterized proteins which are of special

interest for their putative role in the parasite-host interaction. They were analyzed and classi-

fied based on the presence of conserved domains using ProDom, CDART and CDD which

allowed the identification of 7 putative antigenic proteins, 2 tetraspanins, 2 thioredoxin-like

proteins, 1 galectin/galactose-binding lectin, among others (S3 Table). Besides, we performed

a sequence analysis using SignalP and SecretomeP which revealed that 17% and 23% of

uncharacterized proteins were secreted by classical and nonclassical secretory pathways,

respectively (S3 Table).

Moreover, we compared our data with those of ExoCarta database. We observed that 56 out

of 298 proteins share homology with the proteins listed in ExoCarta comprising some exoso-

mal markers such as syntenin 1 and TSG101; proteins present in specific sEVs such as tetraspa-

nins, ALIX, annexin A6 and EH-domain containing protein; proteins present in multiple EVs

such as heat shock 70 kDa proteins, annexins, beta-actin and tubulin alpha-1C; and proteins

present in large EVs such as eukaryotic elongation factor 2 and actinin (Fig 2C). We also iden-

tified other proteins that account for the presence of ectosomes such as Rho family of small

GTPases (including RhoA and Cdc42) and proteins implicated in MVB trafficking such Rab

family of small GTPases and SNARE proteins (S1 and S2 Tables). On the other hand, certain

proteins were exclusively detected in EVs under loperamide-treatment such as TSG101 (exo-

somal marker tumour susceptibility), EPS8-like protein (as part of epidermal growth factor

receptor (EGFR) signalling), prominin-1 (CD133, a pentaspan protein) and the transforming

growth factor-beta-induced protein ig-h3 (TGFBI, also known as keratoepithelin).

Finally, tetraspanins, which are very prevalent in exosomes and are involved in their bio-

synthesis were assayed by immunoblot analysis. The anti-CD9 and anti-CD63 antibodies used

are directed against proteins which showed 26–30% or 21–23% amino acid identity with the

four Eg-tetraspanins identify in our proteomic analysis (EUB61600 and EUB60810 in control

and loperamide-samples and EUB63772 and EUB54099 only from loperamide-samples).

Additionally, the antigenic regions of both human CD9 and the Eg-tetraspanins are coinciden-

tal, exposed, and with coil structure, suggesting that the probability of recognition by anti-

CD9 include the four parasite proteins.

The transmembrane tetraspanins homolog to human CD9 (with an expected size of

approximately 25 kDa) were enriched in the EV preparations from loperamide-treated sam-

ples (Fig 2D). The immunodetection of tetraspanins in drug-treated samples was surely due to

higher protein loading of this sample in relation with the control. The sub-optimal protein

concentration from control samples could result in the observed undetected signal.

Fig 2. Proteomic analysis from extracellular vesicles of protoscoleces. A. Venn diagram of total proteins from control and loperamide-

treated samples. B. Functional classification of proteins from control condition and proteins exclusively expressed under loperamide

treatment. C. Proteins expressed in exosome-like vesicles from E. granulosus protoscoleces according to ExoCarta. #, exosomal markers; �

small EVs specific proteins; ��, proteins present in multiple EVs; ���, proteins present in large EVs. D. Western Blot of CD9 tetraspanin

from control (Co) and loperamide (Lp)-treated samples revealed with a heterologous antibody against human CD9 (with expected size of

approximately 25 kDa). Co (+): positive control (protein extract from PBMCs). Right lane show polypeptide sizes.

https://doi.org/10.1371/journal.pntd.0007032.g002
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Extracellular vesicles of E. granulosus are internalized by dendritic cells and

induce their maturation

Dendritic cells (DCs) are the unique professional antigen-presenting cell able to link the initia-

tion of an antigen-specific response to the microbial mediators forming a decisive interface

between innate and adaptive immunity. When they capture foreign antigens in the periphery

undergo phenotypic, functional and migratory changes that allow them to present processed

antigenic peptides to naïve T cells. In this way, DCs handle the adaptive immune system in a

proinflammatory or tolerogenic profile [45]. In this context, we performed a functional analy-

sis to disclose potential roles of E. granulosus EVs in host-parasite interactions. To monitor the

internalization of EVs, we stained them with the red-fluorescent lipophilic compound PKH26.

Coincubation of 1 x 106 BMDCs for 30 min at 37˚C with labeled and extensively washed EVs

revealed that these cells internalized the vesicles as can be seen by confocal microscopy analysis

in Fig 3A. As expected, when EVs and BMDCs were incubated at 4˚C, no ingestion of vesicles

was observed due to the loss of fluidity and endocytic capacity of the plasma membrane. When

we compare control with LPS-treated BMDCs we observed similar amounts, but a different

cellular distribution of the vesicles internalized. When EVs were exposed to control BMDCs,

the dye PKH26 show a homogeneous fluorescent pattern with some punctate dot structures

(Fig 3A, S2 Fig). Remarkably, the internalized vesicles by LPS-treated BMDCs show a dotted

pattern at the perinuclear region. In addition, higher levels of the PKH26 dye have been

observed in BMDCs incubated with purified EVs coming from loperamide-treated protosco-

leces. It is also important to note the colocalization of the EVs and MHCII indicated by the

high Pearson’s R value (0.95–0.96) specially in EVs from treated parasites (Fig 3A). This sug-

gests that they are located at the same cellular site, probably related to endosomal-lysosomal

compartments where preformed MHCII molecules are stored. Addiotionally, we performed a

control to evaluate the labeling specificity using the dye purified without EVs which revealed

only a 3–4% of cells with diffuse signal and nonspecific extracellular fluorescence in compari-

son with the 40% positive labeled cells observed in presence of EVs (S2 Fig). Due to vesicles

secreted by E. granulosus also transport antigenic proteins, we, therefore, use the MHCII and

the costimulatory molecule CD86 as markers of the maturation of DCs. A slight down-regula-

tion in the expression of MHCII was evidenced by confocal microscopy when BMDCs were in

contact with purified EVs from control protoscoleces (Fig 3A and 3B). Conversely, FACS anal-

ysis showed that the E. granulosus EVs induce the up-regulation of CD86 whereas similar

expression was observed for CD40, CD80, MHCI and MHCII in a unified CD11c+ DCs popu-

lation (Fig 3C and S3 Fig). In our assays, we have detected 3 different subpopulations of den-

dritic cells. Plasmacytoid dendritic cells (pDC, CD11c+ B220+ SinglecH+) and conventional

dendritic cell (cDC): CD11b+ like DCs (CD11c+, CD172a+) and CD8+like DCs (CD11c+

CD24+ and CD172a-). However, the proportion of pDCs (with mainly antiviral and antitumor

activity) was always less than 10%, and the 3 populations analyzed separately did not show any

changes in the response against the stimulation of the exosomes-like from E. granulosus.

Discussion

Extracellular vesicles have been widely related to the host-parasite relationship and cell comu-

nication and are considered relevant for the infection and persistence of the parasite in the

host [15, 46]. In this work, we isolated and characterized for the first time the EVs produced in

in vitro cultures of E. granulosus protoscoleces and metacestodes obtained from infected mice,

and we analyzed their biological function after contact with host DCs. In the course of the pro-

duction of this manuscript, two studies evidenced EVs in hydatid fluid [30,31] and another

one evidenced EV secretion by E. multilocularis [29].
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As mentioned in the Results section, we isolated sEVs from the larval stage of E. granulosus
which were similar in size, morphology (Fig 1) and protein content (Fig 2, S1 and S2 Tables)

to the exosomes characterized in reports refered to Echinococcus sp., other parasites (Echinos-
toma caproni, Heligosomoides polygyrus, Fasciola hepatica, Schistosoma japonicum, Taenia
crassiceps, Mesocestoides corti, among ohers) and mammals [24–26, 28–31, 47].

Dynamic light scattering assay and TEM images show exosome-like structures between 25

and 150 nm in diameter, which displayed a usual cup-shaped morphology (Fig 1B and 1C),

thus allowing us to confirm the presence of exosome-like vesicles. Besides, mass spectrometry

allowed us to identify a number of well-known exosomal and sEV markers, including TSG101,

SDCBP and ALIX (Fig 2C, S1 and S2 Tables). Also, in accordance with previous reports, our

results of immunoblot showed that these EVs were enriched in CD9-like tetraspanin, which

could have a role in stabilizing membrane microdomains and increasing exosome production

(Fig 2D) [22, 48]. Although some authors have previously identified CD63-like tetraspanins

from E. granulosus [49, 50], in the present study we were not able to detect them under our

western blot conditions probably due to a low antibody cross-reactivity against parasite tetra-

spanins. These proteins have been suggested as promising targets for vaccination or anti-para-

sitic therapy against E. multilocularis and Opisthorchis viverrini, respectively [51, 52]. In the

present study, proteomic analysis allowed us to identify 112 and 298 proteins from EVs of con-

trol and loperamide-treated protoscoleces respectively of which 38 and 56 were specifically

enriched in orthologs of mammalian proteins present in exosomes, respectively (Fig 2A and

2C). Additionally, they were compared with those previously reported for Echinococcus and

other flatworm parasites (S1 and S2 Tables) revealing that the majority of components found

in EVs (such as exosomal markers, proteins involved in MVB biogenesis, vesicle trafficking,

enzymes, chaperones and cytoskeleton proteins) and several antigens were common among

helminth parasites [26, 28, 29, 31]. Coincidentally with Siles Lucas et al. [31] we found in the

ten most common proteins SDCBP, ezrin/moesin/radixin and antigen 5 (S1 and S2 Tables).

The proteins coming from the membrane and cytosol included: heat shock proteins, signal or

scaffolding proteins, endosome-membrane proteins (Annexins and Rabs), Heteromeric G

proteins and Rab effectors (otoferlin and synaptotagmin-like protein), which are associated

with exosome biogenesis (Fig 2C) [20]. Given that these proteins are representative of the

ESCRT dependent pathway, we propose that this could be the main route involved in the exo-

some biogenesis in the Echinococcus larval stage, as previously described for adult F. hepatica
[28]. In this line of evidence, the TEM images of E. granulosus protoscoleces displayed in S1

Fig demonstrated the potential occurrence of structures similar to MVBs in the distal cyto-

plasm of the larvae and the presence of EVs. All these findings support the assumption that the

isolated nanovesicles in our preparations are exosome-like vesicles. However, although we had

a population enriched in nanovesicles (with absence of nuclear and mitochondrial proteins

and presence of known and uncharacterized proteins belonging to non-classical secretory

Fig 3. Determination of extracellular vesicles-host cell interaction. 1x106 cells/ml Bone Marrow Dendritic Cells

(BMDCs) were obtained after 6 days of culture in presence of FLT3-L. A. Immunofluorescence confocal microscopy

(ICM) of BMDCs stimulated with LPS (100 ng/ml) or with 10 μl of EVs purified from control or 20 μM loperamide-

treated protoscoleces of E. granulosus for 18 h to visualize MHCII-FITC (green), EVs-PKH26 (red), DAPI (blue).

Arrows point the co-localization area. r = Pearson’s correlation coefficient for co-localization of MHCII-FITC (green)

and EVs-PKH26 (red). Scale bars = 5 μM. B. MHCII quantification. Bars show means ± S. D. of MHCII fluorescence

quantification from five photographs using Fiji software. Asterisk indicates significant differences (Mann–Whitney

test, � p< 0.05). C. Dot-plots illustrating the purity of differentiated BMDCs based on the expression of CD11c. After

18 h, BMDCs maturation was analyzed by flow cytometry by studying the percentage of CD86+ cells or the difference

in mean fluorescent intensity (MFI) by histograms. A representative experiment (n = 3) is shown. Data were

presented as the mean ± SD. Asterisk indicates significant differences (Kruskal-Wallis with Dunn’s post-test, �

p< 0.05, �� p< 0.01).

https://doi.org/10.1371/journal.pntd.0007032.g003
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pathways, Fig 1B and S1–S3 Tables), our purification protocol lacked a gradient separation

step. Thus, we cannot discard the presence of contaminating soluble proteins and other types

of EVs secreted by the parasites. Indeed, we identified proteins present in microvesicles (indi-

cated with asterisks in Fig 2C) and soluble proteins previously identified as excretory/secretory

products in this cestode [53–55]. Probably, the observed increases in intracellular calcium trig-

ger a signal cascade that stimulates the release of microvesicles from the tegumental surface,

also increasing the ratio of these vesicles in loperamide-treated samples respect to the controls

[23]. Supporting this idea, in loperamide-treated samples, we observed differential expression

of proteins involved in microvesicle biogenesis such as ADP-ribosylation factor 6, as reported

in F. hepatica (S2 Table) [28].

To boost EV release and to analyze their protein cargo in relation with untreated condi-

tions, we added loperamide into the parasite cultures. This drug increased [Ca+2]i in both E.

granulosus larval forms and in other cell systems (Fig 1A) [39], enhanced the EV production in

the cestode (Fig 1), as previously reported in C2 C12 myoblast cells [56], and affected the pro-

tein composition of the released exosome-like vesicles (Fig 2A and 2C, and S2 Table).

Although total protein content was higher in loperamide-treated samples than in controls, the

proportion of parasite antigens and calcium homeostasis proteins (otoferlin, PDCD6, dysfer-

lin, among others) was lower than in controls (Fig 2A and 2B, S1 and S2 Tables). Therefore,

the molecular characteristics of the EVs released from protoscoleces under physiological con-

ditions suggest that these vesicles could mediate biological aspects of the parasitic life cycle

involved in parasite-parasite and/or parasite-host interactions. On the other hand, proteins

exclusively detected in sEVs under loperamide-treatment included TSG101, which has been

previously reported to increase after cancer chemotherapy [57], and several other proteins

such as EPS8-like protein, prominin-1, TGFBI and CDC42-interacting protein, which could

induce migration and cell proliferation between the host and the parasite [58–60]. Besides, the

EVs purified from drug-treated protoscoleces were enriched in multidrug resistance proteins

and glutathione S-transferases, which could represent a potential mechanism of the parasite to

reduce the chemotherapeutic effectiveness of the drug, as previously reported in cancer cells

[57, 61, 62]. The analysis of sEVs obtained under loperamide treatment was helpful to corrobo-

rate that these sEVs were similar in size and quality to control sEVs even in presence of initial

ultrastructural alterations (S1 Fig) encouraging further analysis of sEVs characterization using

other antiechinococcal drugs to determine the occurrence of antigenic and/or immunoregula-

tory proteins.

Similarly to that observed by TEM in protoscolex cultures, the supernatants of E granulosus
metacestode cultures were enriched in exosome-like vesicles (Fig 1Ce and 1D). In support of

this, nanovesicles crossing the laminated layer of Echinococcus metacestodes have been

described through ultrastructural analysis of the tegument [63, 64]. In the present study, the

metacestodes used to obtain EVs were collected from the inner part of the cystic masses that

are surrounded by the adventitial layer. This strategy allowed the isolation of cysts free of the

collagen capsule and host cells and consequently of EVs only of parasite origin. Recently, it has

been described that the metacestode stages of T. crassiceps and M. corti secrete EVs in close

contact with the host, but that in E. multilocularis EVs are retained by the laminated layer

[29]. The laminated layer of E. multilocularis is much thinner than that of E. granulosus; there-

fore, in the latter, the EVs would be mostly retained. Interestingly, the laminated layer of

E. granulosus possesses crystalline granules containing deposits of the calcium salt of InsP6

(Ca5H2L_16H2O, where L represents fully deprotonated InsP6), which are absent in E. multilo-
cularis [3]. This molecule has been reported to bind to numerous proteins that regulate intra-

cellular vesicle traffic [65, 66]. It is known that a true exchange of macromolecules across

of the laminated layer occurs between the host and the parasite, with constant vesicular
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trafficking through the tegument [3, 67]. This movement may depend on signature organellar

targeting motifs within the proteins and on their interactions with certain components of the

laminated layer. High-affinity InsP6-binding proteins include components of E. granulosus
exosome-like vesicles such as synaptogmins, ATP-dependent RNA helicases (DExD/H-

box protein family), pleckstrin, ezrin/radixin/moiesin, gelsolin and galectin (S1–S3 Tables)

[68]. Thus, it could be considered that extracellular InsP6 binds to proteins on E. granulosus
exosome-like vesicles, acting as a “dynamic anchorage” that promotes the passage across the

laminated layer and thus accounting for the EVs observed in the metacestode culture medium

(Fig 1Ce).

It is widely known that exosome-like vesicles, particularly those derived from helminth par-

asites, mediate the immune modulation through their protein-, lipid- and RNAs-cargo [24, 69,

70]. Proteins contained in helminth exosome-like vesicles can modify host responses to favor

parasite survival, proliferation and dissemination [24, 28]. Thus, in the present study, we first

analyzed the interaction of exosome-like vesicles with BMDCs since the latter can adsorb exo-

somes and thus modify T cell responses or internalize these vesicles by endocytosis, present

antigens and modify their own function conditioning T cell responses [71, 72]. Bone Marrow

Dendritic Cells internalized exosome-like vesicles from E. granulosus thus promoting their

maturation (Fig 3). An interesting finding was that the exposure of the DCs to EVs induced an

unconventional activation profile, with increase in CD86, but with a slight decrease in MHC

class II molecules (Fig 3). The MHCII increase was only statistically significant by confocal

microscopy analysis probably due to its ability to detect both intracellular and cell surface mol-

ecules in contrast to FACS analysis where only surface molecules can be detected (S3 Fig).

These maturation pattern on the course of differentiation of DCs have been previously

reported during the exposure to hydatid fluid or purified antigen B [73]. This activation profile

could be related to the modulation of the parasite to avoid antigenic presentation favoring the

scape to both immunosurveillance and an effective immune response.

Based on mass spectrometry analysis and in silico functional categorization of E. granulosus
EVs, in the present study and increasing the data previously reported in Echinococcus, we iden-

tified several proteins with immunomodulatory functions such as a B-Cell Receptor Associated

Protein 29 (Bp29), which negatively modulates the membrane expression of MHCI in HeLa

cells [74]. Another protein well represented in the EVs analyzed was basigin (also known as

Extracellular Matrix Metalloproteinase Inducer–EMMPRIN- or cluster of differentiation 147

-CD147-), a member of the immunoglobulin superfamily which acts as the principal receptor

that mediates chemotaxis by cyclophilins and regulates the responsiveness of lymphocytes by

inhibition of T cell proliferation [75, 76]. An orthologous protein to CD147, associated with

the negative regulation of T-reg cells, has also been previously identified in F. hepatica [77].

Besides, here we identified a maspardin ortholog (known as MAST or ACP33 protein), which

is highly conserved in metazoans and is able to bind to CD4, acting as a negative regulator in T

cell activation [78]. In the same line of evidence, we detected numerous antioxidant proteins

that could neutralize the oxidative free radicals generated by host phagocytic cells such as

thioredoxin peroxidase and glutathione S-transferase which have been previously described in

excretory/secretory products from E. granulosus protoscoleces and hydatid fluid [53] and com-

prise a major detoxification system in parasites [79, 80]. Also, we identified annexins, which

act as glucocorticoid-regulated proteins that promote the resolution of inflammation by limit-

ing neutrophil recruitment and production of proinflammatory mediators and inducing mac-

rophage reprogramming toward an alternative phenotype [81–83]. These effects could explain

the type 2 immune response observed in patients with cystic echinococcosis [73]. Other pro-

teins found in our purified EVs were peptidyl-prolyl cis-trans isomerases which show potential

immunomodulatory activity, as the alteration in DC function by cytokine production, which
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leads to expansion of CD4+ Treg cells in Schistosoma mansoni [84]. Also, we found proteins

that showed identity with parasite tegumental proteins which could inhibit polymorphonu-

clear cell chemotaxis and induce IL-4-T lymphocytes and non-complement fixing antibodies

(IgG4) in patients with cystic echinococcosis [85]. In this way, due to their ability to suppress

the innate and adaptive immune response, EVs could also be valuable tools to improve inflam-

mation-associated disease [24]. On the other hand, and opposed to the immunoregulatory

response, certain antigenic proteins described in protoscoleces and metacestodes were

detected in E. granulosus EVs. EVs transfer antigens to DCs and T lymphocytes more effi-

ciently than soluble peptides [70]. In our proteomics data, we found 14-3-3 proteins which

have been reported to provide 97% protection against E. multilocularis challenge infection in

rodent and the production of a specific humoral response in rhesus macaque models, respec-

tively [86, 87], the endophilin B1, which is highly expressed in the tegument of Taeniidae meta-

cestodes and responsible for a strong immune recognition in sera from patients with cystic

and alveolar echinococcosis and chronic neurocysticercosis [88], antigen 5, an immuno-domi-

nant serine-protease with heparan sulphate proteoglycan- and calcium-binding sites, and anti-

gen P-29 immunologically related to antigen 5 used as a marker for post-surgery surveillance

of cystic echinococcosis patients [89, 90]. Antigen 5 is highly immunogenic in human infec-

tions although its highly cross-reactive glycan moieties may involve a parasite evasion mecha-

nism [91–95]. Particularly, this antigen showed greater abundance in the EVs obtained from

loperamide-treated parasites than in the controls. This increase correlates with higher positiv-

ity rates to antigen 5 test detected in albendazole-treated patients in comparison with

untreated patients [96], probably indicating that the antigen 5 is released not only as a soluble

protein but also associated with EVs.

In summary, our study showed for the first time the secretion of EVs in E. granulosus proto-

scoleces and metacestodes obtained in infected mice. Our study also demonstrated conserved

size, shape and content of particular excretory/secretory proteins of EVs, suggesting an impor-

tant role of EVs in the maturation process of DCs which are essential for the coordination of

specific immune responses. Nevertheless, additional work is necessary to shed light on the

functionality of these DCs stimulated with EVs from E. granulosus in antigen presentation,

cytokine release, and activation of T cell population. It will also be interesting to elucidate the

components of EVs and establish whether they can be used as diagnostic markers for parasitic

diseases, as new vaccines, and/or as treatment tools [97].
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S1 Fig. Identification of vesicles in the tegument surface of protoscoleces by transmition

electron microscopy. (a-b) Control (c-d) loperamide-treated protoscoleces (20 μM, 18 h).

MVB, multivesicular bodies; ILV, intraluminal vesicles; EV and arrowhead, extracellular vesi-

cle; n, nucleus; dc, distal cytoplasm; gl, glycocalyx; mi, microtriches.

(TIF)

S2 Fig. Specificity of PKH26 staining to monitor extracellular vesicle uptake by dendritic

cells. 1x106 cells/ml Bone Marrow Dendritic Cells (BMDCs) obtained after 6 days of culture in

presence of FLT3-L were incubated with EVs labeled with PKH26 (EVs +) or with PKH26 dye

alone purified without EVs (EVs -). Almost 40% of cells incubated with labeled EVs show posi-

tive staining (homogeneous fluorescent pattern with punctate dot structures, indicated by

arrowheads), while only 3% of them were stained with a diffuse pattern in presence of the dye

alone (indicated by an arrowhead and a question mark). Boxed areas correspond to the ampli-

fied images.

(TIF)

S3 Fig. Maturation profile of dendritic cells stimulated with extracellular vesicles. 1x106

cells/ml Bone Marrow Dendritic Cells (BMDCs) were obtained after 6 days of culture in pres-

ence of FLT3-L. After 18 h, BMDCs maturation was analyzed by flow cytometry by studying

the difference in mean fluorescent intensity (MFI) of CD40, CD80, MHCI and MHCII in the

gate of CD11c+ cells by histograms. A representative experiment (n = 3) is shown. Data were

presented as the mean ± SD. No significant differences were detected using a Kruskal-Wallis

with Dunn’s post-test, � p< 0.05.

(TIF)
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